0.1.44
This commit is contained in:
parent
5c14e09a85
commit
38103d52e9
@ -1,7 +1,7 @@
|
||||
[metadata]
|
||||
# replace with your username:
|
||||
name = guan
|
||||
version = 0.1.43
|
||||
version = 0.1.44
|
||||
author = guanjihuan
|
||||
author_email = guanjihuan@163.com
|
||||
description = An open source python package
|
||||
|
@ -1,6 +1,6 @@
|
||||
Metadata-Version: 2.1
|
||||
Name: guan
|
||||
Version: 0.1.43
|
||||
Version: 0.1.44
|
||||
Summary: An open source python package
|
||||
Home-page: https://py.guanjihuan.com
|
||||
Author: guanjihuan
|
||||
|
@ -4,18 +4,14 @@ pyproject.toml
|
||||
setup.cfg
|
||||
src/guan/Fourier_transform.py
|
||||
src/guan/Green_functions.py
|
||||
src/guan/Hamiltonian_of_finite_size_systems.py
|
||||
src/guan/Hamiltonian_of_models_in_reciprocal_space.py
|
||||
src/guan/Hamiltonian_of_examples.py
|
||||
src/guan/__init__.py
|
||||
src/guan/band_structures_and_wave_functions.py
|
||||
src/guan/basic_functions.py
|
||||
src/guan/data_processing.py
|
||||
src/guan/density_of_states.py
|
||||
src/guan/file_processing.py
|
||||
src/guan/others.py
|
||||
src/guan/plot_figures.py
|
||||
src/guan/quantum_transport.py
|
||||
src/guan/read_and_write.py
|
||||
src/guan/topological_invariant.py
|
||||
src/guan.egg-info/PKG-INFO
|
||||
src/guan.egg-info/SOURCES.txt
|
||||
|
574
PyPI/src/guan/Hamiltonian_of_examples.py
Normal file
574
PyPI/src/guan/Hamiltonian_of_examples.py
Normal file
@ -0,0 +1,574 @@
|
||||
# Module: Hamiltonian_of_examples
|
||||
|
||||
# 构建一维的有限尺寸体系哈密顿量(可设置是否为周期边界条件)
|
||||
def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0):
|
||||
import numpy as np
|
||||
on_site = np.array(on_site)
|
||||
hopping = np.array(hopping)
|
||||
if on_site.shape==():
|
||||
dim = 1
|
||||
else:
|
||||
dim = on_site.shape[0]
|
||||
hamiltonian = np.zeros((N*dim, N*dim), dtype=complex)
|
||||
for i0 in range(N):
|
||||
hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site
|
||||
for i0 in range(N-1):
|
||||
hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping
|
||||
hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj()
|
||||
if period == 1:
|
||||
hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping
|
||||
hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj()
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 构建二维的方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件)
|
||||
def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0):
|
||||
import numpy as np
|
||||
on_site = np.array(on_site)
|
||||
hopping_1 = np.array(hopping_1)
|
||||
hopping_2 = np.array(hopping_2)
|
||||
if on_site.shape==():
|
||||
dim = 1
|
||||
else:
|
||||
dim = on_site.shape[0]
|
||||
hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex)
|
||||
for i1 in range(N1):
|
||||
for i2 in range(N2):
|
||||
hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site
|
||||
for i1 in range(N1-1):
|
||||
for i2 in range(N2):
|
||||
hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1
|
||||
hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj()
|
||||
for i1 in range(N1):
|
||||
for i2 in range(N2-1):
|
||||
hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2
|
||||
hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj()
|
||||
if period_1 == 1:
|
||||
for i2 in range(N2):
|
||||
hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1
|
||||
hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj()
|
||||
if period_2 == 1:
|
||||
for i1 in range(N1):
|
||||
hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2
|
||||
hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj()
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 构建三维的立方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件)
|
||||
def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0):
|
||||
import numpy as np
|
||||
on_site = np.array(on_site)
|
||||
hopping_1 = np.array(hopping_1)
|
||||
hopping_2 = np.array(hopping_2)
|
||||
hopping_3 = np.array(hopping_3)
|
||||
if on_site.shape==():
|
||||
dim = 1
|
||||
else:
|
||||
dim = on_site.shape[0]
|
||||
hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex)
|
||||
for i1 in range(N1):
|
||||
for i2 in range(N2):
|
||||
for i3 in range(N3):
|
||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site
|
||||
for i1 in range(N1-1):
|
||||
for i2 in range(N2):
|
||||
for i3 in range(N3):
|
||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1
|
||||
hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj()
|
||||
for i1 in range(N1):
|
||||
for i2 in range(N2-1):
|
||||
for i3 in range(N3):
|
||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2
|
||||
hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj()
|
||||
for i1 in range(N1):
|
||||
for i2 in range(N2):
|
||||
for i3 in range(N3-1):
|
||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3
|
||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj()
|
||||
if period_1 == 1:
|
||||
for i2 in range(N2):
|
||||
for i3 in range(N3):
|
||||
hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1
|
||||
hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj()
|
||||
if period_2 == 1:
|
||||
for i1 in range(N1):
|
||||
for i3 in range(N3):
|
||||
hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2
|
||||
hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj()
|
||||
if period_3 == 1:
|
||||
for i1 in range(N1):
|
||||
for i2 in range(N2):
|
||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3
|
||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj()
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 构建有限尺寸的SSH模型哈密顿量
|
||||
def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1):
|
||||
import numpy as np
|
||||
hamiltonian = np.zeros((2*N, 2*N))
|
||||
for i in range(N):
|
||||
hamiltonian[i*2+0, i*2+0] = onsite_1
|
||||
hamiltonian[i*2+1, i*2+1] = onsite_2
|
||||
hamiltonian[i*2+0, i*2+1] = v
|
||||
hamiltonian[i*2+1, i*2+0] = v
|
||||
for i in range(N-1):
|
||||
hamiltonian[i*2+1, (i+1)*2+0] = w
|
||||
hamiltonian[(i+1)*2+0, i*2+1] = w
|
||||
if period==1:
|
||||
hamiltonian[0, 2*N-1] = w
|
||||
hamiltonian[2*N-1, 0] = w
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 获取Zigzag边的石墨烯条带的元胞间跃迁
|
||||
def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0):
|
||||
import numpy as np
|
||||
hopping = np.zeros((4*N, 4*N), dtype=complex)
|
||||
for i0 in range(N):
|
||||
hopping[4*i0+0, 4*i0+0] = eta
|
||||
hopping[4*i0+1, 4*i0+1] = eta
|
||||
hopping[4*i0+2, 4*i0+2] = eta
|
||||
hopping[4*i0+3, 4*i0+3] = eta
|
||||
hopping[4*i0+1, 4*i0+0] = 1
|
||||
hopping[4*i0+2, 4*i0+3] = 1
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hopping
|
||||
|
||||
# 构建有限尺寸的石墨烯哈密顿量(可设置是否为周期边界条件)
|
||||
def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0):
|
||||
import numpy as np
|
||||
import guan
|
||||
on_site = guan.hamiltonian_of_finite_size_system_along_one_direction(4)
|
||||
hopping_1 = guan.get_hopping_term_of_graphene_ribbon_along_zigzag_direction(1)
|
||||
hopping_2 = np.zeros((4, 4), dtype=complex)
|
||||
hopping_2[3, 0] = 1
|
||||
hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2)
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 获取石墨烯有效模型沿着x方向的在位能和跃迁项(其中,动量qy为参数)
|
||||
def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0):
|
||||
import numpy as np
|
||||
constant = -np.sqrt(3)/2
|
||||
h00 = np.zeros((2, 2), dtype=complex)
|
||||
h00[0, 0] = staggered_potential
|
||||
h00[1, 1] = -staggered_potential
|
||||
h00[0, 1] = -1j*constant*t*np.sin(qy)
|
||||
h00[1, 0] = 1j*constant*t*np.sin(qy)
|
||||
h01 = np.zeros((2, 2), dtype=complex)
|
||||
h01[0, 0] = eta
|
||||
h01[1, 1] = eta
|
||||
if valley_index == 0:
|
||||
h01[0, 1] = constant*t*(-1j/2)
|
||||
h01[1, 0] = constant*t*(-1j/2)
|
||||
else:
|
||||
h01[0, 1] = constant*t*(1j/2)
|
||||
h01[1, 0] = constant*t*(1j/2)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return h00, h01
|
||||
|
||||
# 获取BHZ模型的在位能和跃迁项
|
||||
def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
|
||||
import numpy as np
|
||||
E_s = C+M-4*(D+B)/(a**2)
|
||||
E_p = C-M-4*(D-B)/(a**2)
|
||||
V_ss = (D+B)/(a**2)
|
||||
V_pp = (D-B)/(a**2)
|
||||
V_sp = -1j*A/(2*a)
|
||||
H0 = np.zeros((4, 4), dtype=complex)
|
||||
H1 = np.zeros((4, 4), dtype=complex)
|
||||
H2 = np.zeros((4, 4), dtype=complex)
|
||||
H0[0, 0] = E_s
|
||||
H0[1, 1] = E_p
|
||||
H0[2, 2] = E_s
|
||||
H0[3, 3] = E_p
|
||||
H1[0, 0] = V_ss
|
||||
H1[1, 1] = V_pp
|
||||
H1[2, 2] = V_ss
|
||||
H1[3, 3] = V_pp
|
||||
H1[0, 1] = V_sp
|
||||
H1[1, 0] = -np.conj(V_sp)
|
||||
H1[2, 3] = np.conj(V_sp)
|
||||
H1[3, 2] = -V_sp
|
||||
H2[0, 0] = V_ss
|
||||
H2[1, 1] = V_pp
|
||||
H2[2, 2] = V_ss
|
||||
H2[3, 3] = V_pp
|
||||
H2[0, 1] = 1j*V_sp
|
||||
H2[1, 0] = 1j*np.conj(V_sp)
|
||||
H2[2, 3] = -1j*np.conj(V_sp)
|
||||
H2[3, 2] = -1j*V_sp
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return H0, H1, H2
|
||||
|
||||
# 获取半个BHZ模型的在位能和跃迁项(自旋向上)
|
||||
def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
|
||||
import numpy as np
|
||||
E_s = C+M-4*(D+B)/(a**2)
|
||||
E_p = C-M-4*(D-B)/(a**2)
|
||||
V_ss = (D+B)/(a**2)
|
||||
V_pp = (D-B)/(a**2)
|
||||
V_sp = -1j*A/(2*a)
|
||||
H0 = np.zeros((2, 2), dtype=complex)
|
||||
H1 = np.zeros((2, 2), dtype=complex)
|
||||
H2 = np.zeros((2, 2), dtype=complex)
|
||||
H0[0, 0] = E_s
|
||||
H0[1, 1] = E_p
|
||||
H1[0, 0] = V_ss
|
||||
H1[1, 1] = V_pp
|
||||
H1[0, 1] = V_sp
|
||||
H1[1, 0] = -np.conj(V_sp)
|
||||
H2[0, 0] = V_ss
|
||||
H2[1, 1] = V_pp
|
||||
H2[0, 1] = 1j*V_sp
|
||||
H2[1, 0] = 1j*np.conj(V_sp)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return H0, H1, H2
|
||||
|
||||
# 获取半个BHZ模型的在位能和跃迁项(自旋向下)
|
||||
def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
|
||||
import numpy as np
|
||||
E_s = C+M-4*(D+B)/(a**2)
|
||||
E_p = C-M-4*(D-B)/(a**2)
|
||||
V_ss = (D+B)/(a**2)
|
||||
V_pp = (D-B)/(a**2)
|
||||
V_sp = -1j*A/(2*a)
|
||||
H0 = np.zeros((2, 2), dtype=complex)
|
||||
H1 = np.zeros((2, 2), dtype=complex)
|
||||
H2 = np.zeros((2, 2), dtype=complex)
|
||||
H0[0, 0] = E_s
|
||||
H0[1, 1] = E_p
|
||||
H1[0, 0] = V_ss
|
||||
H1[1, 1] = V_pp
|
||||
H1[0, 1] = np.conj(V_sp)
|
||||
H1[1, 0] = -V_sp
|
||||
H2[0, 0] = V_ss
|
||||
H2[1, 1] = V_pp
|
||||
H2[0, 1] = -1j*np.conj(V_sp)
|
||||
H2[1, 0] = -1j*V_sp
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return H0, H1, H2
|
||||
|
||||
# 一维链的哈密顿量(倒空间)
|
||||
def hamiltonian_of_simple_chain(k):
|
||||
import guan
|
||||
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1)
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 二维方格子的哈密顿量(倒空间)
|
||||
def hamiltonian_of_square_lattice(k1, k2):
|
||||
import guan
|
||||
hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1)
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 准一维方格子条带的哈密顿量(倒空间)
|
||||
def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0):
|
||||
import numpy as np
|
||||
import guan
|
||||
h00 = np.zeros((N, N), dtype=complex) # hopping in a unit cell
|
||||
h01 = np.zeros((N, N), dtype=complex) # hopping between unit cells
|
||||
for i in range(N-1):
|
||||
h00[i, i+1] = 1
|
||||
h00[i+1, i] = 1
|
||||
if period == 1:
|
||||
h00[N-1, 0] = 1
|
||||
h00[0, N-1] = 1
|
||||
for i in range(N):
|
||||
h01[i, i] = 1
|
||||
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 三维立方格子的哈密顿量(倒空间)
|
||||
def hamiltonian_of_cubic_lattice(k1, k2, k3):
|
||||
import guan
|
||||
hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1)
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# SSH模型的哈密顿量(倒空间)
|
||||
def hamiltonian_of_ssh_model(k, v=0.6, w=1):
|
||||
import numpy as np
|
||||
import cmath
|
||||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||||
hamiltonian[0,1] = v+w*cmath.exp(-1j*k)
|
||||
hamiltonian[1,0] = v+w*cmath.exp(1j*k)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 石墨烯的哈密顿量(倒空间)
|
||||
def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default'):
|
||||
import numpy as np
|
||||
import cmath
|
||||
import math
|
||||
if a == 'default':
|
||||
