0.0.110
This commit is contained in:
		| @@ -2,7 +2,7 @@ | ||||
|  | ||||
| # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. | ||||
|  | ||||
| # The current version is guan-0.0.109, updated on July 13, 2022. | ||||
| # The current version is guan-0.0.110, updated on July 14, 2022. | ||||
|  | ||||
| # Installation: pip install --upgrade guan | ||||
|  | ||||
| @@ -314,7 +314,7 @@ def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj() | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_finite_size_SSH_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1): | ||||
| def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1): | ||||
|     hamiltonian = np.zeros((2*N, 2*N)) | ||||
|     for i in range(N): | ||||
|         hamiltonian[i*2+0, i*2+0] = onsite_1 | ||||
| @@ -348,7 +348,7 @@ def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, | ||||
|     hamiltonian = guan.finite_size_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2) | ||||
|     return hamiltonian | ||||
|  | ||||
| def get_onsite_and_hopping_terms_of_BHZ_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
| def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
|     E_s = C+M-4*(D+B)/(a**2) | ||||
|     E_p = C-M-4*(D-B)/(a**2) | ||||
|     V_ss = (D+B)/(a**2) | ||||
| @@ -379,7 +379,7 @@ def get_onsite_and_hopping_terms_of_BHZ_model(A=0.3645/5, B=-0.686/25, C=0, D=-0 | ||||
|     H2[3, 2] = -1j*V_sp | ||||
|     return H0, H1, H2 | ||||
|  | ||||
| def get_onsite_and_hopping_terms_of_half_BHZ_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
| def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
|     E_s = C+M-4*(D+B)/(a**2) | ||||
|     E_p = C-M-4*(D-B)/(a**2) | ||||
|     V_ss = (D+B)/(a**2) | ||||
| @@ -400,7 +400,7 @@ def get_onsite_and_hopping_terms_of_half_BHZ_model_for_spin_up(A=0.3645/5, B=-0. | ||||
|     H2[1, 0] = 1j*np.conj(V_sp) | ||||
|     return H0, H1, H2 | ||||
|  | ||||
| def get_onsite_and_hopping_terms_of_half_BHZ_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
| def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
|     E_s = C+M-4*(D+B)/(a**2) | ||||
|     E_p = C-M-4*(D-B)/(a**2) | ||||
|     V_ss = (D+B)/(a**2) | ||||
| @@ -571,7 +571,7 @@ def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1): | ||||
|     hamiltonian[1, 1] = -(m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2)) | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_BHZ_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
| def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
|     hamiltonian = np.zeros((4, 4), dtype=complex) | ||||
|     varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) | ||||
|     d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) | ||||
| @@ -586,7 +586,7 @@ def hamiltonian_of_BHZ_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, | ||||
|     hamiltonian[3, 2] = -np.conj(d1_d2) | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_half_BHZ_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
| def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
|     varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) | ||||
|     d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) | ||||
| @@ -597,7 +597,7 @@ def hamiltonian_of_half_BHZ_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C | ||||
|     hamiltonian[1, 0] = d1_d2 | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_half_BHZ_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
| def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
|     varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky)) | ||||
|     d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky)) | ||||
| @@ -608,7 +608,7 @@ def hamiltonian_of_half_BHZ_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, | ||||
|     hamiltonian[1, 0] = -np.conj(d1_d2) | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_BBH_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1): | ||||
| def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1): | ||||
|     # label of atoms in a unit cell | ||||
|     # (2) —— (0) | ||||
|     #  |      | | ||||
| @@ -624,6 +624,18 @@ def hamiltonian_of_BBH_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambd | ||||
|     hamiltonian[2, 1] = np.conj(hamiltonian[1, 2])  | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_kagome_lattice(kx, ky, t=1): | ||||
|     k1_dot_a1 = kx | ||||
|     k2_dot_a2 = kx/2+ky*math.sqrt(3)/2 | ||||
|     k3_dot_a3 = -kx/2+ky*math.sqrt(3)/2 | ||||
|     hamiltonian = np.zeros((3, 3), dtype=complex) | ||||
|     hamiltonian[0, 1] = 2*math.cos(k1_dot_a1) | ||||
|     hamiltonian[0, 2] = 2*math.cos(k2_dot_a2) | ||||
|     hamiltonian[1, 2] = 2*math.cos(k3_dot_a3) | ||||
|     hamiltonian = hamiltonian + hamiltonian.transpose().conj() | ||||
|     hamiltonian = -t*hamiltonian | ||||
|     return hamiltonian | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user