version_0.0.87
This commit is contained in:
		| @@ -111,10 +111,12 @@ hamiltonian = guan.hamiltonian_of_finite_size_system_along_three_directions_for_ | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_finite_size_SSH_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1) | ||||
|  | ||||
| hopping = guan.hopping_matrix_along_zigzag_direction_for_graphene_ribbon(N, eta=0) | ||||
| hopping = guan.get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0) | ||||
|  | ||||
| H0, H1, H2 = get_onsite_and_hopping_terms_of_BHZ_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1) | ||||
|  | ||||
|  | ||||
|  | ||||
| # Module 4: Hamiltonian of models in the reciprocal space | ||||
| @@ -139,6 +141,10 @@ hamiltonian = guan.hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_half_BHZ_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_half_BHZ_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_BBH_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1) | ||||
|  | ||||
|  | ||||
| @@ -626,7 +632,7 @@ def hamiltonian_of_finite_size_SSH_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, | ||||
|         hamiltonian[2*N-1, 0] = w | ||||
|     return hamiltonian | ||||
|  | ||||
| def hopping_matrix_along_zigzag_direction_for_graphene_ribbon(N, eta=0): | ||||
| def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0): | ||||
|     hopping = np.zeros((4*N, 4*N), dtype=complex) | ||||
|     for i0 in range(N): | ||||
|         hopping[4*i0+0, 4*i0+0] = eta | ||||
| @@ -639,12 +645,43 @@ def hopping_matrix_along_zigzag_direction_for_graphene_ribbon(N, eta=0): | ||||
|  | ||||
| def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0): | ||||
|     on_site = guan.hamiltonian_of_finite_size_system_along_one_direction(4) | ||||
|     hopping_1 = guan.hopping_matrix_along_zigzag_direction_for_graphene_ribbon(1) | ||||
|     hopping_1 = guan.get_hopping_term_of_graphene_ribbon_along_zigzag_direction(1) | ||||
|     hopping_2 = np.zeros((4, 4), dtype=complex) | ||||
|     hopping_2[3, 0] = 1 | ||||
|     hamiltonian = guan.finite_size_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2) | ||||
|     return hamiltonian | ||||
|  | ||||
| def get_onsite_and_hopping_terms_of_BHZ_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
|     E_s = C+M-4*(D+B)/(a**2) | ||||
|     E_p = C-M-4*(D-B)/(a**2) | ||||
|     V_ss = (D+B)/(a**2) | ||||
|     V_pp = (D-B)/(a**2) | ||||
|     V_sp = -1j*A/(2*a) | ||||
|     H0 = np.zeros((4, 4), dtype=complex) | ||||
|     H1 = np.zeros((4, 4), dtype=complex) | ||||
|     H2 = np.zeros((4, 4), dtype=complex) | ||||
|     H0[0, 0] = E_s | ||||
|     H0[1, 1] = E_p | ||||
|     H0[2, 2] = E_s | ||||
|     H0[3, 3] = E_p | ||||
|     H1[0, 0] = V_ss | ||||
|     H1[1, 1] = V_pp | ||||
|     H1[2, 2] = V_ss | ||||
|     H1[3, 3] = V_pp | ||||
|     H1[0, 1] = V_sp | ||||
|     H1[1, 0] = -np.conj(V_sp) | ||||
|     H1[2, 3] = np.conj(V_sp) | ||||
|     H1[3, 2] = -V_sp | ||||
|     H2[0, 0] = V_ss | ||||
|     H2[1, 1] = V_pp | ||||
|     H2[2, 2] = V_ss | ||||
|     H2[3, 3] = V_pp | ||||
|     H2[0, 1] = 1j*V_sp | ||||
|     H2[1, 0] = 1j*np.conj(V_sp) | ||||
|     H2[2, 3] = -1j*np.conj(V_sp) | ||||
|     H2[3, 2] = -1j*V_sp | ||||
|     return H0, H1, H2 | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| @@ -780,6 +817,28 @@ def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1): | ||||
|     hamiltonian[1, 1] = -(m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2)) | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_half_BHZ_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
|     varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) | ||||
|     d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) | ||||
|     d1_d2 = A*(math.sin(kx)+1j*math.sin(ky)) | ||||
|     hamiltonian[0, 0] = varepsilon+d3 | ||||
|     hamiltonian[1, 1] = varepsilon-d3 | ||||
|     hamiltonian[0, 1] = np.conj(d1_d2) | ||||
|     hamiltonian[1, 0] = d1_d2  | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_half_BHZ_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
|     varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) | ||||
|     d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) | ||||
|     d1_d2 = A*(math.sin(kx)+1j*math.sin(ky)) | ||||
|     hamiltonian[0, 0] = varepsilon+d3 | ||||
|     hamiltonian[1, 1] = varepsilon-d3 | ||||
|     hamiltonian[0, 1] = -d1_d2  | ||||
|     hamiltonian[1, 0] = -np.conj(d1_d2) | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_BBH_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1): | ||||
|     # label of atoms in a unit cell | ||||
|     # (2) —— (0) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user