a = 1/math.sqrt(3)
|
||||
h0 = np.zeros((2, 2), dtype=complex) # mass term
|
||||
h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
|
||||
h0[0, 0] = staggered_potential
|
||||
h0[1, 1] = -staggered_potential
|
||||
h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))
|
||||
h1[0, 1] = h1[1, 0].conj()
|
||||
hamiltonian = h0 + h1
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 石墨烯有效模型的哈密顿量(倒空间)
|
||||
def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0):
|
||||
import numpy as np
|
||||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||||
hamiltonian[0, 0] = staggered_potential
|
||||
hamiltonian[1, 1] = -staggered_potential
|
||||
constant = -np.sqrt(3)/2
|
||||
if valley_index == 0:
|
||||
hamiltonian[0, 1] = constant*t*(qx-1j*qy)
|
||||
hamiltonian[1, 0] = constant*t*(qx+1j*qy)
|
||||
else:
|
||||
hamiltonian[0, 1] = constant*t*(-qx-1j*qy)
|
||||
hamiltonian[1, 0] = constant*t*(-qx+1j*qy)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 石墨烯有效模型离散化后的哈密顿量(倒空间)
|
||||
def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggered_potential=0, valley_index=0):
|
||||
import numpy as np
|
||||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||||
hamiltonian[0, 0] = staggered_potential
|
||||
hamiltonian[1, 1] = -staggered_potential
|
||||
constant = -np.sqrt(3)/2
|
||||
if valley_index == 0:
|
||||
hamiltonian[0, 1] = constant*t*(np.sin(qx)-1j*np.sin(qy))
|
||||
hamiltonian[1, 0] = constant*t*(np.sin(qx)+1j*np.sin(qy))
|
||||
else:
|
||||
hamiltonian[0, 1] = constant*t*(-np.sin(qx)-1j*np.sin(qy))
|
||||
hamiltonian[1, 0] = constant*t*(-np.sin(qx)+1j*np.sin(qy))
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 准一维Zigzag边石墨烯条带的哈密顿量(倒空间)
|
||||
def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0):
|
||||
import numpy as np
|
||||
import guan
|
||||
h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell
|
||||
h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells
|
||||
for i in range(N):
|
||||
h00[i*4+0, i*4+0] = M
|
||||
h00[i*4+1, i*4+1] = -M
|
||||
h00[i*4+2, i*4+2] = M
|
||||
h00[i*4+3, i*4+3] = -M
|
||||
h00[i*4+0, i*4+1] = t
|
||||
h00[i*4+1, i*4+0] = t
|
||||
h00[i*4+1, i*4+2] = t
|
||||
h00[i*4+2, i*4+1] = t
|
||||
h00[i*4+2, i*4+3] = t
|
||||
h00[i*4+3, i*4+2] = t
|
||||
for i in range(N-1):
|
||||
h00[i*4+3, (i+1)*4+0] = t
|
||||
h00[(i+1)*4+0, i*4+3] = t
|
||||
if period == 1:
|
||||
h00[(N-1)*4+3, 0] = t
|
||||
h00[0, (N-1)*4+3] = t
|
||||
for i in range(N):
|
||||
h01[i*4+1, i*4+0] = t
|
||||
h01[i*4+2, i*4+3] = t
|
||||
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# Haldane模型的哈密顿量(倒空间)
|
||||
def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a='default'):
|
||||
import numpy as np
|
||||
import cmath
|
||||
import math
|
||||
if phi == 'default':
|
||||
phi=math.pi/4
|
||||
if a == 'default':
|
||||
a=1/math.sqrt(3)
|
||||
h0 = np.zeros((2, 2), dtype=complex) # mass term
|
||||
h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
|
||||
h2 = np.zeros((2, 2), dtype=complex) # next nearest hopping
|
||||
h0[0, 0] = M
|
||||
h0[1, 1] = -M
|
||||
h1[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))
|
||||
h1[0, 1] = h1[1, 0].conj()
|
||||
h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a))
|
||||
h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a))
|
||||
hamiltonian = h0 + h1 + h2 + h2.transpose().conj()
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 准一维Haldane模型条带的哈密顿量(倒空间)
|
||||
def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi='default', period=0):
|
||||
import numpy as np
|
||||
import cmath
|
||||
import math
|
||||
if phi == 'default':
|
||||
phi=math.pi/4
|
||||
h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell
|
||||
h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells
|
||||
for i in range(N):
|
||||
h00[i*4+0, i*4+0] = M
|
||||
h00[i*4+1, i*4+1] = -M
|
||||
h00[i*4+2, i*4+2] = M
|
||||
h00[i*4+3, i*4+3] = -M
|
||||
h00[i*4+0, i*4+1] = t1
|
||||
h00[i*4+1, i*4+0] = t1
|
||||
h00[i*4+1, i*4+2] = t1
|
||||
h00[i*4+2, i*4+1] = t1
|
||||
h00[i*4+2, i*4+3] = t1
|
||||
h00[i*4+3, i*4+2] = t1
|
||||
h00[i*4+0, i*4+2] = t2*cmath.exp(-1j*phi)
|
||||
h00[i*4+2, i*4+0] = h00[i*4+0, i*4+2].conj()
|
||||
h00[i*4+1, i*4+3] = t2*cmath.exp(-1j*phi)
|
||||
h00[i*4+3, i*4+1] = h00[i*4+1, i*4+3].conj()
|
||||
for i in range(N-1):
|
||||
h00[i*4+3, (i+1)*4+0] = t1
|
||||
h00[(i+1)*4+0, i*4+3] = t1
|
||||
h00[i*4+2, (i+1)*4+0] = t2*cmath.exp(1j*phi)
|
||||
h00[(i+1)*4+0, i*4+2] = h00[i*4+2, (i+1)*4+0].conj()
|
||||
h00[i*4+3, (i+1)*4+1] = t2*cmath.exp(1j*phi)
|
||||
h00[(i+1)*4+1, i*4+3] = h00[i*4+3, (i+1)*4+1].conj()
|
||||
if period == 1:
|
||||
h00[(N-1)*4+3, 0] = t1
|
||||
h00[0, (N-1)*4+3] = t1
|
||||
h00[(N-1)*4+2, 0] = t2*cmath.exp(1j*phi)
|
||||
h00[0, (N-1)*4+2] = h00[(N-1)*4+2, 0].conj()
|
||||
h00[(N-1)*4+3, 1] = t2*cmath.exp(1j*phi)
|
||||
h00[1, (N-1)*4+3] = h00[(N-1)*4+3, 1].conj()
|
||||
for i in range(N):
|
||||
h01[i*4+1, i*4+0] = t1
|
||||
h01[i*4+2, i*4+3] = t1
|
||||
h01[i*4+0, i*4+0] = t2*cmath.exp(1j*phi)
|
||||
h01[i*4+1, i*4+1] = t2*cmath.exp(-1j*phi)
|
||||
h01[i*4+2, i*4+2] = t2*cmath.exp(1j*phi)
|
||||
h01[i*4+3, i*4+3] = t2*cmath.exp(-1j*phi)
|
||||
h01[i*4+1, i*4+3] = t2*cmath.exp(1j*phi)
|
||||
h01[i*4+2, i*4+0] = t2*cmath.exp(-1j*phi)
|
||||
if i != 0:
|
||||
h01[i*4+1, (i-1)*4+3] = t2*cmath.exp(1j*phi)
|
||||
for i in range(N-1):
|
||||
h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi)
|
||||
hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 一个量子反常霍尔效应的哈密顿量(倒空间)
|
||||
def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1):
|
||||
import numpy as np
|
||||
import math
|
||||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||||
hamiltonian[0, 1] = 2*t1*math.cos(k1)-1j*2*t1*math.cos(k2)
|
||||
hamiltonian[1, 0] = 2*t1*math.cos(k1)+1j*2*t1*math.cos(k2)
|
||||
hamiltonian[0, 0] = m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2)
|
||||
hamiltonian[1, 1] = -(m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2))
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# BHZ模型的哈密顿量(倒空间)
|
||||
def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
|
||||
import numpy as np
|
||||
import math
|
||||
hamiltonian = np.zeros((4, 4), dtype=complex)
|
||||
varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
|
||||
d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
|
||||
d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
|
||||
hamiltonian[0, 0] = varepsilon+d3
|
||||
hamiltonian[1, 1] = varepsilon-d3
|
||||
hamiltonian[0, 1] = np.conj(d1_d2)
|
||||
hamiltonian[1, 0] = d1_d2
|
||||
hamiltonian[2, 2] = varepsilon+d3
|
||||
hamiltonian[3, 3] = varepsilon-d3
|
||||
hamiltonian[2, 3] = -d1_d2
|
||||
hamiltonian[3, 2] = -np.conj(d1_d2)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 半BHZ模型的哈密顿量(自旋向上)(倒空间)
|
||||
def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
|
||||
import numpy as np
|
||||
import math
|
||||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||||
varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
|
||||
d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
|
||||
d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
|
||||
hamiltonian[0, 0] = varepsilon+d3
|
||||
hamiltonian[1, 1] = varepsilon-d3
|
||||
hamiltonian[0, 1] = np.conj(d1_d2)
|
||||
hamiltonian[1, 0] = d1_d2
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 半BHZ模型的哈密顿量(自旋向下)(倒空间)
|
||||
def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
|
||||
import numpy as np
|
||||
import math
|
||||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||||
varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
|
||||
d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
|
||||
d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
|
||||
hamiltonian[0, 0] = varepsilon+d3
|
||||
hamiltonian[1, 1] = varepsilon-d3
|
||||
hamiltonian[0, 1] = -d1_d2
|
||||
hamiltonian[1, 0] = -np.conj(d1_d2)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# BBH模型的哈密顿量(倒空间)
|
||||
def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1):
|
||||
import numpy as np
|
||||
import cmath
|
||||
# label of atoms in a unit cell
|
||||
# (2) —— (0)
|
||||
# | |
|
||||
# (1) —— (3)
|
||||
hamiltonian = np.zeros((4, 4), dtype=complex)
|
||||
hamiltonian[0, 2] = gamma_x+lambda_x*cmath.exp(1j*kx)
|
||||
hamiltonian[1, 3] = gamma_x+lambda_x*cmath.exp(-1j*kx)
|
||||
hamiltonian[0, 3] = gamma_y+lambda_y*cmath.exp(1j*ky)
|
||||
hamiltonian[1, 2] = -gamma_y-lambda_y*cmath.exp(-1j*ky)
|
||||
hamiltonian[2, 0] = np.conj(hamiltonian[0, 2])
|
||||
hamiltonian[3, 1] = np.conj(hamiltonian[1, 3])
|
||||
hamiltonian[3, 0] = np.conj(hamiltonian[0, 3])
|
||||
hamiltonian[2, 1] = np.conj(hamiltonian[1, 2])
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# Kagome模型的哈密顿量(倒空间)
|
||||
def hamiltonian_of_kagome_lattice(kx, ky, t=1):
|
||||
import numpy as np
|
||||
import math
|
||||
k1_dot_a1 = kx
|
||||
k2_dot_a2 = kx/2+ky*math.sqrt(3)/2
|
||||
k3_dot_a3 = -kx/2+ky*math.sqrt(3)/2
|
||||
hamiltonian = np.zeros((3, 3), dtype=complex)
|
||||
hamiltonian[0, 1] = 2*math.cos(k1_dot_a1)
|
||||
hamiltonian[0, 2] = 2*math.cos(k2_dot_a2)
|
||||
hamiltonian[1, 2] = 2*math.cos(k3_dot_a3)
|
||||
hamiltonian = hamiltonian + hamiltonian.transpose().conj()
|
||||
hamiltonian = -t*hamiltonian
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
@ -1,260 +0,0 @@
|
||||
# Module: Hamiltonian_of_finite_size_systems
|
||||
|
||||
# 构建一维的有限尺寸体系哈密顿量(可设置是否为周期边界条件)
|
||||
def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0):
|
||||
import numpy as np
|
||||
on_site = np.array(on_site)
|
||||
hopping = np.array(hopping)
|
||||
if on_site.shape==():
|
||||
dim = 1
|
||||
else:
|
||||
dim = on_site.shape[0]
|
||||
hamiltonian = np.zeros((N*dim, N*dim), dtype=complex)
|
||||
for i0 in range(N):
|
||||
hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site
|
||||
for i0 in range(N-1):
|
||||
hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping
|
||||
hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj()
|
||||
if period == 1:
|
||||
hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping
|
||||
hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj()
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 构建二维的方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件)
|
||||
def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0):
|
||||
import numpy as np
|
||||
on_site = np.array(on_site)
|
||||
hopping_1 = np.array(hopping_1)
|
||||
hopping_2 = np.array(hopping_2)
|
||||
if on_site.shape==():
|
||||
dim = 1
|
||||
else:
|
||||
dim = on_site.shape[0]
|
||||
hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex)
|
||||
for i1 in range(N1):
|
||||
for i2 in range(N2):
|
||||
hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site
|
||||
for i1 in range(N1-1):
|
||||
for i2 in range(N2):
|
||||
hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1
|
||||
hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj()
|
||||
for i1 in range(N1):
|
||||
for i2 in range(N2-1):
|
||||
hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2
|
||||
hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj()
|
||||
if period_1 == 1:
|
||||
for i2 in range(N2):
|
||||
hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1
|
||||
hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj()
|
||||
if period_2 == 1:
|
||||
for i1 in range(N1):
|
||||
hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2
|
||||
hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj()
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 构建三维的立方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件)
|
||||
def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0):
|
||||
import numpy as np
|
||||
on_site = np.array(on_site)
|
||||
hopping_1 = np.array(hopping_1)
|
||||
hopping_2 = np.array(hopping_2)
|
||||
hopping_3 = np.array(hopping_3)
|
||||
if on_site.shape==():
|
||||
dim = 1
|
||||
else:
|
||||
dim = on_site.shape[0]
