update
This commit is contained in:
		| @@ -1,985 +0,0 @@ | |||||||
| import numpy as np |  | ||||||
| import cmath |  | ||||||
| from math import * |  | ||||||
| import copy |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # test |  | ||||||
|  |  | ||||||
| def test(): |  | ||||||
|     print('\nSuccess in the installation of GUAN package!\n') |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # basic functions |  | ||||||
|  |  | ||||||
| ## Pauli matrices |  | ||||||
|  |  | ||||||
| def sigma_0(): |  | ||||||
|     return np.eye(2) |  | ||||||
|  |  | ||||||
| def sigma_x(): |  | ||||||
|     return np.array([[0, 1],[1, 0]]) |  | ||||||
|  |  | ||||||
| def sigma_y(): |  | ||||||
|     return np.array([[0, -1j],[1j, 0]]) |  | ||||||
|  |  | ||||||
| def sigma_z(): |  | ||||||
|     return np.array([[1, 0],[0, -1]]) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| ## Kronecker product of Pauli matrices |  | ||||||
|  |  | ||||||
| def sigma_00(): |  | ||||||
|     return np.kron(sigma_0(), sigma_0()) |  | ||||||
|  |  | ||||||
| def sigma_0x(): |  | ||||||
|     return np.kron(sigma_0(), sigma_x()) |  | ||||||
|  |  | ||||||
| def sigma_0y(): |  | ||||||
|     return np.kron(sigma_0(), sigma_y()) |  | ||||||
|  |  | ||||||
| def sigma_0z(): |  | ||||||
|     return np.kron(sigma_0(), sigma_z()) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def sigma_x0(): |  | ||||||
|     return np.kron(sigma_x(), sigma_0()) |  | ||||||
|  |  | ||||||
| def sigma_xx(): |  | ||||||
|     return np.kron(sigma_x(), sigma_x()) |  | ||||||
|  |  | ||||||
| def sigma_xy(): |  | ||||||
|     return np.kron(sigma_x(), sigma_y()) |  | ||||||
|  |  | ||||||
| def sigma_xz(): |  | ||||||
|     return np.kron(sigma_x(), sigma_z()) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def sigma_y0(): |  | ||||||
|     return np.kron(sigma_y(), sigma_0()) |  | ||||||
|  |  | ||||||
| def sigma_yx(): |  | ||||||
|     return np.kron(sigma_y(), sigma_x()) |  | ||||||
|  |  | ||||||
| def sigma_yy(): |  | ||||||
|     return np.kron(sigma_y(), sigma_y()) |  | ||||||
|  |  | ||||||
| def sigma_yz(): |  | ||||||
|     return np.kron(sigma_y(), sigma_z()) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def sigma_z0(): |  | ||||||
|     return np.kron(sigma_z(), sigma_0()) |  | ||||||
|  |  | ||||||
| def sigma_zx(): |  | ||||||
|     return np.kron(sigma_z(), sigma_x()) |  | ||||||
|  |  | ||||||
| def sigma_zy(): |  | ||||||
|     return np.kron(sigma_z(), sigma_y()) |  | ||||||
|  |  | ||||||
| def sigma_zz(): |  | ||||||
|     return np.kron(sigma_z(), sigma_z()) |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # Hermitian Hamiltonian of tight binding model  |  | ||||||
|  |  | ||||||
| def finite_size_along_one_direction(N, on_site=0, hopping=1, period=0): |  | ||||||
|     on_site = np.array(on_site) |  | ||||||
|     hopping = np.array(hopping) |  | ||||||
|     if on_site.shape==(): |  | ||||||
|         dim = 1 |  | ||||||
|     else: |  | ||||||
|         dim = on_site.shape[0] |  | ||||||
|     hamiltonian = np.zeros((N*dim, N*dim), dtype=complex) |  | ||||||
|     for i0 in range(N): |  | ||||||
|         hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site |  | ||||||
|     for i0 in range(N-1): |  | ||||||
|         hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping |  | ||||||
|         hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj() |  | ||||||
|     if period == 1: |  | ||||||
|         hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping |  | ||||||
|         hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj() |  | ||||||
|     return hamiltonian |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def finite_size_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0): |  | ||||||
|     on_site = np.array(on_site) |  | ||||||
|     hopping_1 = np.array(hopping_1) |  | ||||||
|     hopping_2 = np.array(hopping_2) |  | ||||||
|     if on_site.shape==(): |  | ||||||
|         dim = 1 |  | ||||||
|     else: |  | ||||||
|         dim = on_site.shape[0] |  | ||||||
|     hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex)     |  | ||||||
|     for i1 in range(N1): |  | ||||||
|         for i2 in range(N2): |  | ||||||
|             hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site |  | ||||||
|     for i1 in range(N1-1): |  | ||||||
|         for i2 in range(N2): |  | ||||||
|             hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1 |  | ||||||
|             hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() |  | ||||||
|     for i1 in range(N1): |  | ||||||
|         for i2 in range(N2-1): |  | ||||||
|             hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2 |  | ||||||
|             hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj() |  | ||||||
|     if period_1 == 1: |  | ||||||
|         for i2 in range(N2): |  | ||||||
|             hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1 |  | ||||||
|             hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() |  | ||||||
|     if period_2 == 1: |  | ||||||
|         for i1 in range(N1): |  | ||||||
|             hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2 |  | ||||||
|             hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj() |  | ||||||
|     return hamiltonian |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def finite_size_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0): |  | ||||||
|     on_site = np.array(on_site) |  | ||||||
|     hopping_1 = np.array(hopping_1) |  | ||||||
|     hopping_2 = np.array(hopping_2) |  | ||||||
|     hopping_3 = np.array(hopping_3) |  | ||||||
|     if on_site.shape==(): |  | ||||||
|         dim = 1 |  | ||||||
|     else: |  | ||||||
|         dim = on_site.shape[0] |  | ||||||
|     hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex)  |  | ||||||
|     for i1 in range(N1): |  | ||||||
|         for i2 in range(N2): |  | ||||||
|             for i3 in range(N3): |  | ||||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site |  | ||||||
|     for i1 in range(N1-1): |  | ||||||
|         for i2 in range(N2): |  | ||||||
|             for i3 in range(N3): |  | ||||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1 |  | ||||||
|                 hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() |  | ||||||
|     for i1 in range(N1): |  | ||||||
|         for i2 in range(N2-1): |  | ||||||
|             for i3 in range(N3): |  | ||||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2 |  | ||||||
|                 hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() |  | ||||||
|     for i1 in range(N1): |  | ||||||
|         for i2 in range(N2): |  | ||||||
|             for i3 in range(N3-1): |  | ||||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3 |  | ||||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj() |  | ||||||
|     if period_1 == 1: |  | ||||||
|         for i2 in range(N2): |  | ||||||
|             for i3 in range(N3): |  | ||||||
|                 hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1 |  | ||||||
|                 hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() |  | ||||||
