0.1.63
This commit is contained in:
		| @@ -1,7 +1,7 @@ | ||||
| [metadata] | ||||
| # replace with your username: | ||||
| name = guan | ||||
| version = 0.1.62 | ||||
| version = 0.1.63 | ||||
| author = guanjihuan | ||||
| author_email = guanjihuan@163.com | ||||
| description = An open source python package | ||||
|   | ||||
| @@ -1,6 +1,6 @@ | ||||
| Metadata-Version: 2.1 | ||||
| Name: guan | ||||
| Version: 0.1.62 | ||||
| Version: 0.1.63 | ||||
| Summary: An open source python package | ||||
| Home-page: https://py.guanjihuan.com | ||||
| Author: guanjihuan | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
| import guan | ||||
|  | ||||
| # 通过元胞和跃迁项得到一维的哈密顿量(需要输入k值) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def one_dimensional_fourier_transform(k, unit_cell, hopping): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -12,7 +12,7 @@ def one_dimensional_fourier_transform(k, unit_cell, hopping): | ||||
|     return hamiltonian | ||||
|  | ||||
| # 通过元胞和跃迁项得到二维方格子的哈密顿量(需要输入k值) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -23,7 +23,7 @@ def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopp | ||||
|     return hamiltonian | ||||
|  | ||||
| # 通过元胞和跃迁项得到三维立方格子的哈密顿量(需要输入k值) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -35,7 +35,7 @@ def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, | ||||
|     return hamiltonian | ||||
|  | ||||
| # 通过元胞和跃迁项得到一维的哈密顿量(返回的哈密顿量为携带k的函数) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def one_dimensional_fourier_transform_with_k(unit_cell, hopping): | ||||
|     import functools | ||||
|     import guan | ||||
| @@ -43,7 +43,7 @@ def one_dimensional_fourier_transform_with_k(unit_cell, hopping): | ||||
|     return hamiltonian_function | ||||
|  | ||||
| # 通过元胞和跃迁项得到二维方格子的哈密顿量(返回的哈密顿量为携带k的函数) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, hopping_1, hopping_2): | ||||
|     import functools | ||||
|     import guan | ||||
| @@ -51,7 +51,7 @@ def two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, h | ||||
|     return hamiltonian_function | ||||
|  | ||||
| # 通过元胞和跃迁项得到三维立方格子的哈密顿量(返回的哈密顿量为携带k的函数) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cell, hopping_1, hopping_2, hopping_3): | ||||
|     import functools | ||||
|     import guan | ||||
| @@ -59,14 +59,14 @@ def three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cel | ||||
|     return hamiltonian_function | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(一维) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_one_dimensional_reciprocal_lattice_vector(a1): | ||||
|     import numpy as np | ||||
|     b1 = 2*np.pi/a1 | ||||
|     return b1 | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(二维) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2): | ||||
|     import numpy as np | ||||
|     a1 = np.array(a1) | ||||
| @@ -81,7 +81,7 @@ def calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2): | ||||
|     return b1, b2 | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(三维) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3): | ||||
|     import numpy as np | ||||
|     a1 = np.array(a1) | ||||
| @@ -93,14 +93,14 @@ def calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3): | ||||
|     return b1, b2, b3 | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(一维),这里为符号运算 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1): | ||||
|     import sympy | ||||
|     b1 = 2*sympy.pi/a1 | ||||
|     return b1 | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(二维),这里为符号运算 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2): | ||||
|     import sympy | ||||
|     a1 = sympy.Matrix(1, 3, [a1[0], a1[1], 0]) | ||||
| @@ -115,7 +115,7 @@ def calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2): | ||||
|     return b1, b2 | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(三维),这里为符号运算 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3): | ||||
|     import sympy | ||||
|     cross_a2_a3 = a2.cross(a3) | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
| import guan | ||||
|  | ||||
| # 输入哈密顿量,得到格林函数 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def green_function(fermi_energy, hamiltonian, broadening, self_energy=0): | ||||
|     import numpy as np | ||||
|     if np.array(hamiltonian).shape==(): | ||||
| @@ -13,7 +13,7 @@ def green_function(fermi_energy, hamiltonian, broadening, self_energy=0): | ||||
|     return green | ||||
|  | ||||
| # 在Dyson方程中的一个中间格林函数G_{nn}^{n} | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0): | ||||
|     import numpy as np | ||||
|     h01 = np.array(h01) | ||||
| @@ -25,14 +25,14 @@ def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, se | ||||
|     return green_nn_n | ||||
|  | ||||
| # 在Dyson方程中的一个中间格林函数G_{in}^{n} | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def green_function_in_n(green_in_n_minus, h01, green_nn_n): | ||||
|     import numpy as np | ||||
|     green_in_n = np.dot(np.dot(green_in_n_minus, h01), green_nn_n) | ||||
|     return green_in_n | ||||
|  | ||||
| # 在Dyson方程中的一个中间格林函数G_{ni}^{n} | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def green_function_ni_n(green_nn_n, h01, green_ni_n_minus): | ||||
|     import numpy as np | ||||
|     h01 = np.array(h01) | ||||
| @@ -40,14 +40,14 @@ def green_function_ni_n(green_nn_n, h01, green_ni_n_minus): | ||||
|     return green_ni_n | ||||
|  | ||||
| # 在Dyson方程中的一个中间格林函数G_{ii}^{n} | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus): | ||||
|     import numpy as np | ||||
|     green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus) | ||||
|     return green_ii_n | ||||
|  | ||||
| # 计算转移矩阵(该矩阵可以用来计算表面格林函数) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def transfer_matrix(fermi_energy, h00, h01): | ||||
|     import numpy as np | ||||
|     h01 = np.array(h01) | ||||
| @@ -63,7 +63,7 @@ def transfer_matrix(fermi_energy, h00, h01): | ||||
|     return transfer | ||||
|  | ||||
| # 计算电极的表面格林函数 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def surface_green_function_of_lead(fermi_energy, h00, h01): | ||||
|     import numpy as np | ||||
|     h01 = np.array(h01) | ||||
| @@ -89,7 +89,7 @@ def surface_green_function_of_lead(fermi_energy, h00, h01): | ||||
|     return right_lead_surface, left_lead_surface | ||||
|  | ||||
| # 计算电极的自能(基于Dyson方程的小矩阵形式) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def self_energy_of_lead(fermi_energy, h00, h01): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -102,7 +102,7 @@ def self_energy_of_lead(fermi_energy, h00, h01): | ||||
|     return right_self_energy, left_self_energy, gamma_right, gamma_left | ||||
|  | ||||
| # 计算电极的自能(基于中心区整体的大矩阵形式) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -116,7 +116,7 @@ def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR): | ||||
|     return right_self_energy, left_self_energy, gamma_right, gamma_left | ||||
|  | ||||
| # 计算电极的自能(基于中心区整体的大矩阵形式,可适用于多端电导的计算) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -127,7 +127,7 @@ def self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_ | ||||
|     return self_energy, gamma | ||||
|  | ||||
| # 计算考虑电极自能后的中心区的格林函数 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -137,7 +137,7 @@ def green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamilto | ||||
|     return green, gamma_right, gamma_left | ||||
|  | ||||
| # 计算用于计算局域电流的格林函数G_n | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def electron_correlation_function_green_n_for_local_current(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
| import guan | ||||
|  | ||||
| # 构建一维的有限尺寸体系哈密顿量(可设置是否为周期边界条件) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0): | ||||
|     import numpy as np | ||||
|     on_site = np.array(on_site) | ||||
| @@ -23,7 +23,7 @@ def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping= | ||||
|     return hamiltonian | ||||
|  | ||||
| # 构建二维的方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0): | ||||
|     import numpy as np | ||||
|     on_site = np.array(on_site) | ||||
| @@ -56,7 +56,7 @@ def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1 | ||||
|     return hamiltonian | ||||
|  | ||||
| # 构建三维的立方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0): | ||||
|     import numpy as np | ||||
|     on_site = np.array(on_site) | ||||
| @@ -105,7 +105,7 @@ def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N | ||||
|     return hamiltonian | ||||
|  | ||||
| # 构建有限尺寸的SSH模型哈密顿量 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1): | ||||
|     import numpy as np | ||||
|     hamiltonian = np.zeros((2*N, 2*N)) | ||||
| @@ -123,7 +123,7 @@ def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, | ||||
|     return hamiltonian | ||||
|  | ||||
| # 获取Zigzag边的石墨烯条带的元胞间跃迁 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0): | ||||
|     import numpy as np | ||||
|     hopping = np.zeros((4*N, 4*N), dtype=complex) | ||||