|
||||
hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex)
|
||||
for i1 in range(N1):
|
||||
for i2 in range(N2):
|
||||
for i3 in range(N3):
|
||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site
|
||||
for i1 in range(N1-1):
|
||||
for i2 in range(N2):
|
||||
for i3 in range(N3):
|
||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1
|
||||
hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj()
|
||||
for i1 in range(N1):
|
||||
for i2 in range(N2-1):
|
||||
for i3 in range(N3):
|
||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2
|
||||
hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj()
|
||||
for i1 in range(N1):
|
||||
for i2 in range(N2):
|
||||
for i3 in range(N3-1):
|
||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3
|
||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj()
|
||||
if period_1 == 1:
|
||||
for i2 in range(N2):
|
||||
for i3 in range(N3):
|
||||
hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1
|
||||
hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj()
|
||||
if period_2 == 1:
|
||||
for i1 in range(N1):
|
||||
for i3 in range(N3):
|
||||
hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2
|
||||
hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj()
|
||||
if period_3 == 1:
|
||||
for i1 in range(N1):
|
||||
for i2 in range(N2):
|
||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3
|
||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj()
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 构建有限尺寸的SSH模型哈密顿量
|
||||
def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1):
|
||||
import numpy as np
|
||||
hamiltonian = np.zeros((2*N, 2*N))
|
||||
for i in range(N):
|
||||
hamiltonian[i*2+0, i*2+0] = onsite_1
|
||||
hamiltonian[i*2+1, i*2+1] = onsite_2
|
||||
hamiltonian[i*2+0, i*2+1] = v
|
||||
hamiltonian[i*2+1, i*2+0] = v
|
||||
for i in range(N-1):
|
||||
hamiltonian[i*2+1, (i+1)*2+0] = w
|
||||
hamiltonian[(i+1)*2+0, i*2+1] = w
|
||||
if period==1:
|
||||
hamiltonian[0, 2*N-1] = w
|
||||
hamiltonian[2*N-1, 0] = w
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 获取Zigzag边的石墨烯条带的元胞间跃迁
|
||||
def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0):
|
||||
import numpy as np
|
||||
hopping = np.zeros((4*N, 4*N), dtype=complex)
|
||||
for i0 in range(N):
|
||||
hopping[4*i0+0, 4*i0+0] = eta
|
||||
hopping[4*i0+1, 4*i0+1] = eta
|
||||
hopping[4*i0+2, 4*i0+2] = eta
|
||||
hopping[4*i0+3, 4*i0+3] = eta
|
||||
hopping[4*i0+1, 4*i0+0] = 1
|
||||
hopping[4*i0+2, 4*i0+3] = 1
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hopping
|
||||
|
||||
# 构建有限尺寸的石墨烯哈密顿量(可设置是否为周期边界条件)
|
||||
def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0):
|
||||
import numpy as np
|
||||
import guan
|
||||
on_site = guan.hamiltonian_of_finite_size_system_along_one_direction(4)
|
||||
hopping_1 = guan.get_hopping_term_of_graphene_ribbon_along_zigzag_direction(1)
|
||||
hopping_2 = np.zeros((4, 4), dtype=complex)
|
||||
hopping_2[3, 0] = 1
|
||||
hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2)
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 获取石墨烯有效模型沿着x方向的在位能和跃迁项(其中,动量qy为参数)
|
||||
def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0):
|
||||
import numpy as np
|
||||
constant = -np.sqrt(3)/2
|
||||
h00 = np.zeros((2, 2), dtype=complex)
|
||||
h00[0, 0] = staggered_potential
|
||||
h00[1, 1] = -staggered_potential
|
||||
h00[0, 1] = -1j*constant*t*np.sin(qy)
|
||||
h00[1, 0] = 1j*constant*t*np.sin(qy)
|
||||
h01 = np.zeros((2, 2), dtype=complex)
|
||||
h01[0, 0] = eta
|
||||
h01[1, 1] = eta
|
||||
if valley_index == 0:
|
||||
h01[0, 1] = constant*t*(-1j/2)
|
||||
h01[1, 0] = constant*t*(-1j/2)
|
||||
else:
|
||||
h01[0, 1] = constant*t*(1j/2)
|
||||
h01[1, 0] = constant*t*(1j/2)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return h00, h01
|
||||
|
||||
# 获取BHZ模型的在位能和跃迁项
|
||||
def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
|
||||
import numpy as np
|
||||
E_s = C+M-4*(D+B)/(a**2)
|
||||
E_p = C-M-4*(D-B)/(a**2)
|
||||
V_ss = (D+B)/(a**2)
|
||||
V_pp = (D-B)/(a**2)
|
||||
V_sp = -1j*A/(2*a)
|
||||
H0 = np.zeros((4, 4), dtype=complex)
|
||||
H1 = np.zeros((4, 4), dtype=complex)
|
||||
H2 = np.zeros((4, 4), dtype=complex)
|
||||
H0[0, 0] = E_s
|
||||
H0[1, 1] = E_p
|
||||
H0[2, 2] = E_s
|
||||
H0[3, 3] = E_p
|
||||
H1[0, 0] = V_ss
|
||||
H1[1, 1] = V_pp
|
||||
H1[2, 2] = V_ss
|
||||
H1[3, 3] = V_pp
|
||||
H1[0, 1] = V_sp
|
||||
H1[1, 0] = -np.conj(V_sp)
|
||||
H1[2, 3] = np.conj(V_sp)
|
||||
H1[3, 2] = -V_sp
|
||||
H2[0, 0] = V_ss
|
||||
H2[1, 1] = V_pp
|
||||
H2[2, 2] = V_ss
|
||||
H2[3, 3] = V_pp
|
||||
H2[0, 1] = 1j*V_sp
|
||||
H2[1, 0] = 1j*np.conj(V_sp)
|
||||
H2[2, 3] = -1j*np.conj(V_sp)
|
||||
H2[3, 2] = -1j*V_sp
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return H0, H1, H2
|
||||
|
||||
# 获取半个BHZ模型的在位能和跃迁项(自旋向上)
|
||||
def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
|
||||
import numpy as np
|
||||
E_s = C+M-4*(D+B)/(a**2)
|
||||
E_p = C-M-4*(D-B)/(a**2)
|
||||
V_ss = (D+B)/(a**2)
|
||||
V_pp = (D-B)/(a**2)
|
||||
V_sp = -1j*A/(2*a)
|
||||
H0 = np.zeros((2, 2), dtype=complex)
|
||||
H1 = np.zeros((2, 2), dtype=complex)
|
||||
H2 = np.zeros((2, 2), dtype=complex)
|
||||
H0[0, 0] = E_s
|
||||
H0[1, 1] = E_p
|
||||
H1[0, 0] = V_ss
|
||||
H1[1, 1] = V_pp
|
||||
H1[0, 1] = V_sp
|
||||
H1[1, 0] = -np.conj(V_sp)
|
||||
H2[0, 0] = V_ss
|
||||
H2[1, 1] = V_pp
|
||||
H2[0, 1] = 1j*V_sp
|
||||
H2[1, 0] = 1j*np.conj(V_sp)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return H0, H1, H2
|
||||
|
||||
# 获取半个BHZ模型的在位能和跃迁项(自旋向下)
|
||||
def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
|
||||
import numpy as np
|
||||
E_s = C+M-4*(D+B)/(a**2)
|
||||
E_p = C-M-4*(D-B)/(a**2)
|
||||
V_ss = (D+B)/(a**2)
|
||||
V_pp = (D-B)/(a**2)
|
||||
V_sp = -1j*A/(2*a)
|
||||
H0 = np.zeros((2, 2), dtype=complex)
|
||||
H1 = np.zeros((2, 2), dtype=complex)
|
||||
H2 = np.zeros((2, 2), dtype=complex)
|
||||
H0[0, 0] = E_s
|
||||
H0[1, 1] = E_p
|
||||
H1[0, 0] = V_ss
|
||||
H1[1, 1] = V_pp
|
||||
H1[0, 1] = np.conj(V_sp)
|
||||
H1[1, 0] = -V_sp
|
||||
H2[0, 0] = V_ss
|
||||
H2[1, 1] = V_pp
|
||||
H2[0, 1] = -1j*np.conj(V_sp)
|
||||
H2[1, 0] = -1j*V_sp
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return H0, H1, H2
|
@ -1,315 +0,0 @@
|
||||
# Module: Hamiltonian_of_models_in_reciprocal_space
|
||||
|
||||
# 一维链的哈密顿量
|
||||
def hamiltonian_of_simple_chain(k):
|
||||
import guan
|
||||
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1)
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 二维方格子的哈密顿量
|
||||
def hamiltonian_of_square_lattice(k1, k2):
|
||||
import guan
|
||||
hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1)
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 准一维方格子条带的哈密顿量
|
||||
def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0):
|
||||
import numpy as np
|
||||
import guan
|
||||
h00 = np.zeros((N, N), dtype=complex) # hopping in a unit cell
|
||||
h01 = np.zeros((N, N), dtype=complex) # hopping between unit cells
|
||||
for i in range(N-1):
|
||||
h00[i, i+1] = 1
|
||||
h00[i+1, i] = 1
|
||||
if period == 1:
|
||||
h00[N-1, 0] = 1
|
||||
h00[0, N-1] = 1
|
||||
for i in range(N):
|
||||
h01[i, i] = 1
|
||||
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 三维立方格子的哈密顿量
|
||||
def hamiltonian_of_cubic_lattice(k1, k2, k3):
|
||||
import guan
|
||||
hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1)
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# SSH模型的哈密顿量
|
||||
def hamiltonian_of_ssh_model(k, v=0.6, w=1):
|
||||
import numpy as np
|
||||
import cmath
|
||||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||||
hamiltonian[0,1] = v+w*cmath.exp(-1j*k)
|
||||
hamiltonian[1,0] = v+w*cmath.exp(1j*k)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 石墨烯的哈密顿量
|
||||
def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default'):
|
||||
import numpy as np
|
||||
import cmath
|
||||
import math
|
||||
if a == 'default':
|
||||
a = 1/math.sqrt(3)
|
||||
h0 = np.zeros((2, 2), dtype=complex) # mass term
|
||||
h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
|
||||
h0[0, 0] = staggered_potential
|
||||
h0[1, 1] = -staggered_potential
|
||||
h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))
|
||||
h1[0, 1] = h1[1, 0].conj()
|
||||
hamiltonian = h0 + h1
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 石墨烯有效模型的哈密顿量
|
||||
def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0):
|
||||
import numpy as np
|
||||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||||
hamiltonian[0, 0] = staggered_potential
|
||||
hamiltonian[1, 1] = -staggered_potential
|
||||
constant = -np.sqrt(3)/2
|
||||
if valley_index == 0:
|
||||
hamiltonian[0, 1] = constant*t*(qx-1j*qy)
|
||||
hamiltonian[1, 0] = constant*t*(qx+1j*qy)
|
||||
else:
|
||||
hamiltonian[0, 1] = constant*t*(-qx-1j*qy)
|
||||
hamiltonian[1, 0] = constant*t*(-qx+1j*qy)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 石墨烯有效模型离散化后的哈密顿量
|
||||
def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggered_potential=0, valley_index=0):
|
||||
import numpy as np
|
||||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||||
hamiltonian[0, 0] = staggered_potential
|
||||
hamiltonian[1, 1] = -staggered_potential
|
||||
constant = -np.sqrt(3)/2
|
||||
if valley_index == 0:
|
||||
hamiltonian[0, 1] = constant*t*(np.sin(qx)-1j*np.sin(qy))
|
||||
hamiltonian[1, 0] = constant*t*(np.sin(qx)+1j*np.sin(qy))
|
||||
else:
|
||||
hamiltonian[0, 1] = constant*t*(-np.sin(qx)-1j*np.sin(qy))
|
||||
hamiltonian[1, 0] = constant*t*(-np.sin(qx)+1j*np.sin(qy))
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 准一维Zigzag边石墨烯条带的哈密顿量
|
||||
def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0):
|
||||
import numpy as np
|
||||
import guan
|
||||
h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell
|
||||
h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells
|
||||
for i in range(N):
|
||||
h00[i*4+0, i*4+0] = M
|
||||
h00[i*4+1, i*4+1] = -M
|
||||
h00[i*4+2, i*4+2] = M
|
||||
h00[i*4+3, i*4+3] = -M
|
||||
h00[i*4+0, i*4+1] = t
|
||||
h00[i*4+1, i*4+0] = t
|
||||
h00[i*4+1, i*4+2] = t
|
||||
h00[i*4+2, i*4+1] = t
|
||||
h00[i*4+2, i*4+3] = t
|
||||
h00[i*4+3, i*4+2] = t
|
||||
for i in range(N-1):
|
||||
h00[i*4+3, (i+1)*4+0] = t
|
||||
h00[(i+1)*4+0, i*4+3] = t
|
||||
if period == 1:
|
||||
h00[(N-1)*4+3, 0] = t
|
||||
h00[0, (N-1)*4+3] = t
|
||||
for i in range(N):
|
||||
h01[i*4+1, i*4+0] = t
|
||||
h01[i*4+2, i*4+3] = t
|
||||
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# Haldane模型的哈密顿量
|
||||
def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a='default'):
|
||||
import numpy as np
|
||||
import cmath
|
||||
import math
|
||||
if phi == 'default':
|
||||
phi=math.pi/4
|
||||
if a == 'default':
|
||||
a=1/math.sqrt(3)
|
||||
h0 = np.zeros((2, 2), dtype=complex) # mass term
|
||||
h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
|
||||
h2 = np.zeros((2, 2), dtype=complex) # next nearest hopping
|
||||
h0[0, 0] = M
|
||||
h0[1, 1] = -M
|
||||
h1[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))
|
||||
h1[0, 1] = h1[1, 0].conj()
|
||||
h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a))
|
||||
h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a))
|
||||
hamiltonian = h0 + h1 + h2 + h2.transpose().conj()
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 准一维Haldane模型条带的哈密顿量
|
||||
def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi='default', period=0):
|
||||
import numpy as np
|
||||
import cmath
|
||||
import math
|
||||
if phi == 'default':
|
||||
phi=math.pi/4
|
||||
h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell
|
||||
h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells
|
||||
for i in range(N):
|
||||
h00[i*4+0, i*4+0] = M
|
||||
h00[i*4+1, i*4+1] = -M
|
||||
h00[i*4+2, i*4+2] = M
|
||||
h00[i*4+3, i*4+3] = -M
|
||||
h00[i*4+0, i*4+1] = t1
|
||||
h00[i*4+1, i*4+0] = t1
|
||||
h00[i*4+1, i*4+2] = t1
|
||||
