0.0.143
This commit is contained in:
		| @@ -1,7 +1,7 @@ | ||||
| [metadata] | ||||
| # replace with your username: | ||||
| name = guan | ||||
| version = 0.0.142 | ||||
| version = 0.0.143 | ||||
| author = guanjihuan | ||||
| author_email = guanjihuan@163.com | ||||
| description = An open source python package | ||||
|   | ||||
| @@ -1,6 +1,6 @@ | ||||
| Metadata-Version: 2.1 | ||||
| Name: guan | ||||
| Version: 0.0.142 | ||||
| Version: 0.0.143 | ||||
| Summary: An open source python package | ||||
| Home-page: https://py.guanjihuan.com | ||||
| Author: guanjihuan | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
|  | ||||
| # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. | ||||
|  | ||||
| # The current version is guan-0.0.142, updated on December 10, 2022. | ||||
| # The current version is guan-0.0.143, updated on December 10, 2022. | ||||
|  | ||||
| # Installation: pip install --upgrade guan | ||||
|  | ||||
| @@ -1569,46 +1569,46 @@ def calculate_chern_number_for_square_lattice_with_efficient_method_for_degenera | ||||
|             eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky) | ||||
|             dim = len(index_of_bands) | ||||
|             det_value = 1 | ||||
|             # first dot | ||||
|             # first dot product | ||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|             i0 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 j0 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix[dim1, dim2] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2]) | ||||
|                     dot_matrix[i0, j0] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2]) | ||||
|                     j0 += 1 | ||||
|                 i0 += 1 | ||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||
|             det_value = det_value*dot_matrix | ||||
|             # second dot | ||||
|             # second dot product | ||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|             i0 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 j0 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2]) | ||||
|                     dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2]) | ||||
|                     j0 += 1 | ||||
|                 i0 += 1 | ||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||
|             det_value = det_value*dot_matrix | ||||
|             # third dot | ||||
|             # third dot product | ||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|             i0 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 j0 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2]) | ||||
|                     dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2]) | ||||
|                     j0 += 1 | ||||
|                 i0 += 1 | ||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||
|             det_value = det_value*dot_matrix | ||||
|             # four dot | ||||
|             # four dot product | ||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|             i0 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 j0 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2]) | ||||
|                     dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2]) | ||||
|                     j0 += 1 | ||||
|                 i0 += 1 | ||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user