| @@ -137,7 +137,7 @@ def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0): | ||||
|     return hopping | ||||
|  | ||||
| # 构建有限尺寸的石墨烯哈密顿量(可设置是否为周期边界条件) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -149,7 +149,7 @@ def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, | ||||
|     return hamiltonian | ||||
|  | ||||
| # 获取石墨烯有效模型沿着x方向的在位能和跃迁项(其中,动量qy为参数) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0): | ||||
|     import numpy as np | ||||
|     constant = -np.sqrt(3)/2 | ||||
| @@ -170,7 +170,7 @@ def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy | ||||
|     return h00, h01 | ||||
|  | ||||
| # 获取BHZ模型的在位能和跃迁项 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
|     import numpy as np | ||||
|     E_s = C+M-4*(D+B)/(a**2) | ||||
| @@ -204,7 +204,7 @@ def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0 | ||||
|     return H0, H1, H2 | ||||
|  | ||||
| # 获取半个BHZ模型的在位能和跃迁项(自旋向上) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
|     import numpy as np | ||||
|     E_s = C+M-4*(D+B)/(a**2) | ||||
| @@ -228,7 +228,7 @@ def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0. | ||||
|     return H0, H1, H2 | ||||
|  | ||||
| # 获取半个BHZ模型的在位能和跃迁项(自旋向下) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
|     import numpy as np | ||||
|     E_s = C+M-4*(D+B)/(a**2) | ||||
| @@ -252,21 +252,21 @@ def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=- | ||||
|     return H0, H1, H2 | ||||
|  | ||||
| # 一维链的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_simple_chain(k): | ||||
|     import guan | ||||
|     hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1) | ||||
|     return hamiltonian | ||||
|  | ||||
| # 二维方格子的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_square_lattice(k1, k2): | ||||
|     import guan | ||||
|     hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1) | ||||
|     return hamiltonian | ||||
|  | ||||
| # 准一维方格子条带的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -284,14 +284,14 @@ def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0): | ||||
|     return hamiltonian | ||||
|  | ||||
| # 三维立方格子的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_cubic_lattice(k1, k2, k3): | ||||
|     import guan | ||||
|     hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1) | ||||
|     return hamiltonian | ||||
|  | ||||
| # SSH模型的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_ssh_model(k, v=0.6, w=1): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -301,7 +301,7 @@ def hamiltonian_of_ssh_model(k, v=0.6, w=1): | ||||
|     return hamiltonian | ||||
|  | ||||
| # 石墨烯的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default'): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -318,7 +318,7 @@ def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default'): | ||||
|     return hamiltonian | ||||
|  | ||||
| # 石墨烯有效模型的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0): | ||||
|     import numpy as np | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
| @@ -334,7 +334,7 @@ def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley | ||||
|     return hamiltonian | ||||
|  | ||||
| # 石墨烯有效模型离散化后的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggered_potential=0, valley_index=0): | ||||
|     import numpy as np | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
| @@ -350,7 +350,7 @@ def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggere | ||||
|     return hamiltonian | ||||
|  | ||||
| # 准一维Zigzag边石墨烯条带的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -380,7 +380,7 @@ def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1 | ||||
|     return hamiltonian | ||||
|  | ||||
| # Haldane模型的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a='default'): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -402,7 +402,7 @@ def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a=' | ||||
|     return hamiltonian | ||||
|  | ||||
| # 准一维Haldane模型条带的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi='default', period=0): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -457,7 +457,7 @@ def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2 | ||||
|     return hamiltonian | ||||
|  | ||||
| # 一个量子反常霍尔效应的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -469,7 +469,7 @@ def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1): | ||||
|     return hamiltonian | ||||
|  | ||||
| # BHZ模型的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -488,7 +488,7 @@ def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, | ||||
|     return hamiltonian | ||||
|  | ||||
| # 半BHZ模型的哈密顿量(自旋向上)(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -503,7 +503,7 @@ def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C | ||||
|     return hamiltonian | ||||
|  | ||||
| # 半BHZ模型的哈密顿量(自旋向下)(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -518,7 +518,7 @@ def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, | ||||
|     return hamiltonian | ||||
|  | ||||
| # BBH模型的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -538,7 +538,7 @@ def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambd | ||||
|     return hamiltonian | ||||
|  | ||||
| # Kagome模型的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hamiltonian_of_kagome_lattice(kx, ky, t=1): | ||||
|     import numpy as np | ||||
|     import math | ||||
|   | ||||
| @@ -1,7 +1,23 @@ | ||||
| # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com. The GitHub location of this package is on https://github.com/guanjihuan/py.guanjihuan.com. | ||||
|  | ||||
| # 函数的装饰器,用于软件包的统计 | ||||
| def function_decorator(func): | ||||
| # 函数的装饰器,用于获取计算时间 | ||||
| def timer_decorator(func, time_type=0): | ||||
|     import time | ||||
|     def wrapper(*args, **kwargs): | ||||
|         start = time.time() | ||||
|         result = func(*args, **kwargs) | ||||
|         end = time.time() | ||||
|         if time_type == 0: | ||||
|             print(f"Running time of {func.__name__}: {end - start} seconds") | ||||
|         elif time_type == 1: | ||||
|             print(f"Running time of {func.__name__}: {(end - start)/60} minutes") | ||||
|         elif time_type == 2: | ||||
|             print(f"Running time of {func.__name__}: {(end - start)/3600} hours") | ||||
|         return result | ||||
|     return wrapper | ||||
|  | ||||
| # 函数的装饰器,用于GUAN软件包的统计 | ||||
| def statistics_decorator(func): | ||||
|     def wrapper(*args, **kwargs): | ||||
|         result = func(*args, **kwargs) | ||||
|         import guan | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
| import guan | ||||
|  | ||||
| # 计算哈密顿量的本征值 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_eigenvalue(hamiltonian): | ||||
|     import numpy as np | ||||
|     if np.array(hamiltonian).shape==(): | ||||
| @@ -12,7 +12,7 @@ def calculate_eigenvalue(hamiltonian): | ||||
|     return eigenvalue | ||||
|  | ||||
| # 输入哈密顿量函数(带一组参数),计算一组参数下的本征值,返回本征值向量组 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0): | ||||
|     import numpy as np | ||||
|     dim_x = np.array(x_array).shape[0] | ||||
| @@ -36,7 +36,7 @@ def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print | ||||
|     return eigenvalue_array | ||||
|  | ||||
| # 输入哈密顿量函数(带两组参数),计算两组参数下的本征值,返回本征值向量组 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0):   | ||||
|     import numpy as np | ||||
|     dim_x = np.array(x_array).shape[0] | ||||
| @@ -70,14 +70,14 @@ def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_funct | ||||
|     return eigenvalue_array | ||||
|  | ||||
| # 计算哈密顿量的本征矢 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_eigenvector(hamiltonian): | ||||
|     import numpy as np | ||||
|     eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) | ||||
|     return eigenvector | ||||
|  | ||||
| # 通过二分查找的方法获取和相邻波函数一样规范的波函数 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=1000, precision=1e-6): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -117,7 +117,7 @@ def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref | ||||
|     return vector_target | ||||
|  | ||||
| # 通过使得波函数的一个非零分量为实数,得到固定规范的波函数 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -136,7 +136,7 @@ def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision= | ||||
|     return vector | ||||
|  | ||||
| # 通过使得波函数的一个非零分量为实数,得到固定规范的波函数(在一组波函数中选取最大的那个分量) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array, precision=0.005): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -150,7 +150,7 @@ def find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array | ||||
|     return vector_array | ||||
|  | ||||
| # 旋转两个简并的波函数(说明:参数比较多,算法效率不高) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, precision=0.01, criterion=0.01, show_theta=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -180,7 +180,7 @@ def rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, p | ||||
|     return vector1, vector2 | ||||