h00[i*4+2, i*4+1] = t1
|
||||
h00[i*4+2, i*4+3] = t1
|
||||
h00[i*4+3, i*4+2] = t1
|
||||
h00[i*4+0, i*4+2] = t2*cmath.exp(-1j*phi)
|
||||
h00[i*4+2, i*4+0] = h00[i*4+0, i*4+2].conj()
|
||||
h00[i*4+1, i*4+3] = t2*cmath.exp(-1j*phi)
|
||||
h00[i*4+3, i*4+1] = h00[i*4+1, i*4+3].conj()
|
||||
for i in range(N-1):
|
||||
h00[i*4+3, (i+1)*4+0] = t1
|
||||
h00[(i+1)*4+0, i*4+3] = t1
|
||||
h00[i*4+2, (i+1)*4+0] = t2*cmath.exp(1j*phi)
|
||||
h00[(i+1)*4+0, i*4+2] = h00[i*4+2, (i+1)*4+0].conj()
|
||||
h00[i*4+3, (i+1)*4+1] = t2*cmath.exp(1j*phi)
|
||||
h00[(i+1)*4+1, i*4+3] = h00[i*4+3, (i+1)*4+1].conj()
|
||||
if period == 1:
|
||||
h00[(N-1)*4+3, 0] = t1
|
||||
h00[0, (N-1)*4+3] = t1
|
||||
h00[(N-1)*4+2, 0] = t2*cmath.exp(1j*phi)
|
||||
h00[0, (N-1)*4+2] = h00[(N-1)*4+2, 0].conj()
|
||||
h00[(N-1)*4+3, 1] = t2*cmath.exp(1j*phi)
|
||||
h00[1, (N-1)*4+3] = h00[(N-1)*4+3, 1].conj()
|
||||
for i in range(N):
|
||||
h01[i*4+1, i*4+0] = t1
|
||||
h01[i*4+2, i*4+3] = t1
|
||||
h01[i*4+0, i*4+0] = t2*cmath.exp(1j*phi)
|
||||
h01[i*4+1, i*4+1] = t2*cmath.exp(-1j*phi)
|
||||
h01[i*4+2, i*4+2] = t2*cmath.exp(1j*phi)
|
||||
h01[i*4+3, i*4+3] = t2*cmath.exp(-1j*phi)
|
||||
h01[i*4+1, i*4+3] = t2*cmath.exp(1j*phi)
|
||||
h01[i*4+2, i*4+0] = t2*cmath.exp(-1j*phi)
|
||||
if i != 0:
|
||||
h01[i*4+1, (i-1)*4+3] = t2*cmath.exp(1j*phi)
|
||||
for i in range(N-1):
|
||||
h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi)
|
||||
hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 一个量子反常霍尔效应的哈密顿量
|
||||
def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1):
|
||||
import numpy as np
|
||||
import math
|
||||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||||
hamiltonian[0, 1] = 2*t1*math.cos(k1)-1j*2*t1*math.cos(k2)
|
||||
hamiltonian[1, 0] = 2*t1*math.cos(k1)+1j*2*t1*math.cos(k2)
|
||||
hamiltonian[0, 0] = m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2)
|
||||
hamiltonian[1, 1] = -(m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2))
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# BHZ模型的哈密顿量
|
||||
def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
|
||||
import numpy as np
|
||||
import math
|
||||
hamiltonian = np.zeros((4, 4), dtype=complex)
|
||||
varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
|
||||
d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
|
||||
d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
|
||||
hamiltonian[0, 0] = varepsilon+d3
|
||||
hamiltonian[1, 1] = varepsilon-d3
|
||||
hamiltonian[0, 1] = np.conj(d1_d2)
|
||||
hamiltonian[1, 0] = d1_d2
|
||||
hamiltonian[2, 2] = varepsilon+d3
|
||||
hamiltonian[3, 3] = varepsilon-d3
|
||||
hamiltonian[2, 3] = -d1_d2
|
||||
hamiltonian[3, 2] = -np.conj(d1_d2)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 半BHZ模型的哈密顿量(自旋向上)
|
||||
def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
|
||||
import numpy as np
|
||||
import math
|
||||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||||
varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
|
||||
d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
|
||||
d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
|
||||
hamiltonian[0, 0] = varepsilon+d3
|
||||
hamiltonian[1, 1] = varepsilon-d3
|
||||
hamiltonian[0, 1] = np.conj(d1_d2)
|
||||
hamiltonian[1, 0] = d1_d2
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# 半BHZ模型的哈密顿量(自旋向下)
|
||||
def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
|
||||
import numpy as np
|
||||
import math
|
||||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
||||
varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
|
||||
d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
|
||||
d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
|
||||
hamiltonian[0, 0] = varepsilon+d3
|
||||
hamiltonian[1, 1] = varepsilon-d3
|
||||
hamiltonian[0, 1] = -d1_d2
|
||||
hamiltonian[1, 0] = -np.conj(d1_d2)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# BBH模型的哈密顿量
|
||||
def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1):
|
||||
import numpy as np
|
||||
import cmath
|
||||
# label of atoms in a unit cell
|
||||
# (2) —— (0)
|
||||
# | |
|
||||
# (1) —— (3)
|
||||
hamiltonian = np.zeros((4, 4), dtype=complex)
|
||||
hamiltonian[0, 2] = gamma_x+lambda_x*cmath.exp(1j*kx)
|
||||
hamiltonian[1, 3] = gamma_x+lambda_x*cmath.exp(-1j*kx)
|
||||
hamiltonian[0, 3] = gamma_y+lambda_y*cmath.exp(1j*ky)
|
||||
hamiltonian[1, 2] = -gamma_y-lambda_y*cmath.exp(-1j*ky)
|
||||
hamiltonian[2, 0] = np.conj(hamiltonian[0, 2])
|
||||
hamiltonian[3, 1] = np.conj(hamiltonian[1, 3])
|
||||
hamiltonian[3, 0] = np.conj(hamiltonian[0, 3])
|
||||
hamiltonian[2, 1] = np.conj(hamiltonian[1, 2])
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
||||
|
||||
# Kagome模型的哈密顿量
|
||||
def hamiltonian_of_kagome_lattice(kx, ky, t=1):
|
||||
import numpy as np
|
||||
import math
|
||||
k1_dot_a1 = kx
|
||||
k2_dot_a2 = kx/2+ky*math.sqrt(3)/2
|
||||
k3_dot_a3 = -kx/2+ky*math.sqrt(3)/2
|
||||
hamiltonian = np.zeros((3, 3), dtype=complex)
|
||||
hamiltonian[0, 1] = 2*math.cos(k1_dot_a1)
|
||||
hamiltonian[0, 2] = 2*math.cos(k2_dot_a2)
|
||||
hamiltonian[1, 2] = 2*math.cos(k3_dot_a3)
|
||||
hamiltonian = hamiltonian + hamiltonian.transpose().conj()
|
||||
hamiltonian = -t*hamiltonian
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return hamiltonian
|
@ -2,15 +2,11 @@
|
||||
|
||||
from .basic_functions import *
|
||||
from .Fourier_transform import *
|
||||
from .Hamiltonian_of_finite_size_systems import *
|
||||
from .Hamiltonian_of_models_in_reciprocal_space import *
|
||||
from .Hamiltonian_of_examples import *
|
||||
from .band_structures_and_wave_functions import *
|
||||
from .Green_functions import *
|
||||
from .density_of_states import *
|
||||
from .quantum_transport import *
|
||||
from .topological_invariant import *
|
||||
from .plot_figures import *
|
||||
from .read_and_write import *
|
||||
from .file_processing import *
|
||||
from .data_processing import *
|
||||
from .others import *
|
@ -154,7 +154,7 @@ def find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array
|
||||
guan.statistics_of_guan_package()
|
||||
return vector_array
|
||||
|
||||
# 旋转两个简并的波函数(说明:参数比较多,效率不高)
|
||||
# 旋转两个简并的波函数(说明:参数比较多,算法效率不高)
|
||||
def rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, precision=0.01, criterion=0.01, show_theta=0):
|
||||
import numpy as np
|
||||
import math
|
||||
@ -185,7 +185,7 @@ def rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, p
|
||||
guan.statistics_of_guan_package()
|
||||
return vector1, vector2
|
||||
|
||||
# 旋转两个简并的波函数向量组(说明:参数比较多,效率不高)
|
||||
# 旋转两个简并的波函数向量组(说明:参数比较多,算法效率不高)
|
||||
def rotation_of_degenerate_vectors_array(vector1_array, vector2_array, precision=0.01, criterion=0.01, show_theta=0):
|
||||
import numpy as np
|
||||
import guan
|
||||
@ -202,3 +202,34 @@ def rotation_of_degenerate_vectors_array(vector1_array, vector2_array, precision
|
||||
vector1_array[i0], vector2_array[i0] = guan.rotation_of_degenerate_vectors(vector1=vector1_array[i0], vector2=vector2_array[i0], index1=index1, index2=index2, precision=precision, criterion=criterion, show_theta=show_theta)
|
||||
guan.statistics_of_guan_package()
|
||||
return vector1_array, vector2_array
|
||||
|
||||
# 在一组数据中找到数值相近的数
|
||||
def find_close_values_in_one_array(array, precision=1e-2):
|
||||
new_array = []
|
||||
i0 = 0
|
||||
for a1 in array:
|
||||
j0 = 0
|
||||
for a2 in array:
|
||||
if j0>i0 and abs(a1-a2)<precision:
|
||||
new_array.append([a1, a2])
|
||||
j0 +=1
|
||||
i0 += 1
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return new_array
|
||||
|
||||
# 寻找能带的简并点
|
||||
def find_degenerate_points(k_array, eigenvalue_array, precision=1e-2):
|
||||
import guan
|
||||
degenerate_k_array = []
|
||||
degenerate_eigenvalue_array = []
|
||||
i0 = 0
|
||||
for k in k_array:
|
||||
degenerate_points = guan.find_close_values_in_one_array(eigenvalue_array[i0], precision=precision)
|
||||
if len(degenerate_points) != 0:
|
||||
degenerate_k_array.append(k)
|
||||
degenerate_eigenvalue_array.append(degenerate_points)
|
||||
i0 += 1
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return degenerate_k_array, degenerate_eigenvalue_array
|
File diff suppressed because it is too large
Load Diff
@ -1,727 +0,0 @@
|
||||
# Module: file_processing
|
||||
|
||||
# 自动先后运行程序(串行)
|
||||
def run_programs_sequentially(program_files=['./a.py', './b.py'], execute='python ', show_time=0):
|
||||
import os
|
||||
import time
|
||||
if show_time == 1:
|
||||
start = time.time()
|
||||
i0 = 0
|
||||
for program_file in program_files:
|
||||
i0 += 1
|
||||
if show_time == 1:
|
||||
start_0 = time.time()
|
||||
os.system(execute+program_file)
|
||||
if show_time == 1:
|
||||
end_0 = time.time()
|
||||
print('Running time of program_'+str(i0)+' = '+str((end_0-start_0)/60)+' min')
|
||||
if show_time == 1:
|
||||
end = time.time()
|
||||
print('Total running time = '+str((end-start)/60)+' min')
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 如果不存在文件夹,则新建文件夹
|
||||
def make_directory(directory='./test'):
|
||||
import os
|
||||
if not os.path.exists(directory):
|
||||
os.makedirs(directory)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 复制一份文件
|
||||
def copy_file(file1='./a.txt', file2='./b.txt'):
|
||||
import shutil
|
||||
shutil.copy(file1, file2)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 拼接两个PDF文件
|
||||
def combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_file='combined_file.pdf'):
|
||||
import PyPDF2
|
||||
output_pdf = PyPDF2.PdfWriter()
|
||||
with open(input_file_1, 'rb') as file1:
|
||||
pdf1 = PyPDF2.PdfReader(file1)
|
||||
for page in range(len(pdf1.pages)):
|
||||
output_pdf.add_page(pdf1.pages[page])
|
||||
with open(input_file_2, 'rb') as file2:
|
||||
pdf2 = PyPDF2.PdfReader(file2)
|
||||
for page in range(len(pdf2.pages)):
|
||||
output_pdf.add_page(pdf2.pages[page])
|
||||
with open(output_file, 'wb') as combined_file:
|
||||
output_pdf.write(combined_file)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 查找文件名相同的文件
|
||||
def find_repeated_file_with_same_filename(directory='./', ignored_directory_with_words=[], ignored_file_with_words=[], num=1000):
|
||||
import os
|
||||
from collections import Counter
|
||||
file_list = []
|
||||
for root, dirs, files in os.walk(directory):
|
||||
for i0 in range(len(files)):
|
||||
file_list.append(files[i0])
|
||||
for word in ignored_directory_with_words:
|
||||
if word in root:
|
||||
file_list.remove(files[i0])
|
||||
for word in ignored_file_with_words:
|
||||
if word in files[i0]:
|
||||
try:
|
||||
file_list.remove(files[i0])
|
||||
except:
|
||||
pass
|
||||
count_file = Counter(file_list).most_common(num)
|
||||
repeated_file = []
|
||||
for item in count_file:
|
||||
if item[1]>1:
|
||||
repeated_file.append(item)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return repeated_file
|
||||
|
||||
# 统计各个子文件夹中的文件数量
|
||||
def count_file_in_sub_directory(directory='./', sort=0, reverse=1, print_show=1, smaller_than_num=None):
|
||||
import os
|
||||
import numpy as np
|
||||
dirs_list = []
|
||||
for root, dirs, files in os.walk(directory):
|
||||
if dirs != []:
|
||||
for i0 in range(len(dirs)):
|
||||
dirs_list.append(root+'/'+dirs[i0])
|
||||
count_file_array = []
|
||||
for sub_dir in dirs_list:
|
||||
file_list = []
|
||||
for root, dirs, files in os.walk(sub_dir):
|
||||
for i0 in range(len(files)):
|
||||
file_list.append(files[i0])
|
||||
count_file = len(file_list)
|
||||
count_file_array.append(count_file)
|
||||
if sort == 0:
|
||||
if print_show == 1:
|
||||
if smaller_than_num == None:
|
||||
print(sub_dir)
|
||||
print(count_file)
|
||||
print()
|
||||
else:
|
||||
if count_file<smaller_than_num:
|
||||
print(sub_dir)
|
||||
print(count_file)
|
||||
print()
|
||||
if sort == 0:
|
||||
sub_directory = dirs_list
|
||||
num_in_sub_directory = count_file_array
|
||||
if sort == 1:
|
||||
sub_directory = []
|
||||
num_in_sub_directory = []
