39
This commit is contained in:
		| @@ -98,6 +98,7 @@ guan.print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, on_pri | ||||
|  | ||||
| # calculate topological invariant     # Source code: https://py.guanjihuan.com/source-code/calculate_topological_invariant | ||||
| chern_number = guan.calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100) | ||||
| chern_number = guan.calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300) | ||||
| wilson_loop_array = guan.calculate_wilson_loop(hamiltonian_function, k_min=-pi, k_max=pi, precision=100) | ||||
|  | ||||
| # read and write    # Source code: https://py.guanjihuan.com/read_and_write | ||||
|   | ||||
| @@ -1,7 +1,7 @@ | ||||
| [metadata] | ||||
| # replace with your username: | ||||
| name = guan | ||||
| version = 0.0.37 | ||||
| version = 0.0.39 | ||||
| author = guanjihuan | ||||
| author_email = guanjihuan@163.com | ||||
| description = An open source python package | ||||
|   | ||||
| @@ -38,6 +38,42 @@ def calculate_chern_number_for_square_lattice(hamiltonian_function, precision=10 | ||||
|     chern_number = chern_number/(2*pi*1j) | ||||
|     return chern_number | ||||
|  | ||||
| def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300): | ||||
|     if np.array(hamiltonian_function(0, 0)).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian_function(0, 0)).shape[0]    | ||||
|     chern_number = np.zeros(dim, dtype=complex) | ||||
|     L1 = 4*sqrt(3)*pi/9/a | ||||
|     L2 = 2*sqrt(3)*pi/9/a | ||||
|     L3 = 2*pi/3/a | ||||
|     delta1 = 2*L1/precision | ||||
|     delta3 = 2*L3/precision | ||||
|     for kx in np.arange(-L1, L1, delta1): | ||||
|         for ky in np.arange(-L3, L3, delta3): | ||||
|             if (-L2<=kx<=L2) or (kx>L2 and -(L1-kx)*tan(pi/3)<=ky<=(L1-kx)*tan(pi/3)) or (kx<-L2 and  -(kx-(-L1))*tan(pi/3)<=ky<=(kx-(-L1))*tan(pi/3)): | ||||
|                 H = hamiltonian_function(kx, ky) | ||||
|                 vector = guan.calculate_eigenvector(H) | ||||
|                 H_delta_kx = hamiltonian_function(kx+delta1, ky)  | ||||
|                 vector_delta_kx = guan.calculate_eigenvector(H_delta_kx) | ||||
|                 H_delta_ky = hamiltonian_function(kx, ky+delta3) | ||||
|                 vector_delta_ky = guan.calculate_eigenvector(H_delta_ky) | ||||
|                 H_delta_kx_ky = hamiltonian_function(kx+delta1, ky+delta3) | ||||
|                 vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky) | ||||
|                 for i in range(dim): | ||||
|                     vector_i = vector[:, i] | ||||
|                     vector_delta_kx_i = vector_delta_kx[:, i] | ||||
|                     vector_delta_ky_i = vector_delta_ky[:, i] | ||||
|                     vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] | ||||
|                     Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) | ||||
|                     Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) | ||||
|                     Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) | ||||
|                     Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) | ||||
|                     F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) | ||||
|                     chern_number[i] = chern_number[i] + F | ||||
|     chern_number = chern_number/(2*pi*1j) | ||||
|     return chern_number | ||||
|  | ||||
| def calculate_wilson_loop(hamiltonian_function, k_min=-pi, k_max=pi, precision=100): | ||||
|     k_array = np.linspace(k_min, k_max, precision) | ||||
|     dim = np.array(hamiltonian_function(0)).shape[0] | ||||
|   | ||||
		Reference in New Issue
	
	Block a user