|     if period_2 == 1: |  | ||||||
|         for i1 in range(N1): |  | ||||||
|             for i3 in range(N3): |  | ||||||
|                 hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2 |  | ||||||
|                 hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() |  | ||||||
|     if period_3 == 1: |  | ||||||
|         for i1 in range(N1): |  | ||||||
|             for i2 in range(N2): |  | ||||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3 |  | ||||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj() |  | ||||||
|     return hamiltonian |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def one_dimensional_fourier_transform(k, unit_cell, hopping): |  | ||||||
|     unit_cell = np.array(unit_cell) |  | ||||||
|     hopping = np.array(hopping) |  | ||||||
|     hamiltonian = unit_cell+hopping*cmath.exp(1j*k)+hopping.transpose().conj()*cmath.exp(-1j*k) |  | ||||||
|     return hamiltonian |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2): |  | ||||||
|     unit_cell = np.array(unit_cell) |  | ||||||
|     hopping_1 = np.array(hopping_1) |  | ||||||
|     hopping_2 = np.array(hopping_2) |  | ||||||
|     hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2) |  | ||||||
|     return hamiltonian |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3): |  | ||||||
|     unit_cell = np.array(unit_cell) |  | ||||||
|     hopping_1 = np.array(hopping_1) |  | ||||||
|     hopping_2 = np.array(hopping_2) |  | ||||||
|     hopping_3 = np.array(hopping_3) |  | ||||||
|     hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)+hopping_3*cmath.exp(1j*k3)+hopping_3.transpose().conj()*cmath.exp(-1j*k3) |  | ||||||
|     return hamiltonian |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # Hamiltonian of graphene lattice |  | ||||||
|  |  | ||||||
| def hopping_along_zigzag_direction_for_graphene(N): |  | ||||||
|     hopping = np.zeros((4*N, 4*N), dtype=complex) |  | ||||||
|     for i0 in range(N): |  | ||||||
|         hopping[4*i0+1, 4*i0+0] = 1 |  | ||||||
|         hopping[4*i0+2, 4*i0+3] = 1 |  | ||||||
|     return hopping |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def finite_size_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0): |  | ||||||
|     on_site = finite_size_along_one_direction(4) |  | ||||||
|     hopping_1 = hopping_along_zigzag_direction_for_graphene(1) |  | ||||||
|     hopping_2 = np.zeros((4, 4), dtype=complex) |  | ||||||
|     hopping_2[3, 0] = 1 |  | ||||||
|     hamiltonian = finite_size_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2) |  | ||||||
|     return hamiltonian |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # calculate band structures |  | ||||||
|  |  | ||||||
| def calculate_eigenvalue(hamiltonian): |  | ||||||
|     if np.array(hamiltonian).shape==(): |  | ||||||
|         eigenvalue = np.real(hamiltonian) |  | ||||||
|     else: |  | ||||||
|         eigenvalue, eigenvector = np.linalg.eig(hamiltonian) |  | ||||||
|         eigenvalue = np.sort(np.real(eigenvalue)) |  | ||||||
|     return eigenvalue |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def calculate_eigenvalue_with_one_parameter(x, hamiltonian_function): |  | ||||||
|     dim_x = np.array(x).shape[0] |  | ||||||
|     i0 = 0 |  | ||||||
|     if np.array(hamiltonian_function(0)).shape==(): |  | ||||||
|         eigenvalue_array = np.zeros((dim_x, 1)) |  | ||||||
|         for x0 in x: |  | ||||||
|             hamiltonian = hamiltonian_function(x0) |  | ||||||
|             eigenvalue_array[i0, 0] = np.real(hamiltonian) |  | ||||||
|             i0 += 1 |  | ||||||
|     else: |  | ||||||
|         dim = np.array(hamiltonian_function(0)).shape[0] |  | ||||||
|         eigenvalue_array = np.zeros((dim_x, dim)) |  | ||||||
|         for x0 in x: |  | ||||||
|             hamiltonian = hamiltonian_function(x0) |  | ||||||
|             eigenvalue, eigenvector = np.linalg.eig(hamiltonian) |  | ||||||
|             eigenvalue_array[i0, :] = np.sort(np.real(eigenvalue[:])) |  | ||||||
|             i0 += 1 |  | ||||||
|     return eigenvalue_array |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def calculate_eigenvalue_with_two_parameters(x, y, hamiltonian_function):   |  | ||||||
|     dim_x = np.array(x).shape[0] |  | ||||||
|     dim_y = np.array(y).shape[0] |  | ||||||
|     if np.array(hamiltonian_function(0,0)).shape==(): |  | ||||||
|         eigenvalue_array = np.zeros((dim_y, dim_x, 1)) |  | ||||||
|         i0 = 0 |  | ||||||
|         for y0 in y: |  | ||||||
|             j0 = 0 |  | ||||||
|             for x0 in x: |  | ||||||
|                 hamiltonian = hamiltonian_function(x0, y0) |  | ||||||
|                 eigenvalue_array[i0, j0, 0] = np.real(hamiltonian) |  | ||||||
|                 j0 += 1 |  | ||||||
|             i0 += 1 |  | ||||||
|     else: |  | ||||||
|         dim = np.array(hamiltonian_function(0, 0)).shape[0] |  | ||||||
|         eigenvalue_array = np.zeros((dim_y, dim_x, dim)) |  | ||||||
|         i0 = 0 |  | ||||||
|         for y0 in y: |  | ||||||
|             j0 = 0 |  | ||||||
|             for x0 in x: |  | ||||||
|                 hamiltonian = hamiltonian_function(x0, y0) |  | ||||||
|                 eigenvalue, eigenvector = np.linalg.eig(hamiltonian) |  | ||||||
|                 eigenvalue_array[i0, j0, :] = np.sort(np.real(eigenvalue[:])) |  | ||||||
|                 j0 += 1 |  | ||||||
|             i0 += 1 |  | ||||||
|     return eigenvalue_array |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # calculate wave functions |  | ||||||
|  |  | ||||||
| def calculate_eigenvector(hamiltonian): |  | ||||||
|     eigenvalue, eigenvector = np.linalg.eig(hamiltonian)  |  | ||||||
|     eigenvector = eigenvector[:, np.argsort(np.real(eigenvalue))]  |  | ||||||
|     return eigenvector |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # calculate Green functions |  | ||||||
|  |  | ||||||
| def green_function(fermi_energy, hamiltonian, broadening, self_energy=0): |  | ||||||
|     if np.array(hamiltonian).shape==(): |  | ||||||
|         dim = 1 |  | ||||||
|     else: |  | ||||||
|         dim = np.array(hamiltonian).shape[0] |  | ||||||
|     green = np.linalg.inv((fermi_energy+broadening*1j)*np.eye(dim)-hamiltonian-self_energy) |  | ||||||
|     return green |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0): |  | ||||||
|     h01 = np.array(h01) |  | ||||||
|     if np.array(h00).shape==(): |  | ||||||
|         dim = 1 |  | ||||||
|     else: |  | ||||||
|         dim = np.array(h00).shape[0]    |  | ||||||
|     green_nn_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n_minus), h01)-self_energy) |  | ||||||
|     return green_nn_n |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def green_function_in_n(green_in_n_minus, h01, green_nn_n): |  | ||||||
|     green_in_n = np.dot(np.dot(green_in_n_minus, h01), green_nn_n) |  | ||||||
|     return green_in_n |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def green_function_ni_n(green_nn_n, h01, green_ni_n_minus): |  | ||||||
|     h01 = np.array(h01) |  | ||||||
|     green_ni_n = np.dot(np.dot(green_nn_n, h01.transpose().conj()), green_ni_n_minus) |  | ||||||