|
||||
if reverse == 1:
|
||||
index_array = np.argsort(count_file_array)[::-1]
|
||||
else:
|
||||
index_array = np.argsort(count_file_array)
|
||||
for i0 in index_array:
|
||||
sub_directory.append(dirs_list[i0])
|
||||
num_in_sub_directory.append(count_file_array[i0])
|
||||
if print_show == 1:
|
||||
if smaller_than_num == None:
|
||||
print(dirs_list[i0])
|
||||
print(count_file_array[i0])
|
||||
print()
|
||||
else:
|
||||
if count_file_array[i0]<smaller_than_num:
|
||||
print(dirs_list[i0])
|
||||
print(count_file_array[i0])
|
||||
print()
|
||||
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return sub_directory, num_in_sub_directory
|
||||
|
||||
# 改变当前的目录位置
|
||||
def change_directory_by_replacement(current_key_word='code', new_key_word='data'):
|
||||
import os
|
||||
code_path = os.getcwd()
|
||||
data_path = code_path.replace('\\', '/')
|
||||
data_path = data_path.replace(current_key_word, new_key_word)
|
||||
if os.path.exists(data_path) == False:
|
||||
os.makedirs(data_path)
|
||||
os.chdir(data_path)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 在多个子文件夹中产生必要的文件,例如 readme.md
|
||||
def creat_necessary_file(directory, filename='readme', file_format='.md', content='', overwrite=None, ignored_directory_with_words=[]):
|
||||
import os
|
||||
directory_with_file = []
|
||||
ignored_directory = []
|
||||
for root, dirs, files in os.walk(directory):
|
||||
for i0 in range(len(files)):
|
||||
if root not in directory_with_file:
|
||||
directory_with_file.append(root)
|
||||
if files[i0] == filename+file_format:
|
||||
if root not in ignored_directory:
|
||||
ignored_directory.append(root)
|
||||
if overwrite == None:
|
||||
for root in ignored_directory:
|
||||
directory_with_file.remove(root)
|
||||
ignored_directory_more =[]
|
||||
for root in directory_with_file:
|
||||
for word in ignored_directory_with_words:
|
||||
if word in root:
|
||||
if root not in ignored_directory_more:
|
||||
ignored_directory_more.append(root)
|
||||
for root in ignored_directory_more:
|
||||
directory_with_file.remove(root)
|
||||
for root in directory_with_file:
|
||||
os.chdir(root)
|
||||
f = open(filename+file_format, 'w', encoding="utf-8")
|
||||
f.write(content)
|
||||
f.close()
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 删除特定文件名的文件(慎用)
|
||||
def delete_file_with_specific_name(directory, filename='readme', file_format='.md'):
|
||||
import os
|
||||
for root, dirs, files in os.walk(directory):
|
||||
for i0 in range(len(files)):
|
||||
if files[i0] == filename+file_format:
|
||||
os.remove(root+'/'+files[i0])
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 所有文件移到根目录(慎用)
|
||||
def move_all_files_to_root_directory(directory):
|
||||
import os
|
||||
import shutil
|
||||
for root, dirs, files in os.walk(directory):
|
||||
for i0 in range(len(files)):
|
||||
shutil.move(root+'/'+files[i0], directory+'/'+files[i0])
|
||||
for i0 in range(100):
|
||||
for root, dirs, files in os.walk(directory):
|
||||
try:
|
||||
os.rmdir(root)
|
||||
except:
|
||||
pass
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 将文件目录结构写入Markdown文件
|
||||
def write_file_list_in_markdown(directory='./', filename='a', reverse_positive_or_negative=1, starting_from_h1=None, banned_file_format=[], hide_file_format=None, divided_line=None, show_second_number=None, show_third_number=None):
|
||||
import os
|
||||
f = open(filename+'.md', 'w', encoding="utf-8")
|
||||
filenames1 = os.listdir(directory)
|
||||
u0 = 0
|
||||
for filename1 in filenames1[::reverse_positive_or_negative]:
|
||||
filename1_with_path = os.path.join(directory,filename1)
|
||||
if os.path.isfile(filename1_with_path):
|
||||
if os.path.splitext(filename1)[1] not in banned_file_format:
|
||||
if hide_file_format == None:
|
||||
f.write('+ '+str(filename1)+'\n\n')
|
||||
else:
|
||||
f.write('+ '+str(os.path.splitext(filename1)[0])+'\n\n')
|
||||
else:
|
||||
u0 += 1
|
||||
if divided_line != None and u0 != 1:
|
||||
f.write('--------\n\n')
|
||||
if starting_from_h1 == None:
|
||||
f.write('#')
|
||||
f.write('# '+str(filename1)+'\n\n')
|
||||
|
||||
filenames2 = os.listdir(filename1_with_path)
|
||||
i0 = 0
|
||||
for filename2 in filenames2[::reverse_positive_or_negative]:
|
||||
filename2_with_path = os.path.join(directory, filename1, filename2)
|
||||
if os.path.isfile(filename2_with_path):
|
||||
if os.path.splitext(filename2)[1] not in banned_file_format:
|
||||
if hide_file_format == None:
|
||||
f.write('+ '+str(filename2)+'\n\n')
|
||||
else:
|
||||
f.write('+ '+str(os.path.splitext(filename2)[0])+'\n\n')
|
||||
else:
|
||||
i0 += 1
|
||||
if starting_from_h1 == None:
|
||||
f.write('#')
|
||||
if show_second_number != None:
|
||||
f.write('## '+str(i0)+'. '+str(filename2)+'\n\n')
|
||||
else:
|
||||
f.write('## '+str(filename2)+'\n\n')
|
||||
|
||||
j0 = 0
|
||||
filenames3 = os.listdir(filename2_with_path)
|
||||
for filename3 in filenames3[::reverse_positive_or_negative]:
|
||||
filename3_with_path = os.path.join(directory, filename1, filename2, filename3)
|
||||
if os.path.isfile(filename3_with_path):
|
||||
if os.path.splitext(filename3)[1] not in banned_file_format:
|
||||
if hide_file_format == None:
|
||||
f.write('+ '+str(filename3)+'\n\n')
|
||||
else:
|
||||
f.write('+ '+str(os.path.splitext(filename3)[0])+'\n\n')
|
||||
else:
|
||||
j0 += 1
|
||||
if starting_from_h1 == None:
|
||||
f.write('#')
|
||||
if show_third_number != None:
|
||||
f.write('### ('+str(j0)+') '+str(filename3)+'\n\n')
|
||||
else:
|
||||
f.write('### '+str(filename3)+'\n\n')
|
||||
|
||||
filenames4 = os.listdir(filename3_with_path)
|
||||
for filename4 in filenames4[::reverse_positive_or_negative]:
|
||||
filename4_with_path = os.path.join(directory, filename1, filename2, filename3, filename4)
|
||||
if os.path.isfile(filename4_with_path):
|
||||
if os.path.splitext(filename4)[1] not in banned_file_format:
|
||||
if hide_file_format == None:
|
||||
f.write('+ '+str(filename4)+'\n\n')
|
||||
else:
|
||||
f.write('+ '+str(os.path.splitext(filename4)[0])+'\n\n')
|
||||
else:
|
||||
if starting_from_h1 == None:
|
||||
f.write('#')
|
||||
f.write('#### '+str(filename4)+'\n\n')
|
||||
|
||||
filenames5 = os.listdir(filename4_with_path)
|
||||
for filename5 in filenames5[::reverse_positive_or_negative]:
|
||||
filename5_with_path = os.path.join(directory, filename1, filename2, filename3, filename4, filename5)
|
||||
if os.path.isfile(filename5_with_path):
|
||||
if os.path.splitext(filename5)[1] not in banned_file_format:
|
||||
if hide_file_format == None:
|
||||
f.write('+ '+str(filename5)+'\n\n')
|
||||
else:
|
||||
f.write('+ '+str(os.path.splitext(filename5)[0])+'\n\n')
|
||||
else:
|
||||
if starting_from_h1 == None:
|
||||
f.write('#')
|
||||
f.write('##### '+str(filename5)+'\n\n')
|
||||
|
||||
filenames6 = os.listdir(filename5_with_path)
|
||||
for filename6 in filenames6[::reverse_positive_or_negative]:
|
||||
filename6_with_path = os.path.join(directory, filename1, filename2, filename3, filename4, filename5, filename6)
|
||||
if os.path.isfile(filename6_with_path):
|
||||
if os.path.splitext(filename6)[1] not in banned_file_format:
|
||||
if hide_file_format == None:
|
||||
f.write('+ '+str(filename6)+'\n\n')
|
||||
else:
|
||||
f.write('+ '+str(os.path.splitext(filename6)[0])+'\n\n')
|
||||
else:
|
||||
if starting_from_h1 == None:
|
||||
f.write('#')
|
||||
f.write('###### '+str(filename6)+'\n\n')
|
||||
f.close()
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 从网页的标签中获取内容
|
||||
def get_html_from_tags(link, tags=['title', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p', 'li', 'a']):
|
||||
from bs4 import BeautifulSoup
|
||||
import urllib.request
|
||||
import ssl
|
||||
ssl._create_default_https_context = ssl._create_unverified_context
|
||||
html = urllib.request.urlopen(link).read().decode('utf-8')
|
||||
soup = BeautifulSoup(html, features="lxml")
|
||||
all_tags = soup.find_all(tags)
|
||||
content = ''
|
||||
for tag in all_tags:
|
||||
text = tag.get_text().replace('\n', '')
|
||||
if content == '':
|
||||
content = text
|
||||
else:
|
||||
content = content + '\n\n' + text
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return content
|
||||
|
||||
# 生成二维码
|
||||
def creat_qrcode(data="https://www.guanjihuan.com", filename='a', file_format='.png'):
|
||||
import qrcode
|
||||
img = qrcode.make(data)
|
||||
img.save(filename+file_format)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 将PDF文件转成文本
|
||||
def pdf_to_text(pdf_path):
|
||||
from pdfminer.pdfparser import PDFParser, PDFDocument
|
||||
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
|
||||
from pdfminer.converter import PDFPageAggregator
|
||||
from pdfminer.layout import LAParams, LTTextBox
|
||||
from pdfminer.pdfinterp import PDFTextExtractionNotAllowed
|
||||
import logging
|
||||
logging.Logger.propagate = False
|
||||
logging.getLogger().setLevel(logging.ERROR)
|
||||
praser = PDFParser(open(pdf_path, 'rb'))
|
||||
doc = PDFDocument()
|
||||
praser.set_document(doc)
|
||||
doc.set_parser(praser)
|
||||
doc.initialize()
|
||||
if not doc.is_extractable:
|
||||
raise PDFTextExtractionNotAllowed
|
||||
else:
|
||||
rsrcmgr = PDFResourceManager()
|
||||
laparams = LAParams()
|
||||
device = PDFPageAggregator(rsrcmgr, laparams=laparams)
|
||||
interpreter = PDFPageInterpreter(rsrcmgr, device)
|
||||
content = ''
|
||||
for page in doc.get_pages():
|
||||
interpreter.process_page(page)
|
||||
layout = device.get_result()
|
||||
for x in layout:
|
||||
if isinstance(x, LTTextBox):
|
||||
content = content + x.get_text().strip()
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return content
|
||||
|
||||
# 获取PDF文件页数
|
||||
def get_pdf_page_number(pdf_path):
|
||||
import PyPDF2
|
||||
pdf_file = open(pdf_path, 'rb')
|
||||
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
||||
num_pages = len(pdf_reader.pages)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return num_pages
|
||||
|
||||
# 获取PDF文件指定页面的内容
|
||||
def pdf_to_txt_for_a_specific_page(pdf_path, page_num=1):
|
||||
import PyPDF2
|
||||
pdf_file = open(pdf_path, 'rb')
|
||||
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
||||
num_pages = len(pdf_reader.pages)
|
||||
for page_num0 in range(num_pages):
|
||||
if page_num0 == page_num-1:
|
||||
page = pdf_reader.pages[page_num0]
|
||||
page_text = page.extract_text()
|
||||
pdf_file.close()
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return page_text
|
||||
|
||||
# 获取PDF文献中的链接。例如: link_starting_form='https://doi.org'
|
||||
def get_links_from_pdf(pdf_path, link_starting_form=''):
|
||||
import PyPDF2
|
||||
import re
|
||||
pdfReader = PyPDF2.PdfFileReader(pdf_path)
|
||||
pages = pdfReader.getNumPages()
|
||||
i0 = 0
|
||||
links = []
|
||||
for page in range(pages):
|
||||
pageSliced = pdfReader.getPage(page)
|
||||
pageObject = pageSliced.getObject()
|
||||
if '/Annots' in pageObject.keys():
|
||||
ann = pageObject['/Annots']
|
||||
old = ''
|
||||
for a in ann:
|
||||
u = a.getObject()
|
||||
if '/A' in u.keys():
|
||||
if re.search(re.compile('^'+link_starting_form), u['/A']['/URI']):
|
||||
if u['/A']['/URI'] != old:
|
||||
links.append(u['/A']['/URI'])
|
||||
i0 += 1
|
||||
old = u['/A']['/URI']
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return links
|
||||
|
||||
# 通过Sci-Hub网站下载文献
|
||||
def download_with_scihub(address=None, num=1):
|
||||
from bs4 import BeautifulSoup
|
||||
import re
|
||||
import requests
|
||||
import os
|
||||
if num==1 and address!=None:
|
||||
address_array = [address]
|
||||
else:
|
||||
address_array = []
|
||||
for i in range(num):
|
||||
address = input('\nInput:')
|
||||
address_array.append(address)
|
||||
for address in address_array:
|
||||
r = requests.post('https://sci-hub.st/', data={'request': address})
|
||||
print('\nResponse:', r)
|
||||
print('Address:', r.url)
|
||||
soup = BeautifulSoup(r.text, features='lxml')
|
||||
pdf_URL = soup.embed['src']
