From 194b90a0d8493628fb1fc3708c6e30868b51dae0 Mon Sep 17 00:00:00 2001 From: guanjihuan Date: Wed, 10 Apr 2024 22:40:42 +0800 Subject: [PATCH] 0.1.96 --- PyPI/setup.cfg | 2 +- PyPI/src/guan.egg-info/PKG-INFO | 2 +- PyPI/src/guan/machine_learning.py | 23 +++++++++++++++++++++++ 3 files changed, 25 insertions(+), 2 deletions(-) diff --git a/PyPI/setup.cfg b/PyPI/setup.cfg index 6d82f6c..9400c42 100644 --- a/PyPI/setup.cfg +++ b/PyPI/setup.cfg @@ -1,7 +1,7 @@ [metadata] # replace with your username: name = guan -version = 0.1.95 +version = 0.1.96 author = guanjihuan author_email = guanjihuan@163.com description = An open source python package diff --git a/PyPI/src/guan.egg-info/PKG-INFO b/PyPI/src/guan.egg-info/PKG-INFO index 0d8191d..657e5d1 100644 --- a/PyPI/src/guan.egg-info/PKG-INFO +++ b/PyPI/src/guan.egg-info/PKG-INFO @@ -1,6 +1,6 @@ Metadata-Version: 2.1 Name: guan -Version: 0.1.95 +Version: 0.1.96 Summary: An open source python package Home-page: https://py.guanjihuan.com Author: guanjihuan diff --git a/PyPI/src/guan/machine_learning.py b/PyPI/src/guan/machine_learning.py index 508c03b..4fbabad 100644 --- a/PyPI/src/guan/machine_learning.py +++ b/PyPI/src/guan/machine_learning.py @@ -221,6 +221,29 @@ def load_train_data(x_train, y_train, batch_size=32): train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) return train_loader +# 从pickle文件中读取输入数据和输出数据,用于训练或预测 +def load_input_data_and_output_data_as_torch_tensors_with_pickle(index_range=[1, 2, 3], directory='./', input_filename='input_index=', output_filename='output_index=', type=None): + import guan + import numpy as np + import torch + input_data = [] + for index in index_range: + input = guan.load_data(filename=directory+input_filename+str(index)) + input_data.append(input) + output_data = [] + for index in index_range: + output = guan.load_data(filename=directory+output_filename+str(index)) + output_data.append(output) + if type == None: + input_data = np.array(input_data) + output_data= np.array(output_data) + else: + input_data = np.array(input_data).astype(type) + output_data= np.array(output_data).astype(type) + input_data = torch.from_numpy(input_data) + output_data = torch.from_numpy(output_data) + return input_data, output_data + # 数据的主成分分析PCA def pca_of_data(data, n_components=None, standard=1): from sklearn.decomposition import PCA