|     return green_ni_n |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus): |  | ||||||
|     green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus) |  | ||||||
|     return green_ii_n |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # calculate density of states |  | ||||||
|  |  | ||||||
| def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01): |  | ||||||
|     green = green_function(fermi_energy, hamiltonian, broadening) |  | ||||||
|     total_dos = -np.trace(np.imag(green))/pi |  | ||||||
|     return total_dos |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01): |  | ||||||
|     dim = np.array(fermi_energy_array).shape[0] |  | ||||||
|     total_dos_array = np.zeros(dim) |  | ||||||
|     i0 = 0 |  | ||||||
|     for fermi_energy in fermi_energy_array: |  | ||||||
|         total_dos_array[i0] = total_density_of_states(fermi_energy, hamiltonian, broadening) |  | ||||||
|         i0 += 1 |  | ||||||
|     return total_dos_array |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01): |  | ||||||
|     # dim_hamiltonian = N1*N2*internal_degree |  | ||||||
|     green = green_function(fermi_energy, hamiltonian, broadening) |  | ||||||
|     local_dos = np.zeros((N2, N1)) |  | ||||||
|     for i1 in range(N1): |  | ||||||
|         for i2 in range(N2): |  | ||||||
|             for i in range(internal_degree):  |  | ||||||
|                 local_dos[i2, i1] = local_dos[i2, i1]-np.imag(green[i1*N2*internal_degree+i2*internal_degree+i, i1*N2*internal_degree+i2*internal_degree+i])/pi |  | ||||||
|     return local_dos |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01): |  | ||||||
|     # dim_hamiltonian = N1*N2*N3*internal_degree |  | ||||||
|     green = green_function(fermi_energy, hamiltonian, broadening) |  | ||||||
|     local_dos = np.zeros((N3, N2, N1)) |  | ||||||
|     for i1 in range(N1): |  | ||||||
|         for i2 in range(N2): |  | ||||||
|             for i3 in range(N3): |  | ||||||
|                 for i in range(internal_degree):  |  | ||||||
|                     local_dos[i3, i2, i1] = local_dos[i3, i2, i1]-np.imag(green[i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i, i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i])/pi |  | ||||||
|     return local_dos |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01): |  | ||||||
|     # dim_h00 = N2*internal_degree |  | ||||||
|     local_dos = np.zeros((N2, N1)) |  | ||||||
|     green_11_1 = green_function(fermi_energy, h00, broadening) |  | ||||||
|     for i1 in range(N1): |  | ||||||
|         green_nn_n_minus = green_11_1 |  | ||||||
|         green_in_n_minus = green_11_1 |  | ||||||
|         green_ni_n_minus = green_11_1 |  | ||||||
|         green_ii_n_minus = green_11_1 |  | ||||||
|         for i2_0 in range(i1): |  | ||||||
|             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) |  | ||||||
|             green_nn_n_minus = green_nn_n |  | ||||||
|         if i1!=0: |  | ||||||
|             green_in_n_minus = green_nn_n |  | ||||||
|             green_ni_n_minus = green_nn_n |  | ||||||
|             green_ii_n_minus = green_nn_n |  | ||||||
|         for size_0 in range(N1-1-i1): |  | ||||||
|             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) |  | ||||||
|             green_nn_n_minus = green_nn_n |  | ||||||
|             green_ii_n = green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) |  | ||||||
|             green_ii_n_minus = green_ii_n |  | ||||||
|             green_in_n = green_function_in_n(green_in_n_minus, h01, green_nn_n) |  | ||||||
|             green_in_n_minus = green_in_n |  | ||||||
|             green_ni_n = green_function_ni_n(green_nn_n, h01, green_ni_n_minus) |  | ||||||
|             green_ni_n_minus = green_ni_n |  | ||||||
|         for i2 in range(N2): |  | ||||||
|             for i in range(internal_degree): |  | ||||||
|                 local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/pi |  | ||||||
|     return local_dos |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01): |  | ||||||
|     # dim_h00 = N2*N3*internal_degree |  | ||||||
|     local_dos = np.zeros((N3, N2, N1)) |  | ||||||
|     green_11_1 = green_function(fermi_energy, h00, broadening) |  | ||||||
|     for i1 in range(N1): |  | ||||||
|         green_nn_n_minus = green_11_1 |  | ||||||
|         green_in_n_minus = green_11_1 |  | ||||||
|         green_ni_n_minus = green_11_1 |  | ||||||
|         green_ii_n_minus = green_11_1 |  | ||||||
|         for i1_0 in range(i1): |  | ||||||
|             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) |  | ||||||
|             green_nn_n_minus = green_nn_n |  | ||||||
|         if i1!=0: |  | ||||||
|             green_in_n_minus = green_nn_n |  | ||||||
|             green_ni_n_minus = green_nn_n |  | ||||||
|             green_ii_n_minus = green_nn_n |  | ||||||
|         for size_0 in range(N1-1-i1): |  | ||||||
|             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) |  | ||||||
|             green_nn_n_minus = green_nn_n |  | ||||||
|             green_ii_n = green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) |  | ||||||
|             green_ii_n_minus = green_ii_n |  | ||||||
|             green_in_n = green_function_in_n(green_in_n_minus, h01, green_nn_n) |  | ||||||
|             green_in_n_minus = green_in_n |  | ||||||
|             green_ni_n = green_function_ni_n(green_nn_n, h01, green_ni_n_minus) |  | ||||||
|             green_ni_n_minus = green_ni_n |  | ||||||
|         for i2 in range(N2): |  | ||||||
|             for i3 in range(N3): |  | ||||||
|                 for i in range(internal_degree): |  | ||||||
|                     local_dos[i3, i2, i1] = local_dos[i3, i2, i1] -np.imag(green_ii_n_minus[i2*N3*internal_degree+i3*internal_degree+i, i2*N3*internal_degree+i3*internal_degree+i])/pi        |  | ||||||
|     return local_dos |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # calculate conductance |  | ||||||
|  |  | ||||||
| def transfer_matrix(fermi_energy, h00, h01): |  | ||||||
|     h01 = np.array(h01) |  | ||||||
|     if np.array(h00).shape==(): |  | ||||||
|         dim = 1 |  | ||||||
|     else: |  | ||||||
|         dim = np.array(h00).shape[0] |  | ||||||
|     transfer = np.zeros((2*dim, 2*dim), dtype=complex) |  | ||||||
|     transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00) |  | ||||||
|     transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj()) |  | ||||||
|     transfer[dim:2*dim, 0:dim] = np.identity(dim) |  | ||||||
|     transfer[dim:2*dim, dim:2*dim] = 0 |  | ||||||
|     return transfer |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def surface_green_function_of_lead(fermi_energy, h00, h01): |  | ||||||
|     h01 = np.array(h01) |  | ||||||
|     if np.array(h00).shape==(): |  | ||||||
|         dim = 1 |  | ||||||
|     else: |  | ||||||
|         dim = np.array(h00).shape[0] |  | ||||||
|     fermi_energy = fermi_energy+1e-9*1j |  | ||||||
|     transfer = transfer_matrix(fermi_energy, h00, h01) |  | ||||||
|     eigenvalue, eigenvector = np.linalg.eig(transfer) |  | ||||||
|     ind = np.argsort(np.abs(eigenvalue)) |  | ||||||
|     temp = np.zeros((2*dim, 2*dim), dtype=complex) |  | ||||||