|
||||
# pdf_URL = soup.iframe['src'] # This is a code line of history version which fails to get pdf URL.
|
||||
if re.search(re.compile('^https:'), pdf_URL):
|
||||
pass
|
||||
else:
|
||||
pdf_URL = 'https:'+pdf_URL
|
||||
print('PDF address:', pdf_URL)
|
||||
name = re.search(re.compile('fdp.*?/'),pdf_URL[::-1]).group()[::-1][1::]
|
||||
print('PDF name:', name)
|
||||
print('Directory:', os.getcwd())
|
||||
print('\nDownloading...')
|
||||
r = requests.get(pdf_URL, stream=True)
|
||||
with open(name, 'wb') as f:
|
||||
for chunk in r.iter_content(chunk_size=32):
|
||||
f.write(chunk)
|
||||
print('Completed!\n')
|
||||
if num != 1:
|
||||
print('All completed!\n')
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 将文本转成音频
|
||||
def str_to_audio(str='hello world', filename='str', rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0):
|
||||
import pyttsx3
|
||||
import guan
|
||||
if print_text==1:
|
||||
print(str)
|
||||
engine = pyttsx3.init()
|
||||
voices = engine.getProperty('voices')
|
||||
engine.setProperty('voice', voices[voice].id)
|
||||
engine.setProperty("rate", rate)
|
||||
if save==1:
|
||||
engine.save_to_file(str, filename+'.wav')
|
||||
engine.runAndWait()
|
||||
print('Wav file saved!')
|
||||
if compress==1:
|
||||
import os
|
||||
os.rename(filename+'.wav', 'temp.wav')
|
||||
guan.compress_wav_to_mp3('temp.wav', output_filename=filename+'.mp3', bitrate=bitrate)
|
||||
os.remove('temp.wav')
|
||||
if read==1:
|
||||
engine.say(str)
|
||||
engine.runAndWait()
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 将txt文件转成音频
|
||||
def txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0):
|
||||
import pyttsx3
|
||||
import guan
|
||||
f = open(txt_path, 'r', encoding ='utf-8')
|
||||
text = f.read()
|
||||
if print_text==1:
|
||||
print(text)
|
||||
engine = pyttsx3.init()
|
||||
voices = engine.getProperty('voices')
|
||||
engine.setProperty('voice', voices[voice].id)
|
||||
engine.setProperty("rate", rate)
|
||||
if save==1:
|
||||
import re
|
||||
filename = re.split('[/,\\\]', txt_path)[-1][:-4]
|
||||
engine.save_to_file(text, filename+'.wav')
|
||||
engine.runAndWait()
|
||||
print('Wav file saved!')
|
||||
if compress==1:
|
||||
import os
|
||||
os.rename(filename+'.wav', 'temp.wav')
|
||||
guan.compress_wav_to_mp3('temp.wav', output_filename=filename+'.mp3', bitrate=bitrate)
|
||||
os.remove('temp.wav')
|
||||
if read==1:
|
||||
engine.say(text)
|
||||
engine.runAndWait()
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 将PDF文件转成音频
|
||||
def pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0):
|
||||
import pyttsx3
|
||||
import guan
|
||||
text = guan.pdf_to_text(pdf_path)
|
||||
text = text.replace('\n', ' ')
|
||||
if print_text==1:
|
||||
print(text)
|
||||
engine = pyttsx3.init()
|
||||
voices = engine.getProperty('voices')
|
||||
engine.setProperty('voice', voices[voice].id)
|
||||
engine.setProperty("rate", rate)
|
||||
if save==1:
|
||||
import re
|
||||
filename = re.split('[/,\\\]', pdf_path)[-1][:-4]
|
||||
engine.save_to_file(text, filename+'.wav')
|
||||
engine.runAndWait()
|
||||
print('Wav file saved!')
|
||||
if compress==1:
|
||||
import os
|
||||
os.rename(filename+'.wav', 'temp.wav')
|
||||
guan.compress_wav_to_mp3('temp.wav', output_filename=filename+'.mp3', bitrate=bitrate)
|
||||
os.remove('temp.wav')
|
||||
if read==1:
|
||||
engine.say(text)
|
||||
engine.runAndWait()
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 将wav音频文件压缩成MP3音频文件
|
||||
def compress_wav_to_mp3(wav_path, output_filename='a.mp3', bitrate='16k'):
|
||||
# Note: Beside the installation of pydub, you may also need download FFmpeg on http://www.ffmpeg.org/download.html and add the bin path to the environment variable.
|
||||
from pydub import AudioSegment
|
||||
sound = AudioSegment.from_mp3(wav_path)
|
||||
sound.export(output_filename,format="mp3",bitrate=bitrate)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 播放学术单词
|
||||
def play_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_translation=1, show_link=1, translation_time=2, rest_time=1):
|
||||
from bs4 import BeautifulSoup
|
||||
import re
|
||||
import urllib.request
|
||||
import requests
|
||||
import os
|
||||
import pygame
|
||||
import time
|
||||
import ssl
|
||||
import random
|
||||
ssl._create_default_https_context = ssl._create_unverified_context
|
||||
html = urllib.request.urlopen("https://www.guanjihuan.com/archives/4418").read().decode('utf-8')
|
||||
if bre_or_ame == 'ame':
|
||||
directory = 'words_mp3_ameProns/'
|
||||
elif bre_or_ame == 'bre':
|
||||
directory = 'words_mp3_breProns/'
|
||||
exist_directory = os.path.exists(directory)
|
||||
html_file = urllib.request.urlopen("https://file.guanjihuan.com/words/"+directory).read().decode('utf-8')
|
||||
if exist_directory == 0:
|
||||
os.makedirs(directory)
|
||||
soup = BeautifulSoup(html, features='lxml')
|
||||
contents = re.findall('<h2.*?</a></p>', html, re.S)
|
||||
if random_on==1:
|
||||
random.shuffle(contents)
|
||||
if reverse==1:
|
||||
contents.reverse()
|
||||
for content in contents:
|
||||
soup2 = BeautifulSoup(content, features='lxml')
|
||||
all_h2 = soup2.find_all('h2')
|
||||
for h2 in all_h2:
|
||||
if re.search('\d*. ', h2.get_text()):
|
||||
word = re.findall('[a-zA-Z].*', h2.get_text(), re.S)[0]
|
||||
exist = os.path.exists(directory+word+'.mp3')
|
||||
if not exist:
|
||||
try:
|
||||
if re.search(word, html_file):
|
||||
r = requests.get("https://file.guanjihuan.com/words/"+directory+word+".mp3", stream=True)
|
||||
with open(directory+word+'.mp3', 'wb') as f:
|
||||
for chunk in r.iter_content(chunk_size=32):
|
||||
f.write(chunk)
|
||||
except:
|
||||
pass
|
||||
print(h2.get_text())
|
||||
try:
|
||||
pygame.mixer.init()
|
||||
track = pygame.mixer.music.load(directory+word+'.mp3')
|
||||
pygame.mixer.music.play()
|
||||
if show_link==1:
|
||||
print('https://www.ldoceonline.com/dictionary/'+word)
|
||||
except:
|
||||
pass
|
||||
translation = re.findall('<p>.*?</p>', content, re.S)[0][3:-4]
|
||||
if show_translation==1:
|
||||
time.sleep(translation_time)
|
||||
print(translation)
|
||||
time.sleep(rest_time)
|
||||
pygame.mixer.music.stop()
|
||||
print()
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 播放挑选过后的学术单词
|
||||
def play_selected_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_link=1, rest_time=3):
|
||||
from bs4 import BeautifulSoup
|
||||
import re
|
||||
import urllib.request
|
||||
import requests
|
||||
import os
|
||||
import pygame
|
||||
import time
|
||||
import ssl
|
||||
import random
|
||||
ssl._create_default_https_context = ssl._create_unverified_context
|
||||
html = urllib.request.urlopen("https://www.guanjihuan.com/archives/24732").read().decode('utf-8')
|
||||
if bre_or_ame == 'ame':
|
||||
directory = 'words_mp3_ameProns/'
|
||||
elif bre_or_ame == 'bre':
|
||||
directory = 'words_mp3_breProns/'
|
||||
exist_directory = os.path.exists(directory)
|
||||
html_file = urllib.request.urlopen("https://file.guanjihuan.com/words/"+directory).read().decode('utf-8')
|
||||
if exist_directory == 0:
|
||||
os.makedirs(directory)
|
||||
soup = BeautifulSoup(html, features='lxml')
|
||||
contents = re.findall('<li>\d.*?</li>', html, re.S)
|
||||
if random_on==1:
|
||||
random.shuffle(contents)
|
||||
if reverse==1:
|
||||
contents.reverse()
|
||||
for content in contents:
|
||||
soup2 = BeautifulSoup(content, features='lxml')
|
||||
all_li = soup2.find_all('li')
|
||||
for li in all_li:
|
||||
if re.search('\d*. ', li.get_text()):
|
||||
word = re.findall('\s[a-zA-Z].*?\s', li.get_text(), re.S)[0][1:-1]
|
||||
exist = os.path.exists(directory+word+'.mp3')
|
||||
if not exist:
|
||||
try:
|
||||
if re.search(word, html_file):
|
||||
r = requests.get("https://file.guanjihuan.com/words/"+directory+word+".mp3", stream=True)
|
||||
with open(directory+word+'.mp3', 'wb') as f:
|
||||
for chunk in r.iter_content(chunk_size=32):
|
||||
f.write(chunk)
|
||||
except:
|
||||
pass
|
||||
print(li.get_text())
|
||||
try:
|
||||
pygame.mixer.init()
|
||||
track = pygame.mixer.music.load(directory+word+'.mp3')
|
||||
pygame.mixer.music.play()
|
||||
if show_link==1:
|
||||
print('https://www.ldoceonline.com/dictionary/'+word)
|
||||
except:
|
||||
pass
|
||||
time.sleep(rest_time)
|
||||
pygame.mixer.music.stop()
|
||||
print()
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 播放元素周期表上的单词
|
||||
def play_element_words(random_on=0, show_translation=1, show_link=1, translation_time=2, rest_time=1):
|
||||
from bs4 import BeautifulSoup
|
||||
import re
|
||||
import urllib.request
|
||||
import requests
|
||||
import os
|
||||
import pygame
|
||||
import time
|
||||
import ssl
|
||||
import random
|
||||
ssl._create_default_https_context = ssl._create_unverified_context
|
||||
html = urllib.request.urlopen("https://www.guanjihuan.com/archives/10897").read().decode('utf-8')
|
||||
directory = 'prons/'
|
||||
exist_directory = os.path.exists(directory)
|
||||
html_file = urllib.request.urlopen("https://file.guanjihuan.com/words/periodic_table_of_elements/"+directory).read().decode('utf-8')
|
||||
if exist_directory == 0:
|
||||
os.makedirs(directory)
|
||||
soup = BeautifulSoup(html, features='lxml')
|
||||
contents = re.findall('<h2.*?</a></p>', html, re.S)
|
||||
if random_on==1:
|
||||
random.shuffle(contents)
|
||||
for content in contents:
|
||||
soup2 = BeautifulSoup(content, features='lxml')
|
||||
all_h2 = soup2.find_all('h2')
|
||||
for h2 in all_h2:
|
||||
if re.search('\d*. ', h2.get_text()):
|
||||
word = re.findall('[a-zA-Z].* \(', h2.get_text(), re.S)[0][:-2]
|
||||
exist = os.path.exists(directory+word+'.mp3')
|
||||
if not exist:
|
||||
try:
|
||||
if re.search(word, html_file):
|
||||
r = requests.get("https://file.guanjihuan.com/words/periodic_table_of_elements/prons/"+word+".mp3", stream=True)
|
||||
with open(directory+word+'.mp3', 'wb') as f:
|
||||
for chunk in r.iter_content(chunk_size=32):
|
||||
f.write(chunk)
|
||||
except:
|
||||
pass
|
||||
print(h2.get_text())
|
||||
try:
|
||||
pygame.mixer.init()
|
||||
track = pygame.mixer.music.load(directory+word+'.mp3')
|
||||
pygame.mixer.music.play()
|
||||
if show_link==1:
|
||||
print('https://www.merriam-webster.com/dictionary/'+word)
|
||||
except:
|
||||
pass
|
||||
translation = re.findall('<p>.*?</p>', content, re.S)[0][3:-4]
|
||||
if show_translation==1:
|
||||
time.sleep(translation_time)
|
||||
print(translation)
|
||||
time.sleep(rest_time)
|
||||
pygame.mixer.music.stop()
|
||||
print()
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
File diff suppressed because it is too large
Load Diff
@ -1,413 +0,0 @@
|
||||
# Module: plot_figures
|
||||
|
||||
# 导入plt, fig, ax
|
||||
def import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20):
|
||||
import matplotlib.pyplot as plt
|
||||
fig, ax = plt.subplots()
|
||||
plt.subplots_adjust(bottom=adjust_bottom, left=adjust_left)
|
||||
ax.grid()
|
||||
ax.tick_params(labelsize=labelsize)
|
||||
labels = ax.get_xticklabels() + ax.get_yticklabels()
|
||||
[label.set_fontname('Times New Roman') for label in labels]
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return plt, fig, ax
|
||||
|
||||
# 基于plt, fig, ax开始画图
|
||||
def plot_without_starting_fig(plt, fig, ax, x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, style='', y_min=None, y_max=None, linewidth=None, markersize=None, color=None):
|
||||
if color==None:
|
||||
ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize)
|
||||
else:
|
||||
ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize, color=color)
|
||||
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
if y_min!=None or y_max!=None:
