This commit is contained in:
guanjihuan 2022-08-12 11:37:37 +08:00
parent 627c50634f
commit 4677ff429d
4 changed files with 68 additions and 5 deletions

View File

@ -1,5 +1,6 @@
import guan
import math
# Module 1: basic functions
@ -245,7 +246,9 @@ guan.print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_
chern_number = guan.calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100, print_show=0)
chern_number = guan.calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=10, precision_of_Wilson_loop=100, print_show=0)
chern_number = guan.calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0)
chern_number = guan.calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(hamiltonian_function, num_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0)
chern_number = guan.calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0)

View File

@ -1,7 +1,7 @@
[metadata]
# replace with your username:
name = guan
version = 0.0.119
version = 0.0.120
author = guanjihuan
author_email = guanjihuan@163.com
description = An open source python package

View File

@ -1,6 +1,6 @@
Metadata-Version: 2.1
Name: guan
Version: 0.0.119
Version: 0.0.120
Summary: An open source python package
Home-page: https://py.guanjihuan.com
Author: guanjihuan

View File

@ -2,7 +2,7 @@
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
# The current version is guan-0.0.119, updated on August 10, 2022.
# The current version is guan-0.0.120, updated on August 12, 2022.
# Installation: pip install --upgrade guan
@ -1551,7 +1551,7 @@ def calculate_chern_number_for_square_lattice(hamiltonian_function, precision=10
chern_number = chern_number/(2*math.pi*1j)
return chern_number
def calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=10, precision_of_Wilson_loop=100, print_show=0):
def calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0):
delta = 2*math.pi/precision_of_plaquettes
chern_number = 0
for kx in np.arange(-math.pi, math.pi, delta):
@ -1592,6 +1592,66 @@ def calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_funct
chern_number = chern_number/(2*math.pi)
return chern_number
def calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(hamiltonian_function, num_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0):
delta = 2*math.pi/precision_of_plaquettes
chern_number = 0
for kx in np.arange(-math.pi, math.pi, delta):
if print_show == 1:
print(kx)
for ky in np.arange(-math.pi, math.pi, delta):
vector_array = []
# line_1
for i0 in range(precision_of_Wilson_loop):
H_delta = hamiltonian_function(kx+delta/precision_of_Wilson_loop*i0, ky)
eigenvalue, eigenvector = np.linalg.eig(H_delta)
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
vector_array.append(vector_delta)
# line_2
for i0 in range(precision_of_Wilson_loop):
H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_Wilson_loop*i0)
eigenvalue, eigenvector = np.linalg.eig(H_delta)
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
vector_array.append(vector_delta)
# line_3
for i0 in range(precision_of_Wilson_loop):
H_delta = hamiltonian_function(kx+delta-delta/precision_of_Wilson_loop*i0, ky+delta)
eigenvalue, eigenvector = np.linalg.eig(H_delta)
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
vector_array.append(vector_delta)
# line_4
for i0 in range(precision_of_Wilson_loop):
H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_Wilson_loop*i0)
eigenvalue, eigenvector = np.linalg.eig(H_delta)
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
vector_array.append(vector_delta)
Wilson_loop = 1
dim = len(num_of_bands)
for i0 in range(len(vector_array)-1):
dot_matrix = np.zeros((dim , dim), dtype=complex)
i01 = 0
for dim1 in num_of_bands:
i02 = 0
for dim2 in num_of_bands:
dot_matrix[i01, i02] = np.dot(vector_array[i0][:, dim1].transpose().conj(), vector_array[i0+1][:, dim2])
i02 += 1
i01 += 1
det_value = np.linalg.det(dot_matrix)
Wilson_loop = Wilson_loop*det_value
dot_matrix_plus = np.zeros((dim , dim), dtype=complex)
i01 = 0
for dim1 in num_of_bands:
i02 = 0
for dim2 in num_of_bands:
dot_matrix_plus[i01, i02] = np.dot(vector_array[len(vector_array)-1][:, dim1].transpose().conj(), vector_array[0][:, dim2])
i02 += 1
i01 += 1
det_value = np.linalg.det(dot_matrix_plus)
Wilson_loop = Wilson_loop*det_value
arg = np.log(Wilson_loop)/1j
chern_number = chern_number + arg
chern_number = chern_number/(2*math.pi)
return chern_number
def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0):
if np.array(hamiltonian_function(0, 0)).shape==():
dim = 1