|     i0 = 0 |  | ||||||
|     for ind0 in ind: |  | ||||||
|         temp[:, i0] = eigenvector[:, ind0] |  | ||||||
|         i0 += 1 |  | ||||||
|     s1 = temp[dim:2*dim, 0:dim] |  | ||||||
|     s2 = temp[0:dim, 0:dim] |  | ||||||
|     s3 = temp[dim:2*dim, dim:2*dim] |  | ||||||
|     s4 = temp[0:dim, dim:2*dim] |  | ||||||
|     right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1))) |  | ||||||
|     left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4))) |  | ||||||
|     return right_lead_surface, left_lead_surface |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def self_energy_of_lead(fermi_energy, h00, h01): |  | ||||||
|     h01 = np.array(h01) |  | ||||||
|     right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01) |  | ||||||
|     right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj()) |  | ||||||
|     left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01) |  | ||||||
|     return right_self_energy, left_self_energy |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def calculate_conductance(fermi_energy, h00, h01, length=100): |  | ||||||
|     right_self_energy, left_self_energy = self_energy_of_lead(fermi_energy, h00, h01) |  | ||||||
|     for ix in range(length): |  | ||||||
|         if ix == 0: |  | ||||||
|             green_nn_n = green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) |  | ||||||
|             green_0n_n = copy.deepcopy(green_nn_n) |  | ||||||
|         elif ix != length-1: |  | ||||||
|             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0) |  | ||||||
|             green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n) |  | ||||||
|         else: |  | ||||||
|             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) |  | ||||||
|             green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n) |  | ||||||
|     right_self_energy = (right_self_energy - right_self_energy.transpose().conj())*(0+1j) |  | ||||||
|     left_self_energy = (left_self_energy - left_self_energy.transpose().conj())*(0+1j) |  | ||||||
|     conductance = np.trace(np.dot(np.dot(np.dot(left_self_energy, green_0n_n), right_self_energy), green_0n_n.transpose().conj())) |  | ||||||
|     return conductance |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100): |  | ||||||
|     dim = np.array(fermi_energy_array).shape[0] |  | ||||||
|     conductance_array = np.zeros(dim) |  | ||||||
|     i0 = 0 |  | ||||||
|     for fermi_energy_0 in fermi_energy_array: |  | ||||||
|         conductance_array[i0] = np.real(calculate_conductance(fermi_energy_0, h00, h01, length)) |  | ||||||
|         i0 += 1 |  | ||||||
|     return conductance_array |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # calculate scattering matrix |  | ||||||
|  |  | ||||||
| def if_active_channel(k_of_channel): |  | ||||||
|     if np.abs(np.imag(k_of_channel))<1e-6: |  | ||||||
|         if_active = 1 |  | ||||||
|     else: |  | ||||||
|         if_active = 0 |  | ||||||
|     return if_active |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def get_k_and_velocity_of_channel(fermi_energy, h00, h01): |  | ||||||
|     if np.array(h00).shape==(): |  | ||||||
|         dim = 1 |  | ||||||
|     else: |  | ||||||
|         dim = np.array(h00).shape[0] |  | ||||||
|     transfer = transfer_matrix(fermi_energy, h00, h01) |  | ||||||
|     eigenvalue, eigenvector = np.linalg.eig(transfer) |  | ||||||
|     k_of_channel = np.log(eigenvalue)/1j |  | ||||||
|     ind = np.argsort(np.real(k_of_channel)) |  | ||||||
|     k_of_channel = np.sort(k_of_channel) |  | ||||||
|     temp = np.zeros((2*dim, 2*dim), dtype=complex) |  | ||||||
|     temp2 = np.zeros((2*dim), dtype=complex) |  | ||||||
|     i0 = 0 |  | ||||||
|     for ind0 in ind: |  | ||||||
|         temp[:, i0] = eigenvector[:, ind0] |  | ||||||
|         temp2[i0] = eigenvalue[ind0] |  | ||||||
|         i0 += 1 |  | ||||||
|     eigenvalue = copy.deepcopy(temp2) |  | ||||||
|     temp = temp[0:dim, :] |  | ||||||
|     factor = np.zeros(2*dim, dtype=complex) |  | ||||||
|     for dim0 in range(dim): |  | ||||||
|         factor = factor+np.square(np.abs(temp[dim0, :])) |  | ||||||
|     for dim0 in range(2*dim): |  | ||||||
|         temp[:, dim0] = temp[:, dim0]/np.sqrt(factor[dim0]) |  | ||||||
|     velocity_of_channel = np.zeros((2*dim), dtype=complex) |  | ||||||
|     for dim0 in range(2*dim): |  | ||||||
|         velocity_of_channel[dim0] = eigenvalue[dim0]*np.dot(np.dot(temp[0:dim, :].transpose().conj(), h01),temp[0:dim, :])[dim0, dim0] |  | ||||||
|     velocity_of_channel = -2*np.imag(velocity_of_channel) |  | ||||||
|     eigenvector = copy.deepcopy(temp)  |  | ||||||
|     return k_of_channel, velocity_of_channel, eigenvalue, eigenvector |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01): |  | ||||||
|     if np.array(h00).shape==(): |  | ||||||
|         dim = 1 |  | ||||||
|     else: |  | ||||||
|         dim = np.array(h00).shape[0] |  | ||||||
|     k_of_channel, velocity_of_channel, eigenvalue, eigenvector = get_k_and_velocity_of_channel(fermi_energy, h00, h01) |  | ||||||
|     ind_right_active = 0; ind_right_evanescent = 0; ind_left_active = 0; ind_left_evanescent = 0 |  | ||||||
|     k_right = np.zeros(dim, dtype=complex); k_left = np.zeros(dim, dtype=complex) |  | ||||||
|     velocity_right = np.zeros(dim, dtype=complex); velocity_left = np.zeros(dim, dtype=complex) |  | ||||||
|     lambda_right = np.zeros(dim, dtype=complex); lambda_left = np.zeros(dim, dtype=complex) |  | ||||||
|     u_right = np.zeros((dim, dim), dtype=complex); u_left = np.zeros((dim, dim), dtype=complex) |  | ||||||
|     for dim0 in range(2*dim): |  | ||||||
|         if_active = if_active_channel(k_of_channel[dim0]) |  | ||||||
|         if if_active_channel(k_of_channel[dim0]) == 1: |  | ||||||
|             direction = np.sign(velocity_of_channel[dim0]) |  | ||||||
|         else: |  | ||||||
|             direction = np.sign(np.imag(k_of_channel[dim0])) |  | ||||||
|         if direction == 1: |  | ||||||
|             if if_active == 1:  # right-moving active channel |  | ||||||
|                 k_right[ind_right_active] = k_of_channel[dim0] |  | ||||||
|                 velocity_right[ind_right_active] = velocity_of_channel[dim0] |  | ||||||
|                 lambda_right[ind_right_active] = eigenvalue[dim0] |  | ||||||
|                 u_right[:, ind_right_active] = eigenvector[:, dim0] |  | ||||||
|                 ind_right_active += 1 |  | ||||||
|             else:               # right-moving evanescent channel |  | ||||||
|                 k_right[dim-1-ind_right_evanescent] = k_of_channel[dim0] |  | ||||||
|                 velocity_right[dim-1-ind_right_evanescent] = velocity_of_channel[dim0] |  | ||||||
|                 lambda_right[dim-1-ind_right_evanescent] = eigenvalue[dim0] |  | ||||||
|                 u_right[:, dim-1-ind_right_evanescent] = eigenvector[:, dim0] |  | ||||||
|                 ind_right_evanescent += 1 |  | ||||||
|         else: |  | ||||||
|             if if_active == 1:  # left-moving active channel |  | ||||||
|                 k_left[ind_left_active] = k_of_channel[dim0] |  | ||||||
