39
This commit is contained in:
parent
3d98ec8cdd
commit
518d0ad09f
@ -98,6 +98,7 @@ guan.print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, on_pri
|
||||
|
||||
# calculate topological invariant # Source code: https://py.guanjihuan.com/source-code/calculate_topological_invariant
|
||||
chern_number = guan.calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100)
|
||||
chern_number = guan.calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300)
|
||||
wilson_loop_array = guan.calculate_wilson_loop(hamiltonian_function, k_min=-pi, k_max=pi, precision=100)
|
||||
|
||||
# read and write # Source code: https://py.guanjihuan.com/read_and_write
|
||||
|
@ -1,7 +1,7 @@
|
||||
[metadata]
|
||||
# replace with your username:
|
||||
name = guan
|
||||
version = 0.0.37
|
||||
version = 0.0.39
|
||||
author = guanjihuan
|
||||
author_email = guanjihuan@163.com
|
||||
description = An open source python package
|
||||
|
@ -38,6 +38,42 @@ def calculate_chern_number_for_square_lattice(hamiltonian_function, precision=10
|
||||
chern_number = chern_number/(2*pi*1j)
|
||||
return chern_number
|
||||
|
||||
def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300):
|
||||
if np.array(hamiltonian_function(0, 0)).shape==():
|
||||
dim = 1
|
||||
else:
|
||||
dim = np.array(hamiltonian_function(0, 0)).shape[0]
|
||||
chern_number = np.zeros(dim, dtype=complex)
|
||||
L1 = 4*sqrt(3)*pi/9/a
|
||||
L2 = 2*sqrt(3)*pi/9/a
|
||||
L3 = 2*pi/3/a
|
||||
delta1 = 2*L1/precision
|
||||
delta3 = 2*L3/precision
|
||||
for kx in np.arange(-L1, L1, delta1):
|
||||
for ky in np.arange(-L3, L3, delta3):
|
||||
if (-L2<=kx<=L2) or (kx>L2 and -(L1-kx)*tan(pi/3)<=ky<=(L1-kx)*tan(pi/3)) or (kx<-L2 and -(kx-(-L1))*tan(pi/3)<=ky<=(kx-(-L1))*tan(pi/3)):
|
||||
H = hamiltonian_function(kx, ky)
|
||||
vector = guan.calculate_eigenvector(H)
|
||||
H_delta_kx = hamiltonian_function(kx+delta1, ky)
|
||||
vector_delta_kx = guan.calculate_eigenvector(H_delta_kx)
|
||||
H_delta_ky = hamiltonian_function(kx, ky+delta3)
|
||||
vector_delta_ky = guan.calculate_eigenvector(H_delta_ky)
|
||||
H_delta_kx_ky = hamiltonian_function(kx+delta1, ky+delta3)
|
||||
vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky)
|
||||
for i in range(dim):
|
||||
vector_i = vector[:, i]
|
||||
vector_delta_kx_i = vector_delta_kx[:, i]
|
||||
vector_delta_ky_i = vector_delta_ky[:, i]
|
||||
vector_delta_kx_ky_i = vector_delta_kx_ky[:, i]
|
||||
Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i))
|
||||
Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i))
|
||||
Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i))
|
||||
Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i))
|
||||
F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))
|
||||
chern_number[i] = chern_number[i] + F
|
||||
chern_number = chern_number/(2*pi*1j)
|
||||
return chern_number
|
||||
|
||||
def calculate_wilson_loop(hamiltonian_function, k_min=-pi, k_max=pi, precision=100):
|
||||
k_array = np.linspace(k_min, k_max, precision)
|
||||
dim = np.array(hamiltonian_function(0)).shape[0]
|
||||
|
Loading…
x
Reference in New Issue
Block a user