|
||||
if y_min==None:
|
||||
y_min=min(y_array)
|
||||
if y_max==None:
|
||||
y_max=max(y_array)
|
||||
ax.set_ylim(y_min, y_max)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 画图
|
||||
def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2):
|
||||
import guan
|
||||
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
|
||||
ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize)
|
||||
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
if y_min!=None or y_max!=None:
|
||||
if y_min==None:
|
||||
y_min=min(y_array)
|
||||
if y_max==None:
|
||||
y_max=max(y_array)
|
||||
ax.set_ylim(y_min, y_max)
|
||||
if save == 1:
|
||||
plt.savefig(filename+file_format, dpi=dpi)
|
||||
if show == 1:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 一组横坐标数据,两组纵坐标数据画图
|
||||
def plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):
|
||||
import guan
|
||||
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
|
||||
ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1)
|
||||
ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2)
|
||||
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
if y_min!=None or y_max!=None:
|
||||
if y_min==None:
|
||||
y1_min=min(y1_array)
|
||||
y2_min=min(y2_array)
|
||||
y_min=min([y1_min, y2_min])
|
||||
if y_max==None:
|
||||
y1_max=max(y1_array)
|
||||
y2_max=max(y2_array)
|
||||
y_max=max([y1_max, y2_max])
|
||||
ax.set_ylim(y_min, y_max)
|
||||
if save == 1:
|
||||
plt.savefig(filename+file_format, dpi=dpi)
|
||||
if show == 1:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 两组横坐标数据,两组纵坐标数据画图
|
||||
def plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):
|
||||
import guan
|
||||
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
|
||||
ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1)
|
||||
ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2)
|
||||
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
if y_min!=None or y_max!=None:
|
||||
if y_min==None:
|
||||
y1_min=min(y1_array)
|
||||
y2_min=min(y2_array)
|
||||
y_min=min([y1_min, y2_min])
|
||||
if y_max==None:
|
||||
y1_max=max(y1_array)
|
||||
y2_max=max(y2_array)
|
||||
y_max=max([y1_max, y2_max])
|
||||
ax.set_ylim(y_min, y_max)
|
||||
if save == 1:
|
||||
plt.savefig(filename+file_format, dpi=dpi)
|
||||
if show == 1:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 一组横坐标数据,三组纵坐标数据画图
|
||||
def plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):
|
||||
import guan
|
||||
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
|
||||
ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1)
|
||||
ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2)
|
||||
ax.plot(x_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3)
|
||||
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
if y_min!=None or y_max!=None:
|
||||
if y_min==None:
|
||||
y1_min=min(y1_array)
|
||||
y2_min=min(y2_array)
|
||||
y3_min=min(y3_array)
|
||||
y_min=min([y1_min, y2_min, y3_min])
|
||||
if y_max==None:
|
||||
y1_max=max(y1_array)
|
||||
y2_max=max(y2_array)
|
||||
y3_max=max(y3_array)
|
||||
y_max=max([y1_max, y2_max, y3_max])
|
||||
ax.set_ylim(y_min, y_max)
|
||||
if save == 1:
|
||||
plt.savefig(filename+file_format, dpi=dpi)
|
||||
if show == 1:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 三组横坐标数据,三组纵坐标数据画图
|
||||
def plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):
|
||||
import guan
|
||||
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
|
||||
ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1)
|
||||
ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2)
|
||||
ax.plot(x3_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3)
|
||||
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
if y_min!=None or y_max!=None:
|
||||
if y_min==None:
|
||||
y1_min=min(y1_array)
|
||||
y2_min=min(y2_array)
|
||||
y3_min=min(y3_array)
|
||||
y_min=min([y1_min, y2_min, y3_min])
|
||||
if y_max==None:
|
||||
y1_max=max(y1_array)
|
||||
y2_max=max(y2_array)
|
||||
y3_max=max(y3_array)
|
||||
y_max=max([y1_max, y2_max, y3_max])
|
||||
ax.set_ylim(y_min, y_max)
|
||||
if save == 1:
|
||||
plt.savefig(filename+file_format, dpi=dpi)
|
||||
if show == 1:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 画三维图
|
||||
def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', file_format='.jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100):
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import cm
|
||||
from matplotlib.ticker import LinearLocator
|
||||
matrix = np.array(matrix)
|
||||
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
|
||||
plt.subplots_adjust(bottom=0.1, right=0.65)
|
||||
x_array, y_array = np.meshgrid(x_array, y_array)
|
||||
if len(matrix.shape) == 2:
|
||||
surf = ax.plot_surface(x_array, y_array, matrix, rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)
|
||||
elif len(matrix.shape) == 3:
|
||||
for i0 in range(matrix.shape[2]):
|
||||
surf = ax.plot_surface(x_array, y_array, matrix[:,:,i0], rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)
|
||||
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_zlabel(zlabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.zaxis.set_major_locator(LinearLocator(5))
|
||||
ax.zaxis.set_major_formatter('{x:.2f}')
|
||||
if z_min!=None or z_max!=None:
|
||||
if z_min==None:
|
||||
z_min=matrix.min()
|
||||
if z_max==None:
|
||||
z_max=matrix.max()
|
||||
ax.set_zlim(z_min, z_max)
|
||||
ax.tick_params(labelsize=labelsize)
|
||||
labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels()
|
||||
[label.set_fontname('Times New Roman') for label in labels]
|
||||
cax = plt.axes([0.8, 0.1, 0.05, 0.8])
|
||||
cbar = fig.colorbar(surf, cax=cax)
|
||||
cbar.ax.tick_params(labelsize=labelsize)
|
||||
for l in cbar.ax.yaxis.get_ticklabels():
|
||||
l.set_family('Times New Roman')
|
||||
if save == 1:
|
||||
plt.savefig(filename+file_format, dpi=dpi)
|
||||
if show == 1:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 画Contour图
|
||||
def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300):
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
fig, ax = plt.subplots()
|
||||
plt.subplots_adjust(bottom=0.2, right=0.75, left=0.2)
|
||||
x_array, y_array = np.meshgrid(x_array, y_array)
|
||||
contour = ax.contourf(x_array,y_array,matrix,cmap=cmap, levels=levels)
|
||||
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.tick_params(labelsize=labelsize)
|
||||
labels = ax.get_xticklabels() + ax.get_yticklabels()
|
||||
[label.set_fontname('Times New Roman') for label in labels]
|
||||
cax = plt.axes([0.8, 0.2, 0.05, 0.68])
|
||||
cbar = fig.colorbar(contour, cax=cax)
|
||||
cbar.ax.tick_params(labelsize=labelsize)
|
||||
for l in cbar.ax.yaxis.get_ticklabels():
|
||||
l.set_family('Times New Roman')
|
||||
if save == 1:
|
||||
plt.savefig(filename+file_format, dpi=dpi)
|
||||
if show == 1:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 画棋盘图/伪彩色图
|
||||
def plot_pcolor(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300):
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
fig, ax = plt.subplots()
|
||||
plt.subplots_adjust(bottom=0.2, right=0.75, left=0.2)
|
||||
x_array, y_array = np.meshgrid(x_array, y_array)
|
||||
contour = ax.pcolor(x_array,y_array,matrix, cmap=cmap)
|
||||
ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
|
||||
ax.tick_params(labelsize=labelsize)
|
||||
labels = ax.get_xticklabels() + ax.get_yticklabels()
|
||||
[label.set_fontname('Times New Roman') for label in labels]
|
||||
cax = plt.axes([0.8, 0.2, 0.05, 0.68])
|
||||
cbar = fig.colorbar(contour, cax=cax)
|
||||
cbar.ax.tick_params(labelsize=labelsize)
|
||||
for l in cbar.ax.yaxis.get_ticklabels():
|
||||
l.set_family('Times New Roman')
|
||||
if save == 1:
|
||||
plt.savefig(filename+file_format, dpi=dpi)
|
||||
if show == 1:
|
||||
plt.show()
|
||||
plt.close('all')
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 通过坐标画点和线
|
||||
def draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distance=1.1, line_style='-k', linewidth=1, dot_style='ro', markersize=3, show=1, save=0, filename='a', file_format='.eps', dpi=300):
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
coordinate_array = np.array(coordinate_array)
|
||||
print(coordinate_array.shape)
|
||||
x_range = max(coordinate_array[:, 0])-min(coordinate_array[:, 0])
|
||||
y_range = max(coordinate_array[:, 1])-min(coordinate_array[:, 1])
|
||||
fig, ax = plt.subplots(figsize=(6*x_range/y_range,6))
|
||||
plt.subplots_adjust(left=0, bottom=0, right=1, top=1)
|
||||
plt.axis('off')
|
||||
if draw_lines==1:
|
||||
for i1 in range(coordinate_array.shape[0]):
|
||||
for i2 in range(coordinate_array.shape[0]):
|
||||
if np.sqrt((coordinate_array[i1, 0] - coordinate_array[i2, 0])**2+(coordinate_array[i1, 1] - coordinate_array[i2, 1])**2) < max_distance:
|
||||
ax.plot([coordinate_array[i1, 0], coordinate_array[i2, 0]], [coordinate_array[i1, 1], coordinate_array[i2, 1]], line_style, linewidth=linewidth)
|
||||
if draw_dots==1:
|
||||
for i in range(coordinate_array.shape[0]):
|
||||
ax.plot(coordinate_array[i, 0], coordinate_array[i, 1], dot_style, markersize=markersize)
|
||||
if show==1:
|
||||
plt.show()
|
||||
if save==1:
|
||||
if file_format=='.eps':
|
||||
plt.savefig(filename+file_format)
|
||||
else:
|
||||
plt.savefig(filename+file_format, dpi=dpi)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 合并两个图片
|
||||
def combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filename='a', file_format='.jpg', dpi=300):
|
||||
import numpy as np
|
||||
num = np.array(image_path_array).shape[0]
|
||||
if num != 2:
|
||||
print('Error: The number of images should be two!')
|
||||
else:
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.image as mpimg
|
||||
fig = plt.figure(figsize=figsize)
|
||||
plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)
|
||||
ax1 = fig.add_subplot(121)
|
||||
ax2 = fig.add_subplot(122)
|
||||
image_1 = mpimg.imread(image_path_array[0])
|
||||
image_2 = mpimg.imread(image_path_array[1])
|
||||
ax1.imshow(image_1)
|
||||
ax2.imshow(image_2)
|
||||
ax1.axis('off')
|
||||
ax2.axis('off')
|
||||
if show == 1:
|
||||
plt.show()
|
||||
if save == 1:
|
||||
plt.savefig(filename+file_format, dpi=dpi)
|
||||
plt.close('all')
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 合并三个图片
|
||||
def combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filename='a', file_format='.jpg', dpi=300):
|
||||
import numpy as np
|
||||
num = np.array(image_path_array).shape[0]
|
||||
if num != 3:
|
||||
print('Error: The number of images should be three!')
|
||||
else:
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.image as mpimg
|
||||
fig = plt.figure(figsize=figsize)
|
||||
plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)
|
||||
ax1 = fig.add_subplot(131)
|
||||
ax2 = fig.add_subplot(132)
|
||||
ax3 = fig.add_subplot(133)
|
||||
image_1 = mpimg.imread(image_path_array[0])
|
||||
image_2 = mpimg.imread(image_path_array[1])
|
||||
image_3 = mpimg.imread(image_path_array[2])
|
||||
ax1.imshow(image_1)
|
||||
ax2.imshow(image_2)
|
||||
ax3.imshow(image_3)
|
||||
ax1.axis('off')
|
||||
ax2.axis('off')
|
||||
ax3.axis('off')
|
||||
if show == 1:
|
||||
plt.show()
|
||||
if save == 1:
|
||||
plt.savefig(filename+file_format, dpi=dpi)
|
||||
plt.close('all')
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 合并四个图片
|
||||
def combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filename='a', file_format='.jpg', dpi=300):
|
||||
import numpy as np
|
||||
num = np.array(image_path_array).shape[0]
|
||||
if num != 4:
|
||||
print('Error: The number of images should be four!')