|  | ||||
| # 旋转两个简并的波函数向量组(说明:参数比较多,算法效率不高) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def rotation_of_degenerate_vectors_array(vector1_array, vector2_array, precision=0.01, criterion=0.01, show_theta=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -198,7 +198,7 @@ def rotation_of_degenerate_vectors_array(vector1_array, vector2_array, precision | ||||
|     return vector1_array, vector2_array | ||||
|  | ||||
| # 在一组数据中找到数值相近的数 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def find_close_values_in_one_array(array, precision=1e-2): | ||||
|     new_array = [] | ||||
|     i0 = 0 | ||||
| @@ -212,7 +212,7 @@ def find_close_values_in_one_array(array, precision=1e-2): | ||||
|     return new_array | ||||
|  | ||||
| # 寻找能带的简并点 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def find_degenerate_points(k_array, eigenvalue_array, precision=1e-2): | ||||
|     import guan | ||||
|     degenerate_k_array = [] | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
| import guan | ||||
|  | ||||
| # 测试 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def test(): | ||||
|     import guan | ||||
|     current_version = guan.get_current_version('guan') | ||||
| @@ -13,118 +13,118 @@ def test(): | ||||
|     print('\nTest completed.\n') | ||||
|  | ||||
| # 泡利矩阵 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_0(): | ||||
|     import numpy as np | ||||
|     return np.eye(2) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_x(): | ||||
|     import numpy as np | ||||
|     return np.array([[0, 1],[1, 0]]) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_y(): | ||||
|     import numpy as np | ||||
|     return np.array([[0, -1j],[1j, 0]]) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_z(): | ||||
|     import numpy as np | ||||
|     return np.array([[1, 0],[0, -1]]) | ||||
|  | ||||
| # 泡利矩阵的张量积 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_00(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     return np.kron(guan.sigma_0(), guan.sigma_0()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_0x(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     return np.kron(guan.sigma_0(), guan.sigma_x()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_0y(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     return np.kron(guan.sigma_0(), guan.sigma_y()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_0z(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     return np.kron(guan.sigma_0(), guan.sigma_z()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_x0(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     return np.kron(guan.sigma_x(), guan.sigma_0()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_xx(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     return np.kron(guan.sigma_x(), guan.sigma_x()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_xy(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     return np.kron(guan.sigma_x(), guan.sigma_y()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_xz(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     return np.kron(guan.sigma_x(), guan.sigma_z()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_y0(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     return np.kron(guan.sigma_y(), guan.sigma_0()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_yx(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     return np.kron(guan.sigma_y(), guan.sigma_x()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_yy(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     return np.kron(guan.sigma_y(), guan.sigma_y()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_yz(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     return np.kron(guan.sigma_y(), guan.sigma_z()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_z0(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     return np.kron(guan.sigma_z(), guan.sigma_0()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_zx(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     return np.kron(guan.sigma_z(), guan.sigma_x()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_zy(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     return np.kron(guan.sigma_z(), guan.sigma_y()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def sigma_zz(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
| import guan | ||||
|  | ||||
| # 导入plt, fig, ax | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20): | ||||
|     import matplotlib.pyplot as plt | ||||
|     fig, ax = plt.subplots() | ||||
| @@ -14,7 +14,7 @@ def import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20 | ||||
|     return plt, fig, ax | ||||
|  | ||||
| # 基于plt, fig, ax画图 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def plot_without_starting_fig(plt, fig, ax, x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, style='', y_min=None, y_max=None, linewidth=None, markersize=None, color=None):  | ||||
|     if color==None: | ||||
|         ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize) | ||||
| @@ -31,7 +31,7 @@ def plot_without_starting_fig(plt, fig, ax, x_array, y_array, xlabel='x', ylabel | ||||
|         ax.set_ylim(y_min, y_max) | ||||
|  | ||||
| # 画图 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||
|     import guan | ||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) | ||||
| @@ -52,7 +52,7 @@ def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labels | ||||
|     plt.close('all') | ||||
|  | ||||
| # 一组横坐标数据,两组纵坐标数据画图 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||
|     import guan | ||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  | ||||
| @@ -78,7 +78,7 @@ def plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title='' | ||||
|     plt.close('all') | ||||
|  | ||||
| # 两组横坐标数据,两组纵坐标数据画图 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||
|     import guan | ||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  | ||||
| @@ -104,7 +104,7 @@ def plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_ar | ||||
|     plt.close('all') | ||||
|  | ||||
| # 一组横坐标数据,三组纵坐标数据画图 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||
|     import guan | ||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  | ||||
| @@ -133,7 +133,7 @@ def plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel=' | ||||
|     plt.close('all') | ||||
|  | ||||
| # 三组横坐标数据,三组纵坐标数据画图 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||
|     import guan | ||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  | ||||
| @@ -162,7 +162,7 @@ def plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y | ||||
|     plt.close('all') | ||||
|  | ||||
| # 画三维图 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', file_format='.jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100):  | ||||
|     import numpy as np | ||||
|     import matplotlib.pyplot as plt | ||||
| @@ -204,7 +204,7 @@ def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z' | ||||
|     plt.close('all') | ||||
|  | ||||
| # 画Contour图 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300): | ||||
|     import numpy as np | ||||
|     import matplotlib.pyplot as plt | ||||
| @@ -230,7 +230,7 @@ def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fon | ||||
|     plt.close('all') | ||||
|  | ||||
| # 画棋盘图/伪彩色图 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def plot_pcolor(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300):   | ||||
|     import numpy as np | ||||
|     import matplotlib.pyplot as plt | ||||
| @@ -256,7 +256,7 @@ def plot_pcolor(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', font | ||||
|     plt.close('all') | ||||
|  | ||||
| # 通过坐标画点和线 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distance=1.1, line_style='-k', linewidth=1, dot_style='ro', markersize=3, show=1, save=0, filename='a', file_format='.eps', dpi=300): | ||||
|     import numpy as np | ||||
|     import matplotlib.pyplot as plt | ||||
| @@ -284,7 +284,7 @@ def draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distanc | ||||
|             plt.savefig(filename+file_format, dpi=dpi) | ||||
|  | ||||
| # 合并两个图片 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filename='a', file_format='.jpg', dpi=300): | ||||
|     import numpy as np | ||||
|     num = np.array(image_path_array).shape[0] | ||||
| @@ -310,7 +310,7 @@ def combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filenam | ||||
|         plt.close('all') | ||||
|  | ||||
| # 合并三个图片 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filename='a', file_format='.jpg', dpi=300): | ||||
|     import numpy as np | ||||
|     num = np.array(image_path_array).shape[0] | ||||
| @@ -340,7 +340,7 @@ def combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filen | ||||
|         plt.close('all') | ||||
|  | ||||
