0.0.120
This commit is contained in:
		| @@ -1,5 +1,6 @@ | |||||||
|  |  | ||||||
| import guan | import guan | ||||||
|  | import math | ||||||
|  |  | ||||||
| # Module 1: basic functions | # Module 1: basic functions | ||||||
|  |  | ||||||
| @@ -245,7 +246,9 @@ guan.print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_ | |||||||
|  |  | ||||||
| chern_number = guan.calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100, print_show=0) | chern_number = guan.calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100, print_show=0) | ||||||
|  |  | ||||||
| chern_number = guan.calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=10, precision_of_Wilson_loop=100, print_show=0) | chern_number = guan.calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0) | ||||||
|  |  | ||||||
|  | chern_number = guan.calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(hamiltonian_function, num_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0) | ||||||
|  |  | ||||||
| chern_number = guan.calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0) | chern_number = guan.calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0) | ||||||
|  |  | ||||||
|   | |||||||
| @@ -1,7 +1,7 @@ | |||||||
| [metadata] | [metadata] | ||||||
| # replace with your username: | # replace with your username: | ||||||
| name = guan | name = guan | ||||||
| version = 0.0.119 | version = 0.0.120 | ||||||
| author = guanjihuan | author = guanjihuan | ||||||
| author_email = guanjihuan@163.com | author_email = guanjihuan@163.com | ||||||
| description = An open source python package | description = An open source python package | ||||||
|   | |||||||
| @@ -1,6 +1,6 @@ | |||||||
| Metadata-Version: 2.1 | Metadata-Version: 2.1 | ||||||
| Name: guan | Name: guan | ||||||
| Version: 0.0.119 | Version: 0.0.120 | ||||||
| Summary: An open source python package | Summary: An open source python package | ||||||
| Home-page: https://py.guanjihuan.com | Home-page: https://py.guanjihuan.com | ||||||
| Author: guanjihuan | Author: guanjihuan | ||||||
|   | |||||||
| @@ -2,7 +2,7 @@ | |||||||
|  |  | ||||||
| # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. | # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. | ||||||
|  |  | ||||||
| # The current version is guan-0.0.119, updated on August 10, 2022. | # The current version is guan-0.0.120, updated on August 12, 2022. | ||||||
|  |  | ||||||
| # Installation: pip install --upgrade guan | # Installation: pip install --upgrade guan | ||||||
|  |  | ||||||
| @@ -1551,7 +1551,7 @@ def calculate_chern_number_for_square_lattice(hamiltonian_function, precision=10 | |||||||
|     chern_number = chern_number/(2*math.pi*1j) |     chern_number = chern_number/(2*math.pi*1j) | ||||||
|     return chern_number |     return chern_number | ||||||
|  |  | ||||||
| def calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=10, precision_of_Wilson_loop=100, print_show=0): | def calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0): | ||||||
|     delta = 2*math.pi/precision_of_plaquettes |     delta = 2*math.pi/precision_of_plaquettes | ||||||
|     chern_number = 0 |     chern_number = 0 | ||||||
|     for kx in np.arange(-math.pi, math.pi, delta): |     for kx in np.arange(-math.pi, math.pi, delta): | ||||||
| @@ -1592,6 +1592,66 @@ def calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_funct | |||||||
|     chern_number = chern_number/(2*math.pi) |     chern_number = chern_number/(2*math.pi) | ||||||
|     return chern_number |     return chern_number | ||||||
|  |  | ||||||
|  | def calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(hamiltonian_function, num_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0): | ||||||
|  |     delta = 2*math.pi/precision_of_plaquettes | ||||||
|  |     chern_number = 0 | ||||||
|  |     for kx in np.arange(-math.pi, math.pi, delta): | ||||||
|  |         if print_show == 1: | ||||||
|  |             print(kx) | ||||||
|  |         for ky in np.arange(-math.pi, math.pi, delta): | ||||||
|  |             vector_array = [] | ||||||
|  |             # line_1 | ||||||
|  |             for i0 in range(precision_of_Wilson_loop): | ||||||
|  |                 H_delta = hamiltonian_function(kx+delta/precision_of_Wilson_loop*i0, ky)  | ||||||
|  |                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||||
|  |                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||||
|  |                 vector_array.append(vector_delta) | ||||||
|  |             # line_2 | ||||||
|  |             for i0 in range(precision_of_Wilson_loop): | ||||||
|  |                 H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_Wilson_loop*i0)   | ||||||
|  |                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||||
|  |                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||||
|  |                 vector_array.append(vector_delta) | ||||||
|  |             # line_3 | ||||||
|  |             for i0 in range(precision_of_Wilson_loop): | ||||||
|  |                 H_delta = hamiltonian_function(kx+delta-delta/precision_of_Wilson_loop*i0, ky+delta)   | ||||||
|  |                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||||
|  |                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||||
|  |                 vector_array.append(vector_delta) | ||||||
|  |             # line_4 | ||||||
|  |             for i0 in range(precision_of_Wilson_loop): | ||||||
|  |                 H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_Wilson_loop*i0)   | ||||||
|  |                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||||
|  |                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||||
|  |                 vector_array.append(vector_delta)            | ||||||
|  |             Wilson_loop = 1 | ||||||
|  |             dim = len(num_of_bands) | ||||||
|  |             for i0 in range(len(vector_array)-1): | ||||||
|  |                 dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||||
|  |                 i01 = 0 | ||||||
|  |                 for dim1 in num_of_bands: | ||||||
|  |                     i02 = 0 | ||||||
|  |                     for dim2 in num_of_bands: | ||||||
|  |                         dot_matrix[i01, i02] = np.dot(vector_array[i0][:, dim1].transpose().conj(), vector_array[i0+1][:, dim2]) | ||||||
|  |                         i02 += 1 | ||||||
|  |                     i01 += 1 | ||||||
|  |                 det_value = np.linalg.det(dot_matrix) | ||||||
|  |                 Wilson_loop = Wilson_loop*det_value | ||||||
|  |             dot_matrix_plus = np.zeros((dim , dim), dtype=complex) | ||||||
|  |             i01 = 0 | ||||||
|  |             for dim1 in num_of_bands: | ||||||
|  |                 i02 = 0 | ||||||
|  |                 for dim2 in num_of_bands: | ||||||
|  |                     dot_matrix_plus[i01, i02] = np.dot(vector_array[len(vector_array)-1][:, dim1].transpose().conj(), vector_array[0][:, dim2]) | ||||||
|  |                     i02 += 1 | ||||||
|  |                 i01 += 1 | ||||||
|  |             det_value = np.linalg.det(dot_matrix_plus) | ||||||
|  |             Wilson_loop = Wilson_loop*det_value | ||||||
|  |             arg = np.log(Wilson_loop)/1j | ||||||
|  |             chern_number = chern_number + arg | ||||||
|  |     chern_number = chern_number/(2*math.pi) | ||||||
|  |     return chern_number | ||||||
|  |  | ||||||
| def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0): | def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0): | ||||||
|     if np.array(hamiltonian_function(0, 0)).shape==(): |     if np.array(hamiltonian_function(0, 0)).shape==(): | ||||||
|         dim = 1 |         dim = 1 | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user