|
||||
else:
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.image as mpimg
|
||||
fig = plt.figure(figsize=figsize)
|
||||
plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)
|
||||
ax1 = fig.add_subplot(221)
|
||||
ax2 = fig.add_subplot(222)
|
||||
ax3 = fig.add_subplot(223)
|
||||
ax4 = fig.add_subplot(224)
|
||||
image_1 = mpimg.imread(image_path_array[0])
|
||||
image_2 = mpimg.imread(image_path_array[1])
|
||||
image_3 = mpimg.imread(image_path_array[2])
|
||||
image_4 = mpimg.imread(image_path_array[3])
|
||||
ax1.imshow(image_1)
|
||||
ax2.imshow(image_2)
|
||||
ax3.imshow(image_3)
|
||||
ax4.imshow(image_4)
|
||||
ax1.axis('off')
|
||||
ax2.axis('off')
|
||||
ax3.axis('off')
|
||||
ax4.axis('off')
|
||||
if show == 1:
|
||||
plt.show()
|
||||
if save == 1:
|
||||
plt.savefig(filename+file_format, dpi=dpi)
|
||||
plt.close('all')
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 对于某个目录中的txt文件,批量读取和画图
|
||||
def batch_reading_and_plotting(directory, xlabel='x', ylabel='y'):
|
||||
import re
|
||||
import os
|
||||
import guan
|
||||
for root, dirs, files in os.walk(directory):
|
||||
for file in files:
|
||||
if re.search('^txt.', file[::-1]):
|
||||
filename = file[:-4]
|
||||
x_array, y_array = guan.read_one_dimensional_data(filename=filename)
|
||||
guan.plot(x_array, y_array, xlabel=xlabel, ylabel=ylabel, title=filename, show=0, save=1, filename=filename)
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 制作GIF动画
|
||||
def make_gif(image_path_array, filename='a', duration=0.1):
|
||||
import imageio
|
||||
images = []
|
||||
for image_path in image_path_array:
|
||||
im = imageio.imread(image_path)
|
||||
images.append(im)
|
||||
imageio.mimsave(filename+'.gif', images, 'GIF', duration=duration)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 选取颜色
|
||||
def color_matplotlib():
|
||||
color_array = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan']
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return color_array
|
@ -479,7 +479,7 @@ def calculate_scattering_matrix_and_get_information(fermi_energy, h00, h01, leng
|
||||
|
||||
return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels
|
||||
|
||||
# 从散射矩阵中,打印出散射矩阵的信息
|
||||
# 从散射矩阵中打印出散射矩阵的信息
|
||||
def print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=1, write_file=0, filename='a', file_format='.txt'):
|
||||
if print_show == 1:
|
||||
print('\nActive channel (left or right) = ', number_of_active_channels)
|
||||
|
@ -1,263 +0,0 @@
|
||||
# Module: read_and_write
|
||||
|
||||
# 将数据存到文件
|
||||
def dump_data(data, filename, file_format='.txt'):
|
||||
import pickle
|
||||
with open(filename+file_format, 'wb') as f:
|
||||
pickle.dump(data, f)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 从文件中恢复数据到变量
|
||||
def load_data(filename, file_format='.txt'):
|
||||
import pickle
|
||||
with open(filename+file_format, 'rb') as f:
|
||||
data = pickle.load(f)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return data
|
||||
|
||||
# 读取文件中的一维数据(每一行一组x和y)
|
||||
def read_one_dimensional_data(filename='a', file_format='.txt'):
|
||||
import numpy as np
|
||||
f = open(filename+file_format, 'r')
|
||||
text = f.read()
|
||||
f.close()
|
||||
row_list = np.array(text.split('\n'))
|
||||
dim_column = np.array(row_list[0].split()).shape[0]
|
||||
x_array = np.array([])
|
||||
y_array = np.array([])
|
||||
for row in row_list:
|
||||
column = np.array(row.split())
|
||||
if column.shape[0] != 0:
|
||||
x_array = np.append(x_array, [float(column[0])], axis=0)
|
||||
y_row = np.zeros(dim_column-1)
|
||||
for dim0 in range(dim_column-1):
|
||||
y_row[dim0] = float(column[dim0+1])
|
||||
if np.array(y_array).shape[0] == 0:
|
||||
y_array = [y_row]
|
||||
else:
|
||||
y_array = np.append(y_array, [y_row], axis=0)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return x_array, y_array
|
||||
|
||||
# 读取文件中的一维数据(每一行一组x和y)(支持复数形式)
|
||||
def read_one_dimensional_complex_data(filename='a', file_format='.txt'):
|
||||
import numpy as np
|
||||
f = open(filename+file_format, 'r')
|
||||
text = f.read()
|
||||
f.close()
|
||||
row_list = np.array(text.split('\n'))
|
||||
dim_column = np.array(row_list[0].split()).shape[0]
|
||||
x_array = np.array([])
|
||||
y_array = np.array([])
|
||||
for row in row_list:
|
||||
column = np.array(row.split())
|
||||
if column.shape[0] != 0:
|
||||
x_array = np.append(x_array, [complex(column[0])], axis=0)
|
||||
y_row = np.zeros(dim_column-1, dtype=complex)
|
||||
for dim0 in range(dim_column-1):
|
||||
y_row[dim0] = complex(column[dim0+1])
|
||||
if np.array(y_array).shape[0] == 0:
|
||||
y_array = [y_row]
|
||||
else:
|
||||
y_array = np.append(y_array, [y_row], axis=0)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return x_array, y_array
|
||||
|
||||
# 读取文件中的二维数据(第一行和列分别为横纵坐标)
|
||||
def read_two_dimensional_data(filename='a', file_format='.txt'):
|
||||
import numpy as np
|
||||
f = open(filename+file_format, 'r')
|
||||
text = f.read()
|
||||
f.close()
|
||||
row_list = np.array(text.split('\n'))
|
||||
dim_column = np.array(row_list[0].split()).shape[0]
|
||||
x_array = np.array([])
|
||||
y_array = np.array([])
|
||||
matrix = np.array([])
|
||||
for i0 in range(row_list.shape[0]):
|
||||
column = np.array(row_list[i0].split())
|
||||
if i0 == 0:
|
||||
x_str = column[1::]
|
||||
x_array = np.zeros(x_str.shape[0])
|
||||
for i00 in range(x_str.shape[0]):
|
||||
x_array[i00] = float(x_str[i00])
|
||||
elif column.shape[0] != 0:
|
||||
y_array = np.append(y_array, [float(column[0])], axis=0)
|
||||
matrix_row = np.zeros(dim_column-1)
|
||||
for dim0 in range(dim_column-1):
|
||||
matrix_row[dim0] = float(column[dim0+1])
|
||||
if np.array(matrix).shape[0] == 0:
|
||||
matrix = [matrix_row]
|
||||
else:
|
||||
matrix = np.append(matrix, [matrix_row], axis=0)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return x_array, y_array, matrix
|
||||
|
||||
# 读取文件中的二维数据(第一行和列分别为横纵坐标)(支持复数形式)
|
||||
def read_two_dimensional_complex_data(filename='a', file_format='.txt'):
|
||||
import numpy as np
|
||||
f = open(filename+file_format, 'r')
|
||||
text = f.read()
|
||||
f.close()
|
||||
row_list = np.array(text.split('\n'))
|
||||
dim_column = np.array(row_list[0].split()).shape[0]
|
||||
x_array = np.array([])
|
||||
y_array = np.array([])
|
||||
matrix = np.array([])
|
||||
for i0 in range(row_list.shape[0]):
|
||||
column = np.array(row_list[i0].split())
|
||||
if i0 == 0:
|
||||
x_str = column[1::]
|
||||
x_array = np.zeros(x_str.shape[0], dtype=complex)
|
||||
for i00 in range(x_str.shape[0]):
|
||||
x_array[i00] = complex(x_str[i00])
|
||||
elif column.shape[0] != 0:
|
||||
y_array = np.append(y_array, [complex(column[0])], axis=0)
|
||||
matrix_row = np.zeros(dim_column-1, dtype=complex)
|
||||
for dim0 in range(dim_column-1):
|
||||
matrix_row[dim0] = complex(column[dim0+1])
|
||||
if np.array(matrix).shape[0] == 0:
|
||||
matrix = [matrix_row]
|
||||
else:
|
||||
matrix = np.append(matrix, [matrix_row], axis=0)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return x_array, y_array, matrix
|
||||
|
||||
# 读取文件中的二维数据(不包括x和y)
|
||||
def read_two_dimensional_data_without_xy_array(filename='a', file_format='.txt'):
|
||||
import numpy as np
|
||||
matrix = np.loadtxt(filename+file_format)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return matrix
|
||||
|
||||
# 打开文件用于新增内容
|
||||
def open_file(filename='a', file_format='.txt'):
|
||||
f = open(filename+file_format, 'a', encoding='UTF-8')
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return f
|
||||
|
||||
# 在文件中写入一维数据(每一行一组x和y)
|
||||
def write_one_dimensional_data(x_array, y_array, filename='a', file_format='.txt'):
|
||||
import guan
|
||||
with open(filename+file_format, 'w', encoding='UTF-8') as f:
|
||||
guan.write_one_dimensional_data_without_opening_file(x_array, y_array, f)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 在文件中写入一维数据(每一行一组x和y)(需要输入文件)
|
||||
def write_one_dimensional_data_without_opening_file(x_array, y_array, f):
|
||||
import numpy as np
|
||||
x_array = np.array(x_array)
|
||||
y_array = np.array(y_array)
|
||||
i0 = 0
|
||||
for x0 in x_array:
|
||||
f.write(str(x0)+' ')
|
||||
if len(y_array.shape) == 1:
|
||||
f.write(str(y_array[i0])+'\n')
|
||||
elif len(y_array.shape) == 2:
|
||||
for j0 in range(y_array.shape[1]):
|
||||
f.write(str(y_array[i0, j0])+' ')
|
||||
f.write('\n')
|
||||
i0 += 1
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 在文件中写入二维数据(第一行和列分别为横纵坐标)
|
||||
def write_two_dimensional_data(x_array, y_array, matrix, filename='a', file_format='.txt'):
|
||||
import guan
|
||||
with open(filename+file_format, 'w', encoding='UTF-8') as f:
|
||||
guan.write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f)
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 在文件中写入二维数据(第一行和列分别为横纵坐标)(需要输入文件)
|
||||
def write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f):
|
||||
import numpy as np
|
||||
x_array = np.array(x_array)
|
||||
y_array = np.array(y_array)
|
||||
matrix = np.array(matrix)
|
||||
f.write('0 ')
|
||||
for x0 in x_array:
|
||||
f.write(str(x0)+' ')
|
||||
f.write('\n')
|
||||
i0 = 0
|
||||
for y0 in y_array:
|
||||
f.write(str(y0))
|
||||
j0 = 0
|
||||
for x0 in x_array:
|
||||
f.write(' '+str(matrix[i0, j0])+' ')
|
||||
j0 += 1
|
||||
f.write('\n')
|
||||
i0 += 1
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 在文件中写入二维数据(不包括x和y)
|
||||
def write_two_dimensional_data_without_xy_array(matrix, filename='a', file_format='.txt'):
|
||||
import guan
|
||||
with open(filename+file_format, 'w', encoding='UTF-8') as f:
|
||||
guan.write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f)
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 在文件中写入二维数据(不包括x和y)(需要输入文件)
|
||||
def write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f):
|
||||
for row in matrix:
|
||||
for element in row:
|
||||
f.write(str(element)+' ')
|
||||
f.write('\n')
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 以显示编号的样式,打印数组
|
||||
def print_array_with_index(array, show_index=1, index_type=0):
|
||||
if show_index==0:
|
||||
for i0 in array:
|
||||
print(i0)
|
||||
else:
|
||||
if index_type==0:
|
||||
index = 0
|
||||
for i0 in array:
|
||||
print(index, i0)
|
||||
index += 1
|
||||
else:
|
||||
index = 0
|
||||
for i0 in array:
|
||||
index += 1
|
||||
print(index, i0)
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
|
||||
# 读取文件夹中某个文件类型的所有文本文件
|
||||
def read_text_files_in_directory(directory='./', file_format='.md'):
|
||||
import os
|
||||
file_list = []
|
||||
for root, dirs, files in os.walk(directory):
|
||||
for i0 in range(len(files)):
|
||||
if file_format in files[i0]:
|
||||
file_list.append(root+'/'+files[i0])
|
||||
content_array = []
|
||||
for file in file_list:
|
||||
with open(file, 'r') as f:
|
||||
content_array.append(f.read())
|
||||
import guan
|
||||
guan.statistics_of_guan_package()
|
||||
return file_list, content_array
|
||||
|
||||
# 在多个文本文件中查找关键词
|
||||
def find_words_in_multiple_files(words, directory='./', file_format='.md'):
|
||||
import guan
|
||||
file_list, content_array = guan.read_text_files_in_directory(directory=directory, file_format=file_format)
|
||||
num_files = len(file_list)
|
||||
file_list_with_words = []
|
||||
for i0 in range(num_files):
|
||||
if words in content_array[i0]:
|
||||
file_list_with_words.append(file_list[i0])
|
||||
guan.statistics_of_guan_package()
|
||||
return file_list_with_words
|
@ -1,6 +1,6 @@
|
||||
## Guan package
|
||||
|
||||
Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as figure plotting, file-reading/writing, file processing, data processing.
|
||||
Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated, such as figure-plotting and file-reading/writing.
|
||||
|
||||
The primary location of this package is on https://py.guanjihuan.com.
|
||||
|
||||
@ -16,17 +16,14 @@ import guan
|
||||
|
||||
+ basic functions
|
||||
+ Fourier transform
|
||||
+ Hamiltonian of finite size systems
|
||||
+ Hamiltonian of models in reciprocal space
|
||||
+ Hamiltonian of examples
|
||||
+ band structures and wave functions
|
||||
+ Green functions
|
||||
+ density of states
|
||||
+ quantum transport
|
||||
+ topological invariant
|
||||
+ plot figures
|
||||
+ read and write
|
||||
+ file processing
|
||||
+ data processing
|
||||
+ others
|
||||
|
||||
## About this package
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user