| # 合并四个图片 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filename='a', file_format='.jpg', dpi=300): | ||||
|     import numpy as np | ||||
|     num = np.array(image_path_array).shape[0] | ||||
| @@ -374,7 +374,7 @@ def combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filen | ||||
|         plt.close('all') | ||||
|  | ||||
| # 对某个目录中的txt文件批量读取和画图 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def batch_reading_and_plotting(directory, xlabel='x', ylabel='y'): | ||||
|     import re | ||||
|     import os | ||||
| @@ -387,7 +387,7 @@ def batch_reading_and_plotting(directory, xlabel='x', ylabel='y'): | ||||
|                 guan.plot(x_array, y_array, xlabel=xlabel, ylabel=ylabel, title=filename, show=0, save=1, filename=filename) | ||||
|  | ||||
| # 将图片制作GIF动画 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def make_gif(image_path_array, filename='a', duration=0.1): | ||||
|     import imageio | ||||
|     images = [] | ||||
| @@ -397,20 +397,20 @@ def make_gif(image_path_array, filename='a', duration=0.1): | ||||
|     imageio.mimsave(filename+'.gif', images, 'GIF', duration=duration) | ||||
|  | ||||
| # 选取Matplotlib颜色 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def color_matplotlib(): | ||||
|     color_array = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'] | ||||
|     return color_array | ||||
|  | ||||
| # 将变量存到文件 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def dump_data(data, filename, file_format='.txt'): | ||||
|     import pickle | ||||
|     with open(filename+file_format, 'wb') as f: | ||||
|         pickle.dump(data, f) | ||||
|  | ||||
| # 从文件中恢复数据到变量 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def load_data(filename, file_format='.txt'): | ||||
|     import pickle | ||||
|     with open(filename+file_format, 'rb') as f: | ||||
| @@ -418,7 +418,7 @@ def load_data(filename, file_format='.txt'): | ||||
|     return data | ||||
|  | ||||
| # 读取文件中的一维数据(一行一组x和y) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def read_one_dimensional_data(filename='a', file_format='.txt'):  | ||||
|     import numpy as np | ||||
|     f = open(filename+file_format, 'r') | ||||
| @@ -442,7 +442,7 @@ def read_one_dimensional_data(filename='a', file_format='.txt'): | ||||
|     return x_array, y_array | ||||
|  | ||||
| # 读取文件中的一维数据(一行一组x和y)(支持复数形式) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def read_one_dimensional_complex_data(filename='a', file_format='.txt'):  | ||||
|     import numpy as np | ||||
|     f = open(filename+file_format, 'r') | ||||
| @@ -466,7 +466,7 @@ def read_one_dimensional_complex_data(filename='a', file_format='.txt'): | ||||
|     return x_array, y_array | ||||
|  | ||||
| # 读取文件中的二维数据(第一行和第一列分别为横纵坐标) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def read_two_dimensional_data(filename='a', file_format='.txt'):  | ||||
|     import numpy as np | ||||
|     f = open(filename+file_format, 'r') | ||||
| @@ -496,7 +496,7 @@ def read_two_dimensional_data(filename='a', file_format='.txt'): | ||||
|     return x_array, y_array, matrix | ||||
|  | ||||
| # 读取文件中的二维数据(第一行和第一列分别为横纵坐标)(支持复数形式) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def read_two_dimensional_complex_data(filename='a', file_format='.txt'):  | ||||
|     import numpy as np | ||||
|     f = open(filename+file_format, 'r') | ||||
| @@ -526,27 +526,27 @@ def read_two_dimensional_complex_data(filename='a', file_format='.txt'): | ||||
|     return x_array, y_array, matrix | ||||
|  | ||||
| # 读取文件中的二维数据(不包括x和y) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def read_two_dimensional_data_without_xy_array(filename='a', file_format='.txt'): | ||||
|     import numpy as np | ||||
|     matrix = np.loadtxt(filename+file_format) | ||||
|     return matrix | ||||
|  | ||||
| # 打开文件用于新增内容 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def open_file(filename='a', file_format='.txt'): | ||||
|     f = open(filename+file_format, 'a', encoding='UTF-8') | ||||
|     return f | ||||
|  | ||||
| # 在文件中写入一维数据(一行一组x和y) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def write_one_dimensional_data(x_array, y_array, filename='a', file_format='.txt'): | ||||
|     import guan | ||||
|     with open(filename+file_format, 'w', encoding='UTF-8') as f: | ||||
|         guan.write_one_dimensional_data_without_opening_file(x_array, y_array, f) | ||||
|  | ||||
| # 在文件中写入一维数据(一行一组x和y)(需要输入已打开的文件) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def write_one_dimensional_data_without_opening_file(x_array, y_array, f): | ||||
|     import numpy as np | ||||
|     x_array = np.array(x_array) | ||||
| @@ -563,14 +563,14 @@ def write_one_dimensional_data_without_opening_file(x_array, y_array, f): | ||||
|         i0 += 1 | ||||
|  | ||||
| # 在文件中写入二维数据(第一行和第一列分别为横纵坐标) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def write_two_dimensional_data(x_array, y_array, matrix, filename='a', file_format='.txt'): | ||||
|     import guan | ||||
|     with open(filename+file_format, 'w', encoding='UTF-8') as f: | ||||
|         guan.write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f) | ||||
|  | ||||
| # 在文件中写入二维数据(第一行和第一列分别为横纵坐标)(需要输入已打开的文件) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f): | ||||
|     import numpy as np | ||||
|     x_array = np.array(x_array) | ||||
| @@ -591,14 +591,14 @@ def write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f) | ||||
|         i0 += 1 | ||||
|  | ||||
| # 在文件中写入二维数据(不包括x和y) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def write_two_dimensional_data_without_xy_array(matrix, filename='a', file_format='.txt'): | ||||
|     import guan | ||||
|     with open(filename+file_format, 'w', encoding='UTF-8') as f: | ||||
|         guan.write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f) | ||||
|  | ||||
| # 在文件中写入二维数据(不包括x和y)(需要输入已打开的文件) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f): | ||||
|     for row in matrix: | ||||
|         for element in row: | ||||
| @@ -607,7 +607,7 @@ def write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, | ||||
|     import guan | ||||
|  | ||||
| # 以显示编号的样式,打印数组 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def print_array_with_index(array, show_index=1, index_type=0): | ||||
|     if show_index==0: | ||||
|         for i0 in array: | ||||
| @@ -625,7 +625,7 @@ def print_array_with_index(array, show_index=1, index_type=0): | ||||
|                 print(index, i0) | ||||
|  | ||||
| # 获取目录中的所有文件名 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_all_filenames_in_directory(directory='./', file_format=None): | ||||
|     import os | ||||
|     file_list = [] | ||||
| @@ -639,7 +639,7 @@ def get_all_filenames_in_directory(directory='./', file_format=None): | ||||
|     return file_list | ||||
|  | ||||
| # 读取文件夹中某种文本类型的文件路径和内容 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def read_text_files_in_directory(directory='./', file_format='.md'): | ||||
|     import os | ||||
|     file_list = [] | ||||
| @@ -654,7 +654,7 @@ def read_text_files_in_directory(directory='./', file_format='.md'): | ||||
|     return file_list, content_array | ||||
|  | ||||
| # 在多个文本文件中查找关键词 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def find_words_in_multiple_files(words, directory='./', file_format='.md'): | ||||
|     import guan | ||||
|     file_list, content_array = guan.read_text_files_in_directory(directory=directory, file_format=file_format) | ||||
| @@ -666,7 +666,7 @@ def find_words_in_multiple_files(words, directory='./', file_format='.md'): | ||||
|     return file_list_with_words | ||||
|  | ||||
| # 并行计算前的预处理,把参数分成多份 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def preprocess_for_parallel_calculations(parameter_array_all, cpus=1, task_index=0): | ||||
|     import numpy as np | ||||
|     num_all = np.array(parameter_array_all).shape[0] | ||||
| @@ -682,14 +682,14 @@ def preprocess_for_parallel_calculations(parameter_array_all, cpus=1, task_index | ||||
|     return parameter_array | ||||
|  | ||||
| # 随机获得一个整数,左闭右闭 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_random_number(start=0, end=1): | ||||
|     import random | ||||
|     rand_number = random.randint(start, end)   # 左闭右闭 [start, end] | ||||
|     return rand_number | ||||
|  | ||||
| # 选取一个种子生成固定的随机整数 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def generate_random_int_number_for_a_specific_seed(seed=0, x_min=0, x_max=10): | ||||
|     import numpy as np | ||||
|     np.random.seed(seed) | ||||
| @@ -697,14 +697,14 @@ def generate_random_int_number_for_a_specific_seed(seed=0, x_min=0, x_max=10): | ||||
|     return rand_num | ||||
|  | ||||
| # 使用jieba软件包进行分词 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def divide_text_into_words(text): | ||||
|     import jieba | ||||
|     words = jieba.lcut(text) | ||||
|     return words | ||||
|  | ||||
| # 判断某个字符是中文还是英文或其他 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def check_Chinese_or_English(a):   | ||||
