This commit is contained in:
guanjihuan 2022-10-10 02:48:51 +08:00
parent def88e0cd6
commit 46d5e23f06
3 changed files with 11 additions and 11 deletions

View File

@ -1,7 +1,7 @@
[metadata]
# replace with your username:
name = guan
version = 0.0.141
version = 0.0.142
author = guanjihuan
author_email = guanjihuan@163.com
description = An open source python package

View File

@ -1,6 +1,6 @@
Metadata-Version: 2.1
Name: guan
Version: 0.0.141
Version: 0.0.142
Summary: An open source python package
Home-page: https://py.guanjihuan.com
Author: guanjihuan

View File

@ -2,7 +2,7 @@
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
# The current version is guan-0.0.141, updated on December 09, 2022.
# The current version is guan-0.0.142, updated on December 10, 2022.
# Installation: pip install --upgrade guan
@ -1776,46 +1776,46 @@ def calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamilton
eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky)
dim = len(index_of_bands)
det_value = 1
# first dot
# first dot product
dot_matrix = np.zeros((dim , dim), dtype=complex)
i0 = 0
for dim1 in index_of_bands:
j0 = 0
for dim2 in index_of_bands:
dot_matrix[dim1, dim2] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2])
dot_matrix[i0, j0] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2])
j0 += 1
i0 += 1
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
det_value = det_value*dot_matrix
# second dot
# second dot product
dot_matrix = np.zeros((dim , dim), dtype=complex)
i0 = 0
for dim1 in index_of_bands:
j0 = 0
for dim2 in index_of_bands:
dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2])
dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2])
j0 += 1
i0 += 1
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
det_value = det_value*dot_matrix
# third dot
# third dot product
dot_matrix = np.zeros((dim , dim), dtype=complex)
i0 = 0
for dim1 in index_of_bands:
j0 = 0
for dim2 in index_of_bands:
dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2])
dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2])
j0 += 1
i0 += 1
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
det_value = det_value*dot_matrix
# four dot
# four dot product
dot_matrix = np.zeros((dim , dim), dtype=complex)
i0 = 0
for dim1 in index_of_bands:
j0 = 0
for dim2 in index_of_bands:
dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2])
dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2])
j0 += 1
i0 += 1
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))