0.0.143
This commit is contained in:
parent
46d5e23f06
commit
055e9a7724
@ -1,7 +1,7 @@
|
||||
[metadata]
|
||||
# replace with your username:
|
||||
name = guan
|
||||
version = 0.0.142
|
||||
version = 0.0.143
|
||||
author = guanjihuan
|
||||
author_email = guanjihuan@163.com
|
||||
description = An open source python package
|
||||
|
@ -1,6 +1,6 @@
|
||||
Metadata-Version: 2.1
|
||||
Name: guan
|
||||
Version: 0.0.142
|
||||
Version: 0.0.143
|
||||
Summary: An open source python package
|
||||
Home-page: https://py.guanjihuan.com
|
||||
Author: guanjihuan
|
||||
|
@ -2,7 +2,7 @@
|
||||
|
||||
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
|
||||
|
||||
# The current version is guan-0.0.142, updated on December 10, 2022.
|
||||
# The current version is guan-0.0.143, updated on December 10, 2022.
|
||||
|
||||
# Installation: pip install --upgrade guan
|
||||
|
||||
@ -1569,46 +1569,46 @@ def calculate_chern_number_for_square_lattice_with_efficient_method_for_degenera
|
||||
eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky)
|
||||
dim = len(index_of_bands)
|
||||
det_value = 1
|
||||
# first dot
|
||||
# first dot product
|
||||
dot_matrix = np.zeros((dim , dim), dtype=complex)
|
||||
i0 = 0
|
||||
for dim1 in index_of_bands:
|
||||
j0 = 0
|
||||
for dim2 in index_of_bands:
|
||||
dot_matrix[dim1, dim2] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2])
|
||||
dot_matrix[i0, j0] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2])
|
||||
j0 += 1
|
||||
i0 += 1
|
||||
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
|
||||
det_value = det_value*dot_matrix
|
||||
# second dot
|
||||
# second dot product
|
||||
dot_matrix = np.zeros((dim , dim), dtype=complex)
|
||||
i0 = 0
|
||||
for dim1 in index_of_bands:
|
||||
j0 = 0
|
||||
for dim2 in index_of_bands:
|
||||
dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2])
|
||||
dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2])
|
||||
j0 += 1
|
||||
i0 += 1
|
||||
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
|
||||
det_value = det_value*dot_matrix
|
||||
# third dot
|
||||
# third dot product
|
||||
dot_matrix = np.zeros((dim , dim), dtype=complex)
|
||||
i0 = 0
|
||||
for dim1 in index_of_bands:
|
||||
j0 = 0
|
||||
for dim2 in index_of_bands:
|
||||
dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2])
|
||||
dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2])
|
||||
j0 += 1
|
||||
i0 += 1
|
||||
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
|
||||
det_value = det_value*dot_matrix
|
||||
# four dot
|
||||
# four dot product
|
||||
dot_matrix = np.zeros((dim , dim), dtype=complex)
|
||||
i0 = 0
|
||||
for dim1 in index_of_bands:
|
||||
j0 = 0
|
||||
for dim2 in index_of_bands:
|
||||
dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2])
|
||||
dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2])
|
||||
j0 += 1
|
||||
i0 += 1
|
||||
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
|
||||
|
Loading…
x
Reference in New Issue
Block a user