|     if '\u4e00' <= a <= '\u9fff' :   | ||||
|         word_type = 'Chinese'   | ||||
| @@ -715,7 +715,7 @@ def check_Chinese_or_English(a): | ||||
|     return word_type | ||||
|  | ||||
| # 统计中英文文本的字数,默认不包括空格 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def count_words(text, include_space=0, show_words=0): | ||||
|     import jieba | ||||
|     import guan | ||||
| @@ -743,7 +743,7 @@ def count_words(text, include_space=0, show_words=0): | ||||
|     return num_words | ||||
|  | ||||
| # 将RGB转成HEX | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def rgb_to_hex(rgb, pound=1): | ||||
|     if pound==0: | ||||
|         return '%02x%02x%02x' % rgb | ||||
| @@ -751,14 +751,14 @@ def rgb_to_hex(rgb, pound=1): | ||||
|         return '#%02x%02x%02x' % rgb | ||||
|  | ||||
| # 将HEX转成RGB | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def hex_to_rgb(hex): | ||||
|     hex = hex.lstrip('#') | ||||
|     length = len(hex) | ||||
|     return tuple(int(hex[i:i+length//3], 16) for i in range(0, length, length//3)) | ||||
|  | ||||
| # 使用MD5进行散列加密 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def encryption_MD5(password, salt=''): | ||||
|     import hashlib | ||||
|     password = salt+password | ||||
| @@ -766,7 +766,7 @@ def encryption_MD5(password, salt=''): | ||||
|     return hashed_password | ||||
|  | ||||
| # 使用SHA-256进行散列加密 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def encryption_SHA_256(password, salt=''): | ||||
|     import hashlib | ||||
|     password = salt+password | ||||
| @@ -774,7 +774,7 @@ def encryption_SHA_256(password, salt=''): | ||||
|     return hashed_password | ||||
|  | ||||
| # 自动先后运行程序 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def run_programs_sequentially(program_files=['./a.py', './b.py'], execute='python ', show_time=0): | ||||
|     import os | ||||
|     import time | ||||
| @@ -794,20 +794,20 @@ def run_programs_sequentially(program_files=['./a.py', './b.py'], execute='pytho | ||||
|         print('Total running time = '+str((end-start)/60)+' min') | ||||
|  | ||||
| # 如果不存在文件夹,则新建文件夹 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def make_directory(directory='./test'): | ||||
|     import os | ||||
|     if not os.path.exists(directory): | ||||
|         os.makedirs(directory) | ||||
|  | ||||
| # 复制一份文件 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def copy_file(file1='./a.txt', file2='./b.txt'): | ||||
|     import shutil | ||||
|     shutil.copy(file1, file2) | ||||
|  | ||||
| # 拼接两个PDF文件 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_file='combined_file.pdf'): | ||||
|     import PyPDF2 | ||||
|     output_pdf = PyPDF2.PdfWriter() | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
| import guan | ||||
|  | ||||
| # 计算体系的总态密度 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -12,7 +12,7 @@ def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01): | ||||
|     return total_dos | ||||
|  | ||||
| # 对于不同费米能,计算体系的总态密度 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -27,7 +27,7 @@ def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamilton | ||||
|     return total_dos_array | ||||
|  | ||||
| # 计算方格子的局域态密度(其中,哈密顿量的维度为:dim_hamiltonian = N1*N2*internal_degree) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -41,7 +41,7 @@ def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2 | ||||
|     return local_dos | ||||
|  | ||||
| # 计算立方格子的局域态密度(其中,哈密顿量的维度为:dim_hamiltonian = N1*N2*N3*internal_degree) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -56,7 +56,7 @@ def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, | ||||
|     return local_dos | ||||
|  | ||||
| # 利用Dyson方程,计算方格子的局域态密度(其中,h00的维度为:dim_h00 = N2*internal_degree) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -90,7 +90,7 @@ def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy | ||||
|     return local_dos | ||||
|  | ||||
| # 利用Dyson方程,计算立方格子的局域态密度(其中,h00的维度为:dim_h00 = N2*N3*internal_degree) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -125,7 +125,7 @@ def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, | ||||
|     return local_dos | ||||
|  | ||||
| # 利用Dyson方程,计算方格子条带(考虑了电极自能)的局域态密度(其中,h00的维度为:dim_h00 = N2*internal_degree) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
| import guan | ||||
|  | ||||
| # 全连接神经网络模型(包含一个隐藏层)(模型的类定义成全局的) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def fully_connected_neural_network_with_one_hidden_layer(input_size=1, hidden_size=10, output_size=1, activation='relu'): | ||||
|     import torch | ||||
|     global model_class_of_fully_connected_neural_network_with_one_hidden_layer | ||||
| @@ -28,7 +28,7 @@ def fully_connected_neural_network_with_one_hidden_layer(input_size=1, hidden_si | ||||
|     return model | ||||
|  | ||||
| # 全连接神经网络模型(包含两个隐藏层)(模型的类定义成全局的) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def fully_connected_neural_network_with_two_hidden_layers(input_size=1, hidden_size_1=10, hidden_size_2=10, output_size=1, activation_1='relu', activation_2='relu'): | ||||
|     import torch | ||||
|     global model_class_of_fully_connected_neural_network_with_two_hidden_layers | ||||
| @@ -67,7 +67,7 @@ def fully_connected_neural_network_with_two_hidden_layers(input_size=1, hidden_s | ||||
|     return model | ||||
|  | ||||
| # 全连接神经网络模型(包含三个隐藏层)(模型的类定义成全局的) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def fully_connected_neural_network_with_three_hidden_layers(input_size=1, hidden_size_1=10, hidden_size_2=10, hidden_size_3=10, output_size=1, activation_1='relu', activation_2='relu', activation_3='relu'): | ||||
|     import torch | ||||
|     global model_class_of_fully_connected_neural_network_with_three_hidden_layers | ||||
| @@ -118,7 +118,7 @@ def fully_connected_neural_network_with_three_hidden_layers(input_size=1, hidden | ||||
|     return model | ||||
|  | ||||
| # 使用优化器训练模型 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def train_model(model, x_data, y_data, optimizer='Adam', learning_rate=0.001, criterion='MSELoss', num_epochs=1000, print_show=1): | ||||
|     import torch | ||||
|     if optimizer == 'Adam': | ||||
| @@ -145,26 +145,26 @@ def train_model(model, x_data, y_data, optimizer='Adam', learning_rate=0.001, cr | ||||
|     return model, losses | ||||
|  | ||||
| # 保存模型参数到文件 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def save_model_parameters(model, filename='./model_parameters.pth'): | ||||
|     import torch | ||||
|     torch.save(model.state_dict(), filename) | ||||
|  | ||||
| # 保存完整模型到文件(保存时需要模型的类可访问) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def save_model(model, filename='./model.pth'): | ||||
|     import torch | ||||
|     torch.save(model, filename) | ||||
|  | ||||
| # 加载模型参数(需要输入模型,加载后,原输入的模型参数也会改变) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def load_model_parameters(model, filename='./model_parameters.pth'): | ||||
|     import torch | ||||
|     model.load_state_dict(torch.load(filename)) | ||||
|     return model | ||||
|  | ||||
| # 加载完整模型(不需要输入模型,但加载时需要原定义的模型的类可访问) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def load_model(filename='./model.pth'): | ||||
|     import torch | ||||
|     model = torch.load(filename) | ||||
|   | ||||
| @@ -2,14 +2,14 @@ | ||||
| import guan | ||||
|  | ||||
| # 获取CPU使用率 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_cpu_usage(interval=1): | ||||
|     import psutil | ||||
|     cpu_usage = psutil.cpu_percent(interval=interval) | ||||
|     return cpu_usage | ||||
|  | ||||
| # 获取内存信息 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_memory_info(): | ||||
|     import psutil | ||||
|     memory_info = psutil.virtual_memory() | ||||
| @@ -20,7 +20,7 @@ def get_memory_info(): | ||||
|     return total_memory, used_memory, available_memory, used_memory_percent | ||||
|  | ||||
| # 将WordPress导出的XML格式文件转换成多个MarkDown格式的文件 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def convert_wordpress_xml_to_markdown(xml_file='./a.xml', convert_content=1, replace_more=[]): | ||||
|     import xml.etree.ElementTree as ET | ||||
|     import re | ||||
| @@ -58,7 +58,7 @@ def convert_wordpress_xml_to_markdown(xml_file='./a.xml', convert_content=1, rep | ||||
|             md_file.write(markdown_content) | ||||
|  | ||||
| # 获取运行的日期和时间并写入文件 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def statistics_with_day_and_time(content='', filename='a', file_format='.txt'): | ||||
|     import datetime | ||||
|     datetime_today = str(datetime.date.today()) | ||||
| @@ -70,7 +70,7 @@ def statistics_with_day_and_time(content='', filename='a', file_format='.txt'): | ||||
|            f2.write(datetime_today+' '+datetime_time+' '+content+'\n') | ||||
|  | ||||
| # 统计Python文件中import的数量并排序 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def count_number_of_import_statements(filename, file_format='.py', num=1000): | ||||