|                 velocity_left[ind_left_active] = velocity_of_channel[dim0] |  | ||||||
|                 lambda_left[ind_left_active] = eigenvalue[dim0] |  | ||||||
|                 u_left[:, ind_left_active] = eigenvector[:, dim0] |  | ||||||
|                 ind_left_active += 1 |  | ||||||
|             else:               # left-moving evanescent channel |  | ||||||
|                 k_left[dim-1-ind_left_evanescent] = k_of_channel[dim0] |  | ||||||
|                 velocity_left[dim-1-ind_left_evanescent] = velocity_of_channel[dim0] |  | ||||||
|                 lambda_left[dim-1-ind_left_evanescent] = eigenvalue[dim0] |  | ||||||
|                 u_left[:, dim-1-ind_left_evanescent] = eigenvector[:, dim0] |  | ||||||
|                 ind_left_evanescent += 1 |  | ||||||
|     lambda_matrix_right = np.diag(lambda_right) |  | ||||||
|     lambda_matrix_left = np.diag(lambda_left) |  | ||||||
|     f_right = np.dot(np.dot(u_right, lambda_matrix_right), np.linalg.inv(u_right)) |  | ||||||
|     f_left = np.dot(np.dot(u_left, lambda_matrix_left), np.linalg.inv(u_left)) |  | ||||||
|     return k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def calculate_scattering_matrix(fermi_energy, h00, h01, length=100): |  | ||||||
|     h01 = np.array(h01) |  | ||||||
|     if np.array(h00).shape==(): |  | ||||||
|         dim = 1 |  | ||||||
|     else: |  | ||||||
|         dim = np.array(h00).shape[0] |  | ||||||
|     k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = get_classified_k_velocity_u_and_f(fermi_energy, h00, h01) |  | ||||||
|     right_self_energy = np.dot(h01, f_right) |  | ||||||
|     left_self_energy = np.dot(h01.transpose().conj(), np.linalg.inv(f_left)) |  | ||||||
|     for i0 in range(length): |  | ||||||
|         if i0 == 0: |  | ||||||
|             green_nn_n = green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) |  | ||||||
|             green_00_n = copy.deepcopy(green_nn_n) |  | ||||||
|             green_0n_n = copy.deepcopy(green_nn_n) |  | ||||||
|             green_n0_n = copy.deepcopy(green_nn_n) |  | ||||||
|         elif i0 != length-1:  |  | ||||||
|             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)  |  | ||||||
|         else: |  | ||||||
|             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) |  | ||||||
|         green_00_n = green_function_ii_n(green_00_n, green_0n_n, h01, green_nn_n, green_n0_n) |  | ||||||
|         green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n) |  | ||||||
|         green_n0_n = green_function_ni_n(green_nn_n, h01, green_n0_n) |  | ||||||
|     temp = np.dot(h01.transpose().conj(), np.linalg.inv(f_right)-np.linalg.inv(f_left)) |  | ||||||
|     transmission_matrix = np.dot(np.dot(np.linalg.inv(u_right), np.dot(green_n0_n, temp)), u_right)  |  | ||||||
|     reflection_matrix = np.dot(np.dot(np.linalg.inv(u_left), np.dot(green_00_n, temp)-np.identity(dim)), u_right) |  | ||||||
|     for dim0 in range(dim): |  | ||||||
|         for dim1 in range(dim): |  | ||||||
|             if_active = if_active_channel(k_right[dim0])*if_active_channel(k_right[dim1]) |  | ||||||
|             if if_active == 1: |  | ||||||
|                 transmission_matrix[dim0, dim1] = np.sqrt(np.abs(velocity_right[dim0]/velocity_right[dim1])) * transmission_matrix[dim0, dim1] |  | ||||||
|                 reflection_matrix[dim0, dim1] = np.sqrt(np.abs(velocity_left[dim0]/velocity_right[dim1]))*reflection_matrix[dim0, dim1] |  | ||||||
|             else: |  | ||||||
|                 transmission_matrix[dim0, dim1] = 0 |  | ||||||
|                 reflection_matrix[dim0, dim1] = 0 |  | ||||||
|     sum_of_tran_refl_array = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)+np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) |  | ||||||
|     for sum_of_tran_refl in sum_of_tran_refl_array: |  | ||||||
|         if sum_of_tran_refl > 1.001: |  | ||||||
|             print('Error Alert: scattering matrix is not normalized!') |  | ||||||
|     return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, on_print=1, on_write=0): |  | ||||||
|     if np.array(h00).shape==(): |  | ||||||
|         dim = 1 |  | ||||||
|     else: |  | ||||||
|         dim = np.array(h00).shape[0] |  | ||||||
|     transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = calculate_scattering_matrix(fermi_energy, h00, h01, length) |  | ||||||
|     if on_print == 1: |  | ||||||
|         print('\nActive channel (left or right) = ', ind_right_active) |  | ||||||
|         print('Evanescent channel (left or right) = ', dim-ind_right_active, '\n') |  | ||||||
|         print('K of right-moving active channels:\n', np.real(k_right[0:ind_right_active])) |  | ||||||
|         print('K of left-moving active channels:\n', np.real(k_left[0:ind_right_active]), '\n') |  | ||||||
|         print('Velocity of right-moving active channels:\n', np.real(velocity_right[0:ind_right_active])) |  | ||||||
|         print('Velocity of left-moving active channels:\n', np.real(velocity_left[0:ind_right_active]), '\n') |  | ||||||
|         print('Transmission matrix:\n', np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))) |  | ||||||
|         print('Reflection matrix:\n', np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), '\n') |  | ||||||
|         print('Total transmission of channels:\n', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) |  | ||||||
|         print('Total reflection of channels:\n',np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) |  | ||||||
|         print('Sum of transmission and reflection of channels:\n', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) |  | ||||||
|         print('Total conductance = ', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))), '\n') |  | ||||||
|     if on_write == 1: |  | ||||||
|         with open('a.txt', 'w') as f: |  | ||||||
|             f.write('Active channel (left or right) = ' + str(ind_right_active) + '\n') |  | ||||||
|             f.write('Evanescent channel (left or right) = ' + str(dim - ind_right_active) + '\n\n') |  | ||||||
|             f.write('Channel               K                                     Velocity\n') |  | ||||||
|             for ind0 in range(ind_right_active): |  | ||||||
|                 f.write('   '+str(ind0 + 1) + '   |    '+str(np.real(k_right[ind0]))+'            ' + str(np.real(velocity_right[ind0]))+'\n') |  | ||||||
|             f.write('\n') |  | ||||||
|             for ind0 in range(ind_right_active): |  | ||||||
|                 f.write('  -' + str(ind0 + 1) + '   |    ' + str(np.real(k_left[ind0])) + '            ' + str(np.real(velocity_left[ind0])) + '\n') |  | ||||||
|             f.write('\nScattering matrix:\n              ') |  | ||||||
|             for ind0 in range(ind_right_active): |  | ||||||
|                 f.write(str(ind0+1)+'               ') |  | ||||||
|             f.write('\n') |  | ||||||
|             for ind1 in range(ind_right_active): |  | ||||||
|                 f.write('  '+str(ind1+1)+'    ') |  | ||||||
|                 for ind2 in range(ind_right_active): |  | ||||||
|                     f.write('%f' % np.square(np.abs(transmission_matrix[ind1, ind2]))+'    ') |  | ||||||
