This commit is contained in:
guanjihuan 2022-08-12 19:21:58 +08:00
parent 4677ff429d
commit 4d5cfe2914
4 changed files with 10 additions and 10 deletions

View File

@ -248,7 +248,7 @@ chern_number = guan.calculate_chern_number_for_square_lattice(hamiltonian_functi
chern_number = guan.calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0)
chern_number = guan.calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(hamiltonian_function, num_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0)
chern_number = guan.calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0)
chern_number = guan.calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0)

View File

@ -1,7 +1,7 @@
[metadata]
# replace with your username:
name = guan
version = 0.0.120
version = 0.0.121
author = guanjihuan
author_email = guanjihuan@163.com
description = An open source python package

View File

@ -1,6 +1,6 @@
Metadata-Version: 2.1
Name: guan
Version: 0.0.120
Version: 0.0.121
Summary: An open source python package
Home-page: https://py.guanjihuan.com
Author: guanjihuan

View File

@ -2,7 +2,7 @@
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
# The current version is guan-0.0.120, updated on August 12, 2022.
# The current version is guan-0.0.121, updated on August 12, 2022.
# Installation: pip install --upgrade guan
@ -1592,7 +1592,7 @@ def calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_funct
chern_number = chern_number/(2*math.pi)
return chern_number
def calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(hamiltonian_function, num_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0):
def calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_Wilson_loop=5, print_show=0):
delta = 2*math.pi/precision_of_plaquettes
chern_number = 0
for kx in np.arange(-math.pi, math.pi, delta):
@ -1625,13 +1625,13 @@ def calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_ca
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
vector_array.append(vector_delta)
Wilson_loop = 1
dim = len(num_of_bands)
dim = len(index_of_bands)
for i0 in range(len(vector_array)-1):
dot_matrix = np.zeros((dim , dim), dtype=complex)
i01 = 0
for dim1 in num_of_bands:
for dim1 in index_of_bands:
i02 = 0
for dim2 in num_of_bands:
for dim2 in index_of_bands:
dot_matrix[i01, i02] = np.dot(vector_array[i0][:, dim1].transpose().conj(), vector_array[i0+1][:, dim2])
i02 += 1
i01 += 1
@ -1639,9 +1639,9 @@ def calculate_chern_number_for_square_lattice_with_Wilson_loop_for_degenerate_ca
Wilson_loop = Wilson_loop*det_value
dot_matrix_plus = np.zeros((dim , dim), dtype=complex)
i01 = 0
for dim1 in num_of_bands:
for dim1 in index_of_bands:
i02 = 0
for dim2 in num_of_bands:
for dim2 in index_of_bands:
dot_matrix_plus[i01, i02] = np.dot(vector_array[len(vector_array)-1][:, dim1].transpose().conj(), vector_array[0][:, dim2])
i02 += 1
i01 += 1