|     with open(filename+file_format, 'r') as file: | ||||
|         lines = file.readlines() | ||||
| @@ -84,14 +84,14 @@ def count_number_of_import_statements(filename, file_format='.py', num=1000): | ||||
|     return import_statement_counter | ||||
|  | ||||
| # 根据一定的字符长度来分割文本 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def split_text(text, wrap_width=3000):   | ||||
|     import textwrap   | ||||
|     split_text_list = textwrap.wrap(text, wrap_width) | ||||
|     return split_text_list | ||||
|  | ||||
| # 获取本月的所有日期 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_days_of_the_current_month(str_or_datetime='str'): | ||||
|     import datetime | ||||
|     today = datetime.date.today() | ||||
| @@ -111,7 +111,7 @@ def get_days_of_the_current_month(str_or_datetime='str'): | ||||
|     return day_array | ||||
|  | ||||
| # 获取上个月份 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_last_month(): | ||||
|     import datetime | ||||
|     today = datetime.date.today() | ||||
| @@ -124,7 +124,7 @@ def get_last_month(): | ||||
|     return year_of_last_month, last_month | ||||
|  | ||||
| # 获取上上个月份 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_the_month_before_last(): | ||||
|     import datetime | ||||
|     today = datetime.date.today() | ||||
| @@ -142,7 +142,7 @@ def get_the_month_before_last(): | ||||
|     return year_of_the_month_before_last, the_month_before_last | ||||
|  | ||||
| # 获取上个月的所有日期 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_days_of_the_last_month(str_or_datetime='str'): | ||||
|     import datetime | ||||
|     import guan | ||||
| @@ -164,7 +164,7 @@ def get_days_of_the_last_month(str_or_datetime='str'): | ||||
|     return day_array | ||||
|  | ||||
| # 获取上上个月的所有日期 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_days_of_the_month_before_last(str_or_datetime='str'): | ||||
|     import datetime | ||||
|     import guan | ||||
| @@ -186,7 +186,7 @@ def get_days_of_the_month_before_last(str_or_datetime='str'): | ||||
|     return day_array | ||||
|  | ||||
| # 获取所有股票 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def all_stocks(): | ||||
|     import numpy as np | ||||
|     import akshare as ak | ||||
| @@ -196,7 +196,7 @@ def all_stocks(): | ||||
|     return title, stock_data | ||||
|  | ||||
| # 获取所有股票的代码 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def all_stock_symbols(): | ||||
|     import guan | ||||
|     title, stock_data = guan.all_stocks() | ||||
| @@ -204,7 +204,7 @@ def all_stock_symbols(): | ||||
|     return stock_symbols | ||||
|  | ||||
| # 从股票代码获取股票名称 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def find_stock_name_from_symbol(symbol='000002'): | ||||
|     import guan | ||||
|     title, stock_data = guan.all_stocks() | ||||
| @@ -214,7 +214,7 @@ def find_stock_name_from_symbol(symbol='000002'): | ||||
|     return stock_name | ||||
|  | ||||
| # 获取单个股票的历史数据 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def history_data_of_one_stock(symbol='000002', period='daily', start_date="19000101", end_date='21000101'): | ||||
|     # period = 'daily' | ||||
|     # period = 'weekly' | ||||
| @@ -227,7 +227,7 @@ def history_data_of_one_stock(symbol='000002', period='daily', start_date="19000 | ||||
|     return title, stock_data | ||||
|  | ||||
| # 获取软件包中的所有模块名 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_all_modules_in_one_package(package_name='guan'): | ||||
|     import pkgutil | ||||
|     package = __import__(package_name) | ||||
| @@ -235,7 +235,7 @@ def get_all_modules_in_one_package(package_name='guan'): | ||||
|     return module_names | ||||
|  | ||||
| # 获取软件包中一个模块的所有函数名 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_all_functions_in_one_module(module_name, package_name='guan'): | ||||
|     import inspect | ||||
|     function_names = [] | ||||
| @@ -246,7 +246,7 @@ def get_all_functions_in_one_module(module_name, package_name='guan'): | ||||
|     return function_names | ||||
|  | ||||
| # 获取软件包中的所有函数名 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_all_functions_in_one_package(package_name='guan', print_show=1): | ||||
|     import guan | ||||
|     module_names = guan.get_all_modules_in_one_package(package_name=package_name) | ||||
| @@ -264,7 +264,7 @@ def get_all_functions_in_one_package(package_name='guan', print_show=1): | ||||
|     return all_function_names | ||||
|  | ||||
| # 获取包含某个字符的进程PID值 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_PID(name): | ||||
|     import subprocess | ||||
|     command = "ps -ef | grep "+name | ||||
| @@ -277,90 +277,14 @@ def get_PID(name): | ||||
|     return id_running | ||||
|  | ||||
| # 获取函数的源码 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_function_source(function_name): | ||||
|     import inspect | ||||
|     function_source = inspect.getsource(function_name) | ||||
|     return function_source | ||||
|  | ||||
| # 在服务器上运行函数(说明:接口服务可能为关闭状态,如果无法使用请联系管理员。目前仅支持长度较短的函数,此外由于服务器只获取一个函数内的代码,因此需要函数是独立的可运行的代码。需要注意的是:返回的值是字符串类型,需要自行转换成数字类型。) | ||||
| @guan.function_decorator | ||||
| def run(function_name, args=(), return_show=0, get_print=1): | ||||
|     import socket | ||||
|     import json | ||||
|     import guan | ||||
|     with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as client_socket: | ||||
|         client_socket.connect(('socket.guanjihuan.com', 12345)) | ||||
|         function_source = guan.get_function_source(function_name) | ||||
|         message = { | ||||
|             'server': "python", | ||||
|             'function_name': function_name.__name__, | ||||
|             'function_source': function_source, | ||||
|             'args': str(args), | ||||
|             'get_print': get_print, | ||||
|         } | ||||
|         send_message = json.dumps(message) | ||||
|         client_socket.send(send_message.encode()) | ||||
|         return_data = None | ||||
|         while True: | ||||
|             try: | ||||
|                 data = client_socket.recv(1024) | ||||
|                 return_text = data.decode() | ||||
|                 return_dict = json.loads(return_text) | ||||
|                 return_data = return_dict['return_data'] | ||||
|                 print_data = return_dict['print_data'] | ||||
|                 end_message = return_dict['end_message'] | ||||
|                 if get_print == 1: | ||||
|                     print(print_data) | ||||
|                 if return_show == 1: | ||||
|                     print(return_data) | ||||
|                 if end_message == 1 or return_text == '': | ||||
|                     break | ||||
|             except: | ||||
|                 break | ||||
|         client_socket.close() | ||||
|     return return_data | ||||
|  | ||||
| # 在服务器上运行大语言模型,通过Python函数调用(说明:接口服务可能为关闭状态,如果无法使用请联系管理员) | ||||
| @guan.function_decorator | ||||
| def chat(prompt='你好', stream_show=1, top_p=0.8, temperature=0.8): | ||||
|     import socket | ||||
|     import json | ||||
|     response = '' | ||||
|     with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as client_socket: | ||||
|         client_socket.settimeout(15) | ||||
|         client_socket.connect(('socket.guanjihuan.com', 12345)) | ||||
|         message = { | ||||
|             'server': "chat.guanjihuan.com", | ||||
|             'prompt': prompt, | ||||
|             'top_p': top_p, | ||||
|             'temperature': temperature, | ||||
|         } | ||||
|         send_message = json.dumps(message) | ||||
|         client_socket.send(send_message.encode()) | ||||
|         while True: | ||||
|             try: | ||||
|                 data = client_socket.recv(1024) | ||||
|                 stream_response = data.decode() | ||||
|                 response_dict = json.loads(stream_response) | ||||
|                 stream_response = response_dict['response'] | ||||
|                 end_message = response_dict['end_message'] | ||||
|                 if end_message == 1: | ||||
|                     break | ||||
|                 elif stream_response == '': | ||||
|                     break | ||||
|                 else: | ||||
|                     if stream_show == 1: | ||||
|                         print(stream_response) | ||||
|                         print('\n---\n') | ||||
|                     response = stream_response | ||||
|             except: | ||||
|                 break | ||||
|         client_socket.close() | ||||
|     return response | ||||
|  | ||||
| # 查找文件名相同的文件 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def find_repeated_file_with_same_filename(directory='./', ignored_directory_with_words=[], ignored_file_with_words=[], num=1000): | ||||
|     import os | ||||
|     from collections import Counter | ||||
| @@ -385,7 +309,7 @@ def find_repeated_file_with_same_filename(directory='./', ignored_directory_with | ||||
|     return repeated_file | ||||