|                 f.write('\n') |  | ||||||
|             f.write('\n') |  | ||||||
|             for ind1 in range(ind_right_active): |  | ||||||
|                 f.write(' -'+str(ind1+1)+'    ') |  | ||||||
|                 for ind2 in range(ind_right_active): |  | ||||||
|                     f.write('%f' % np.square(np.abs(reflection_matrix[ind1, ind2]))+'    ') |  | ||||||
|                 f.write('\n') |  | ||||||
|             f.write('\n') |  | ||||||
|             f.write('Total transmission of channels:\n'+str(np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0))+'\n') |  | ||||||
|             f.write('Total conductance = '+str(np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))))+'\n') |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # calculate Chern number |  | ||||||
|  |  | ||||||
| def calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100): |  | ||||||
|     if np.array(hamiltonian_function(0, 0)).shape==(): |  | ||||||
|         dim = 1 |  | ||||||
|     else: |  | ||||||
|         dim = np.array(hamiltonian_function(0, 0)).shape[0]    |  | ||||||
|     delta = 2*pi/precision |  | ||||||
|     chern_number = np.zeros(dim, dtype=complex) |  | ||||||
|     for kx in np.arange(-pi, pi, delta): |  | ||||||
|         for ky in np.arange(-pi, pi, delta): |  | ||||||
|             H = hamiltonian_function(kx, ky) |  | ||||||
|             vector = calculate_eigenvector(H) |  | ||||||
|             H_delta_kx = hamiltonian_function(kx+delta, ky)  |  | ||||||
|             vector_delta_kx = calculate_eigenvector(H_delta_kx) |  | ||||||
|             H_delta_ky = hamiltonian_function(kx, ky+delta) |  | ||||||
|             vector_delta_ky = calculate_eigenvector(H_delta_ky) |  | ||||||
|             H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) |  | ||||||
|             vector_delta_kx_ky = calculate_eigenvector(H_delta_kx_ky) |  | ||||||
|             for i in range(dim): |  | ||||||
|                 vector_i = vector[:, i] |  | ||||||
|                 vector_delta_kx_i = vector_delta_kx[:, i] |  | ||||||
|                 vector_delta_ky_i = vector_delta_ky[:, i] |  | ||||||
|                 vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] |  | ||||||
|                 Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) |  | ||||||
|                 Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) |  | ||||||
|                 Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) |  | ||||||
|                 Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) |  | ||||||
|                 F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) |  | ||||||
|                 chern_number[i] = chern_number[i] + F |  | ||||||
|     chern_number = chern_number/(2*pi*1j) |  | ||||||
|     return chern_number |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # calculate Wilson loop |  | ||||||
|  |  | ||||||
| def calculate_wilson_loop(hamiltonian_function, k_min=-pi, k_max=pi, precision=100): |  | ||||||
|     k_array = np.linspace(k_min, k_max, precision) |  | ||||||
|     dim = np.array(hamiltonian_function(0)).shape[0] |  | ||||||
|     wilson_loop_array = np.ones(dim, dtype=complex) |  | ||||||
|     for i in range(dim): |  | ||||||
|         eigenvector_array = [] |  | ||||||
|         for k in k_array: |  | ||||||
|             eigenvector  = calculate_eigenvector(hamiltonian_function(k))   |  | ||||||
|             if k != k_max: |  | ||||||
|                 eigenvector_array.append(eigenvector[:, i]) |  | ||||||
|             else: |  | ||||||
|                 eigenvector_array.append(eigenvector_array[0]) |  | ||||||
|         for i0 in range(precision-1): |  | ||||||
|             F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0]) |  | ||||||
|             wilson_loop_array[i] = np.dot(F, wilson_loop_array[i]) |  | ||||||
|     return wilson_loop_array |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # read and write |  | ||||||
|  |  | ||||||
| def read_one_dimensional_data(filename='a'):  |  | ||||||
|     f = open(filename+'.txt', 'r') |  | ||||||
|     text = f.read() |  | ||||||
|     f.close() |  | ||||||
|     row_list = np.array(text.split('\n'))  |  | ||||||
|     dim_column = np.array(row_list[0].split()).shape[0]  |  | ||||||
|     x = np.array([]) |  | ||||||
|     y = np.array([]) |  | ||||||
|     for row in row_list: |  | ||||||
|         column = np.array(row.split())  |  | ||||||
|         if column.shape[0] != 0:   |  | ||||||
|             x = np.append(x, [float(column[0])], axis=0)   |  | ||||||
|             y_row = np.zeros(dim_column-1) |  | ||||||
|             for dim0 in range(dim_column-1): |  | ||||||
|                 y_row[dim0] = float(column[dim0+1]) |  | ||||||
|             if np.array(y).shape[0] == 0: |  | ||||||
|                 y = [y_row] |  | ||||||
|             else: |  | ||||||
|                 y = np.append(y, [y_row], axis=0) |  | ||||||
|     return x, y |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def read_two_dimensional_data(filename='a'):  |  | ||||||
|     f = open(filename+'.txt', 'r') |  | ||||||
|     text = f.read() |  | ||||||
|     f.close() |  | ||||||
|     row_list = np.array(text.split('\n'))  |  | ||||||
|     dim_column = np.array(row_list[0].split()).shape[0]  |  | ||||||
|     x = np.array([]) |  | ||||||
|     y = np.array([]) |  | ||||||
|     matrix = np.array([]) |  | ||||||
|     for i0 in range(row_list.shape[0]): |  | ||||||
|         column = np.array(row_list[i0].split())  |  | ||||||
|         if i0 == 0: |  | ||||||
|             x_str = column[1::]  |  | ||||||
|             x = np.zeros(x_str.shape[0]) |  | ||||||
|             for i00 in range(x_str.shape[0]): |  | ||||||
|                 x[i00] = float(x_str[i00])  |  | ||||||
|         elif column.shape[0] != 0:  |  | ||||||
|             y = np.append(y, [float(column[0])], axis=0)   |  | ||||||
|             matrix_row = np.zeros(dim_column-1) |  | ||||||
|             for dim0 in range(dim_column-1): |  | ||||||
|                 matrix_row[dim0] = float(column[dim0+1]) |  | ||||||
|             if np.array(matrix).shape[0] == 0: |  | ||||||
|                 matrix = [matrix_row] |  | ||||||
|             else: |  | ||||||
|                 matrix = np.append(matrix, [matrix_row], axis=0) |  | ||||||
|     return x, y, matrix |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def write_one_dimensional_data(x, y, filename='a'):  |  | ||||||
|     with open(filename+'.txt', 'w') as f: |  | ||||||
|         i0 = 0 |  | ||||||
|         for x0 in x: |  | ||||||
|             f.write(str(x0)+'   ') |  | ||||||
|             if len(y.shape) == 1: |  | ||||||
|                 f.write(str(y[i0])+'\n') |  | ||||||
|             elif len(y.shape) == 2: |  | ||||||
|                 for j0 in range(y.shape[1]): |  | ||||||
|                     f.write(str(y[i0, j0])+'   ') |  | ||||||
|                 f.write('\n') |  | ||||||
|             i0 += 1 |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def write_two_dimensional_data(x, y, matrix, filename='a'):  |  | ||||||
|     with open(filename+'.txt', 'w') as f: |  | ||||||
|         f.write('0   ') |  | ||||||