|  | ||||
| # 统计各个子文件夹中的文件数量 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def count_file_in_sub_directory(directory='./', sort=0, reverse=1, print_show=1, smaller_than_num=None): | ||||
|     import os | ||||
|     import numpy as np | ||||
| @@ -439,7 +363,7 @@ def count_file_in_sub_directory(directory='./', sort=0, reverse=1, print_show=1, | ||||
|     return sub_directory, num_in_sub_directory | ||||
|  | ||||
| # 改变当前的目录位置 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def change_directory_by_replacement(current_key_word='code', new_key_word='data'): | ||||
|     import os | ||||
|     code_path = os.getcwd() | ||||
| @@ -450,7 +374,7 @@ def change_directory_by_replacement(current_key_word='code', new_key_word='data' | ||||
|     os.chdir(data_path) | ||||
|  | ||||
| # 在多个子文件夹中产生必要的文件,例如 readme.md | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def creat_necessary_file(directory, filename='readme', file_format='.md', content='', overwrite=None, ignored_directory_with_words=[]): | ||||
|     import os | ||||
|     directory_with_file = [] | ||||
| @@ -480,7 +404,7 @@ def creat_necessary_file(directory, filename='readme', file_format='.md', conten | ||||
|         f.close() | ||||
|  | ||||
| # 删除特定文件名的文件(慎用) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def delete_file_with_specific_name(directory, filename='readme', file_format='.md'): | ||||
|     import os | ||||
|     for root, dirs, files in os.walk(directory): | ||||
| @@ -489,7 +413,7 @@ def delete_file_with_specific_name(directory, filename='readme', file_format='.m | ||||
|                 os.remove(root+'/'+files[i0]) | ||||
|  | ||||
| # 将所有文件移到根目录(慎用) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def move_all_files_to_root_directory(directory): | ||||
|     import os | ||||
|     import shutil | ||||
| @@ -504,7 +428,7 @@ def move_all_files_to_root_directory(directory): | ||||
|                 pass | ||||
|  | ||||
| # 将文件目录结构写入Markdown文件 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def write_file_list_in_markdown(directory='./', filename='a', reverse_positive_or_negative=1, starting_from_h1=None, banned_file_format=[], hide_file_format=None, divided_line=None, show_second_number=None, show_third_number=None):  | ||||
|     import os | ||||
|     f = open(filename+'.md', 'w', encoding="utf-8") | ||||
| @@ -608,7 +532,7 @@ def write_file_list_in_markdown(directory='./', filename='a', reverse_positive_o | ||||
|     f.close() | ||||
|  | ||||
| # 从网页的标签中获取内容 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_html_from_tags(link, tags=['title', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p', 'li', 'a']): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import urllib.request | ||||
| @@ -627,14 +551,14 @@ def get_html_from_tags(link, tags=['title', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', | ||||
|     return content | ||||
|  | ||||
| # 生成二维码 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def creat_qrcode(data="https://www.guanjihuan.com", filename='a', file_format='.png'): | ||||
|     import qrcode | ||||
|     img = qrcode.make(data) | ||||
|     img.save(filename+file_format) | ||||
|  | ||||
| # 将PDF文件转成文本 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def pdf_to_text(pdf_path): | ||||
|     from pdfminer.pdfparser import PDFParser, PDFDocument | ||||
|     from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter | ||||
| @@ -666,7 +590,7 @@ def pdf_to_text(pdf_path): | ||||
|     return content | ||||
|  | ||||
| # 获取PDF文件页数 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_pdf_page_number(pdf_path): | ||||
|     import PyPDF2 | ||||
|     pdf_file = open(pdf_path, 'rb') | ||||
| @@ -675,7 +599,7 @@ def get_pdf_page_number(pdf_path): | ||||
|     return num_pages | ||||
|  | ||||
| # 获取PDF文件指定页面的内容 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def pdf_to_txt_for_a_specific_page(pdf_path, page_num=1): | ||||
|     import PyPDF2 | ||||
|     pdf_file = open(pdf_path, 'rb') | ||||
| @@ -689,7 +613,7 @@ def pdf_to_txt_for_a_specific_page(pdf_path, page_num=1): | ||||
|     return page_text | ||||
|  | ||||
| # 获取PDF文献中的链接。例如: link_starting_form='https://doi.org' | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_links_from_pdf(pdf_path, link_starting_form=''): | ||||
|     import PyPDF2 | ||||
|     import re | ||||
| @@ -714,7 +638,7 @@ def get_links_from_pdf(pdf_path, link_starting_form=''): | ||||
|     return links | ||||
|  | ||||
| # 通过Sci-Hub网站下载文献 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def download_with_scihub(address=None, num=1): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import re | ||||
| @@ -752,7 +676,7 @@ def download_with_scihub(address=None, num=1): | ||||
|         print('All completed!\n') | ||||
|  | ||||
| # 将字符串转成音频 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def str_to_audio(str='hello world', filename='str', rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0): | ||||
|     import pyttsx3 | ||||
|     import guan | ||||
| @@ -776,7 +700,7 @@ def str_to_audio(str='hello world', filename='str', rate=125, voice=1, read=1, s | ||||
|         engine.runAndWait() | ||||
|  | ||||
| # 将txt文件转成音频 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0): | ||||
|     import pyttsx3 | ||||
|     import guan | ||||
| @@ -804,7 +728,7 @@ def txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, compress=0, bitrat | ||||
|         engine.runAndWait() | ||||
|  | ||||
| # 将PDF文件转成音频 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0): | ||||
|     import pyttsx3 | ||||
|     import guan | ||||
| @@ -832,7 +756,7 @@ def pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, compress=0, bitrat | ||||
|         engine.runAndWait() | ||||
|  | ||||
| # 将wav音频文件压缩成MP3音频文件 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def compress_wav_to_mp3(wav_path, output_filename='a.mp3', bitrate='16k'): | ||||
|     # Note: Beside the installation of pydub, you may also need download FFmpeg on http://www.ffmpeg.org/download.html and add the bin path to the environment variable. | ||||
|     from pydub import AudioSegment | ||||
| @@ -840,7 +764,7 @@ def compress_wav_to_mp3(wav_path, output_filename='a.mp3', bitrate='16k'): | ||||
|     sound.export(output_filename,format="mp3",bitrate=bitrate) | ||||
|  | ||||
| # 播放学术单词 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def play_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_translation=1, show_link=1, translation_time=2, rest_time=1): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import re | ||||
| @@ -901,7 +825,7 @@ def play_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_translati | ||||
|                 print() | ||||
|  | ||||
| # 播放挑选过后的学术单词 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def play_selected_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_link=1, rest_time=3): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import re | ||||
| @@ -958,7 +882,7 @@ def play_selected_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_ | ||||
|                 print() | ||||
|  | ||||
| # 播放元素周期表上的单词 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def play_element_words(random_on=0, show_translation=1, show_link=1, translation_time=2, rest_time=1): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import re | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
| import guan | ||||
|  | ||||
| # 计算电导 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_conductance(fermi_energy, h00, h01, length=100): | ||||
|     import numpy as np | ||||
|     import copy | ||||
| @@ -22,7 +22,7 @@ def calculate_conductance(fermi_energy, h00, h01, length=100): | ||||
|     return conductance | ||||
|  | ||||
| # 计算不同费米能下的电导 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -37,7 +37,7 @@ def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, | ||||
|     return conductance_array | ||||
|  | ||||
| # 计算在势垒散射下的电导 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barrier_length=20, barrier_potential=1): | ||||
|     import numpy as np | ||||
|     import copy | ||||
| @@ -61,7 +61,7 @@ def calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barri | ||||
|     return conductance | ||||
|  | ||||
| # 计算在无序散射下的电导 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100, calculation_times=1): | ||||
|     import numpy as np | ||||
|     import copy | ||||
| @@ -90,7 +90,7 @@ def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensi | ||||
|     return conductance_averaged | ||||
|  | ||||
| # 计算在无序垂直切片的散射下的电导 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_conductance_with_slice_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100): | ||||
|     import numpy as np | ||||
|     import copy | ||||
| @@ -114,7 +114,7 @@ def calculate_conductance_with_slice_disorder(fermi_energy, h00, h01, disorder_i | ||||