|         for x0 in x: |  | ||||||
|             f.write(str(x0)+'   ') |  | ||||||
|         f.write('\n') |  | ||||||
|         i0 = 0 |  | ||||||
|         for y0 in y: |  | ||||||
|             f.write(str(y0)) |  | ||||||
|             j0 = 0 |  | ||||||
|             for x0 in x: |  | ||||||
|                 f.write('   '+str(matrix[i0, j0])+'   ') |  | ||||||
|                 j0 += 1 |  | ||||||
|             f.write('\n') |  | ||||||
|             i0 += 1 |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # plot figures |  | ||||||
|  |  | ||||||
| def plot(x, y, xlabel='x', ylabel='y', title='', filename='a', show=1, save=0, type='', y_min=None, y_max=None):  |  | ||||||
|     import matplotlib.pyplot as plt |  | ||||||
|     fig, ax = plt.subplots() |  | ||||||
|     plt.subplots_adjust(bottom=0.20, left=0.18)  |  | ||||||
|     ax.plot(x, y, type) |  | ||||||
|     ax.grid() |  | ||||||
|     ax.set_title(title, fontsize=20, fontfamily='Times New Roman') |  | ||||||
|     ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')  |  | ||||||
|     ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')  |  | ||||||
|     if y_min!=None or y_max!=None: |  | ||||||
|         if y_min==None: |  | ||||||
|             y_min=min(y) |  | ||||||
|         if y_max==None: |  | ||||||
|             y_max=max(y) |  | ||||||
|         ax.set_ylim(y_min, y_max) |  | ||||||
|     ax.tick_params(labelsize=20)  |  | ||||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() |  | ||||||
|     [label.set_fontname('Times New Roman') for label in labels] |  | ||||||
|     if save == 1: |  | ||||||
|         plt.savefig(filename+'.jpg', dpi=300)  |  | ||||||
|     if show == 1: |  | ||||||
|         plt.show() |  | ||||||
|     plt.close('all') |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def plot_3d_surface(x, y, matrix, xlabel='x', ylabel='y', zlabel='z', title='', filename='a', show=1, save=0, z_min=None, z_max=None):  |  | ||||||
|     import matplotlib.pyplot as plt |  | ||||||
|     from matplotlib import cm |  | ||||||
|     from matplotlib.ticker import LinearLocator |  | ||||||
|     matrix = np.array(matrix) |  | ||||||
|     fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) |  | ||||||
|     plt.subplots_adjust(bottom=0.1, right=0.65)  |  | ||||||
|     x, y = np.meshgrid(x, y) |  | ||||||
|     if len(matrix.shape) == 2: |  | ||||||
|         surf = ax.plot_surface(x, y, matrix, cmap=cm.coolwarm, linewidth=0, antialiased=False)  |  | ||||||
|     elif len(matrix.shape) == 3: |  | ||||||
|         for i0 in range(matrix.shape[2]): |  | ||||||
|             surf = ax.plot_surface(x, y, matrix[:,:,i0], cmap=cm.coolwarm, linewidth=0, antialiased=False)  |  | ||||||
|     ax.set_title(title, fontsize=20, fontfamily='Times New Roman') |  | ||||||
|     ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')  |  | ||||||
|     ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')  |  | ||||||
|     ax.set_zlabel(zlabel, fontsize=20, fontfamily='Times New Roman')  |  | ||||||
|     ax.zaxis.set_major_locator(LinearLocator(5))  |  | ||||||
|     ax.zaxis.set_major_formatter('{x:.2f}')   |  | ||||||
|     if z_min!=None or z_max!=None: |  | ||||||
|         if z_min==None: |  | ||||||
|             z_min=matrix.min() |  | ||||||
|         if z_max==None: |  | ||||||
|             z_max=matrix.max() |  | ||||||
|         ax.set_zlim(z_min, z_max) |  | ||||||
|     ax.tick_params(labelsize=15)  |  | ||||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels() |  | ||||||
|     [label.set_fontname('Times New Roman') for label in labels]  |  | ||||||
|     cax = plt.axes([0.80, 0.15, 0.05, 0.75])  |  | ||||||
|     cbar = fig.colorbar(surf, cax=cax)   |  | ||||||
|     cbar.ax.tick_params(labelsize=15) |  | ||||||
|     for l in cbar.ax.yaxis.get_ticklabels(): |  | ||||||
|         l.set_family('Times New Roman') |  | ||||||
|     if save == 1: |  | ||||||
|         plt.savefig(filename+'.jpg', dpi=300)  |  | ||||||
|     if show == 1: |  | ||||||
|         plt.show() |  | ||||||
|     plt.close('all') |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def plot_contour(x, y, matrix, xlabel='x', ylabel='y', title='', filename='a', show=1, save=0):   |  | ||||||
|     import matplotlib.pyplot as plt |  | ||||||
|     fig, ax = plt.subplots() |  | ||||||
|     plt.subplots_adjust(bottom=0.2, right=0.75, left = 0.16)  |  | ||||||
|     x, y = np.meshgrid(x, y) |  | ||||||
|     contour = ax.contourf(x,y,matrix,cmap='jet')  |  | ||||||
|     ax.set_title(title, fontsize=20, fontfamily='Times New Roman') |  | ||||||
|     ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')  |  | ||||||
|     ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')  |  | ||||||
|     ax.tick_params(labelsize=15)  |  | ||||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() |  | ||||||
|     [label.set_fontname('Times New Roman') for label in labels]  |  | ||||||
|     cax = plt.axes([0.78, 0.17, 0.08, 0.71]) |  | ||||||
|     cbar = fig.colorbar(contour, cax=cax)  |  | ||||||
|     cbar.ax.tick_params(labelsize=15)  |  | ||||||
|     for l in cbar.ax.yaxis.get_ticklabels(): |  | ||||||
|         l.set_family('Times New Roman') |  | ||||||
|     if save == 1: |  | ||||||
|         plt.savefig(filename+'.jpg', dpi=300)  |  | ||||||
|     if show == 1: |  | ||||||
|         plt.show() |  | ||||||
|     plt.close('all') |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # download |  | ||||||
|  |  | ||||||
| def download_with_scihub(address=None, num=1): |  | ||||||
|     from bs4 import BeautifulSoup |  | ||||||
|     import re |  | ||||||
|     import requests |  | ||||||
|     import os |  | ||||||
|     if num==1 and address!=None: |  | ||||||
|         address_array = [address] |  | ||||||
|     else: |  | ||||||
|         address_array = [] |  | ||||||
|         for i in range(num): |  | ||||||
|             address = input('\nInput:') |  | ||||||
|             address_array.append(address) |  | ||||||
|     for address in address_array: |  | ||||||
|         r = requests.post('https://sci-hub.st/', data={'request': address}) |  | ||||||
|         print('\nResponse:', r) |  | ||||||
|         print('Address:', r.url) |  | ||||||
|         soup = BeautifulSoup(r.text, features='lxml') |  | ||||||
|         pdf_URL = soup.iframe['src'] |  | ||||||
|         if re.search(re.compile('^https:'), pdf_URL): |  | ||||||
|             pass |  | ||||||
|         else: |  | ||||||
|             pdf_URL = 'https:'+pdf_URL |  | ||||||
|         print('PDF address:', pdf_URL) |  | ||||||
|         name = re.search(re.compile('fdp.*?/'),pdf_URL[::-1]).group()[::-1][1::] |  | ||||||
|         print('PDF name:', name) |  | ||||||
|         print('Directory:', os.getcwd()) |  | ||||||
|         print('\nDownloading...') |  | ||||||
|         r = requests.get(pdf_URL, stream=True) |  | ||||||
|         with open(name, 'wb') as f: |  | ||||||
|             for chunk in r.iter_content(chunk_size=32): |  | ||||||
|                 f.write(chunk) |  | ||||||
|         print('Completed!\n') |  | ||||||
|     if num != 1: |  | ||||||
|         print('All completed!\n') |  | ||||||
							
								
								
									
										
											BIN
										
									
								
								PyPI/dist/guan-0.0.1-py3-none-any.whl
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								PyPI/dist/guan-0.0.1-py3-none-any.whl
									
									
									
									
										vendored
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								PyPI/dist/guan-0.0.1.tar.gz
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								PyPI/dist/guan-0.0.1.tar.gz
									
									
									
									
										vendored
									
									
								
							
										
											Binary file not shown.
										
									
								
							| @@ -1,19 +0,0 @@ | |||||||
| Metadata-Version: 2.1 |  | ||||||
| Name: guan |  | ||||||
| Version: 0.0.1 |  | ||||||
| Summary: An open source python package |  | ||||||
| Home-page: https://py.guanjihuan.com |  | ||||||
| Author: guanjihuan |  | ||||||
| Author-email: guanjihuan@163.com |  | ||||||
| License: UNKNOWN |  | ||||||
| Project-URL: Bug Tracker, https://py.guanjihuan.com |  | ||||||
| Platform: UNKNOWN |  | ||||||
| Classifier: Programming Language :: Python :: 3 |  | ||||||
| Classifier: License :: OSI Approved :: MIT License |  | ||||||
| Classifier: Operating System :: OS Independent |  | ||||||
| Requires-Python: >=3.6 |  | ||||||
| Description-Content-Type: text/markdown |  | ||||||
| License-File: LICENSE |  | ||||||
|  |  | ||||||
| GUAN is an open-source python package developed and maintained by https://www.guanjihuan.com. The primary location of this package is on website https://py.guanjihuan.com. |  | ||||||
|  |  | ||||||
| @@ -1,9 +0,0 @@ | |||||||
| LICENSE |  | ||||||
| README.md |  | ||||||
| pyproject.toml |  | ||||||
| setup.cfg |  | ||||||
| src/guan/__init__.py |  | ||||||
| src/guan.egg-info/PKG-INFO |  | ||||||
| src/guan.egg-info/SOURCES.txt |  | ||||||
| src/guan.egg-info/dependency_links.txt |  | ||||||
| src/guan.egg-info/top_level.txt |  | ||||||
| @@ -1 +0,0 @@ | |||||||
|  |  | ||||||
| @@ -1 +0,0 @@ | |||||||
| guan |  | ||||||
		Reference in New Issue
	
	Block a user
	 guanjihuan
					guanjihuan