|     return conductance | ||||
|  | ||||
| # 计算在无序水平切片的散射下的电导 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translational_symmetry(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100): | ||||
|     import numpy as np | ||||
|     import copy | ||||
| @@ -139,7 +139,7 @@ def calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translation | ||||
|     return conductance | ||||
|  | ||||
| # 计算在随机空位的散射下的电导 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_conductance_with_random_vacancy(fermi_energy, h00, h01, vacancy_concentration=0.5, vacancy_potential=1e9, length=100): | ||||
|     import numpy as np | ||||
|     import copy | ||||
| @@ -164,7 +164,7 @@ def calculate_conductance_with_random_vacancy(fermi_energy, h00, h01, vacancy_co | ||||
|     return conductance | ||||
|  | ||||
| # 计算在不同无序散射强度下的电导 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -181,7 +181,7 @@ def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, | ||||
|     return conductance_array | ||||
|  | ||||
| # 计算在不同无序浓度下的电导 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h01, disorder_concentration_array, disorder_intensity=2.0, length=100, calculation_times=1, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -198,7 +198,7 @@ def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h | ||||
|     return conductance_array | ||||
|  | ||||
| # 计算在不同无序散射长度下的电导 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, length_array, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -215,7 +215,7 @@ def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, l | ||||
|     return conductance_array | ||||
|  | ||||
| # 计算得到Gamma矩阵和格林函数,用于计算六端口的量子输运 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -262,7 +262,7 @@ def get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_fo | ||||
|     return gamma_array, green | ||||
|  | ||||
| # 计算六端口的透射矩阵 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_six_terminal_transmission_matrix(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -287,7 +287,7 @@ def calculate_six_terminal_transmission_matrix(fermi_energy, h00_for_lead_4, h01 | ||||
|     return transmission_matrix | ||||
|  | ||||
| # 计算从电极1出发的透射系数 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_six_terminal_transmissions_from_lead_1(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -300,7 +300,7 @@ def calculate_six_terminal_transmissions_from_lead_1(fermi_energy, h00_for_lead_ | ||||
|     return transmission_12, transmission_13, transmission_14, transmission_15, transmission_16 | ||||
|  | ||||
| # 通过动量k的虚部,判断通道为传播通道还是衰减通道 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def if_active_channel(k_of_channel): | ||||
|     import numpy as np | ||||
|     if np.abs(np.imag(k_of_channel))<1e-6: | ||||
| @@ -310,7 +310,7 @@ def if_active_channel(k_of_channel): | ||||
|     return if_active | ||||
|  | ||||
| # 获取通道的动量和速度,用于计算散射矩阵 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_k_and_velocity_of_channel(fermi_energy, h00, h01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -347,7 +347,7 @@ def get_k_and_velocity_of_channel(fermi_energy, h00, h01): | ||||
|     return k_of_channel, velocity_of_channel, eigenvalue, eigenvector | ||||
|  | ||||
| # 获取分类后的动量和速度,以及U和F,用于计算散射矩阵 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -400,7 +400,7 @@ def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01): | ||||
|     return k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active | ||||
|  | ||||
| # 计算散射矩阵 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_scattering_matrix(fermi_energy, h00, h01, length=100): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -446,7 +446,7 @@ def calculate_scattering_matrix(fermi_energy, h00, h01, length=100): | ||||
|     return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active | ||||
|  | ||||
| # 从散射矩阵中,获取散射矩阵的信息 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active): | ||||
|     import numpy as np | ||||
|     if np.array(transmission_matrix).shape==(): | ||||
| @@ -468,7 +468,7 @@ def information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_r | ||||
|     return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels | ||||
|  | ||||
| # 已知h00和h01,计算散射矩阵并获得散射矩阵的信息 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_scattering_matrix_and_get_information(fermi_energy, h00, h01, length=100): | ||||
|     import guan | ||||
|     transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length) | ||||
| @@ -478,7 +478,7 @@ def calculate_scattering_matrix_and_get_information(fermi_energy, h00, h01, leng | ||||
|     return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels | ||||
|  | ||||
| # 从散射矩阵中打印出散射矩阵的信息 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=1, write_file=0, filename='a', file_format='.txt'): | ||||
|     if print_show == 1: | ||||
|         print('\nActive channel (left or right) = ', number_of_active_channels) | ||||
| @@ -523,7 +523,7 @@ def print_or_write_scattering_matrix_with_information_of_scattering_matrix(numbe | ||||
|             f.write('Total conductance = '+str(total_conductance)+'\n') | ||||
|  | ||||
| # 已知h00和h01,计算散射矩阵并打印出散射矩阵的信息 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', file_format='.txt'): | ||||
|     import guan | ||||
|     transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length) | ||||
| @@ -533,7 +533,7 @@ def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_s | ||||
|     guan.print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=print_show, write_file=write_file, filename=filename, file_format=file_format) | ||||
|  | ||||
| # 在无序下,计算散射矩阵 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -583,7 +583,7 @@ def calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length=100 | ||||
|     return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active | ||||
|  | ||||
| # 在无序下,计算散射矩阵,并获取散射矩阵多次计算的平均信息 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_scattering_matrix_with_disorder_and_get_averaged_information(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1): | ||||
|     import guan | ||||
|     transmission_matrix_for_active_channels_averaged = 0 | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
| import guan | ||||
|  | ||||
| # 通过高效法计算方格子的陈数 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_chern_number_for_square_lattice_with_efficient_method(hamiltonian_function, precision=100, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -41,7 +41,7 @@ def calculate_chern_number_for_square_lattice_with_efficient_method(hamiltonian_ | ||||
|     return chern_number | ||||
|  | ||||
| # 通过高效法计算方格子的陈数(可计算简并的情况) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision=100, print_show=0):  | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -111,7 +111,7 @@ def calculate_chern_number_for_square_lattice_with_efficient_method_for_degenera | ||||
|     return chern_number | ||||
|  | ||||
| # 通过Wilson loop方法计算方格子的陈数 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_chern_number_for_square_lattice_with_wilson_loop(hamiltonian_function, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -156,7 +156,7 @@ def calculate_chern_number_for_square_lattice_with_wilson_loop(hamiltonian_funct | ||||
|     return chern_number | ||||
|  | ||||
| # 通过Wilson loop方法计算方格子的陈数(可计算简并的情况) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -220,7 +220,7 @@ def calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_ca | ||||
|     return chern_number | ||||
|  | ||||
| # 通过高效法计算贝利曲率 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -267,7 +267,7 @@ def calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min= | ||||
|     return k_array, berry_curvature_array | ||||
|  | ||||
| # 通过高效法计算贝利曲率(可计算简并的情况) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision=100, print_show=0): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -346,7 +346,7 @@ def calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamilton | ||||
|     return k_array, berry_curvature_array | ||||
|  | ||||
| # 通过Wilson loop方法计算贝里曲率 | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -403,7 +403,7 @@ def calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min='defa | ||||
|     return k_array, berry_curvature_array | ||||
|  | ||||
| # 通过Wilson loop方法计算贝里曲率(可计算简并的情况) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -475,7 +475,7 @@ def calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_f | ||||
|     return k_array, berry_curvature_array | ||||
|  | ||||
| # 计算蜂窝格子的陈数(高效法) | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -519,7 +519,7 @@ def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, prec | ||||
|     return chern_number | ||||
|  | ||||
| # 计算Wilson loop | ||||
| @guan.function_decorator | ||||
| @guan.statistics_decorator | ||||
| def calculate_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|   | ||||
		Reference in New Issue
	
	Block a user