From 5da37a98a03f0bcda4f44cd704cf412c713a85f3 Mon Sep 17 00:00:00 2001
From: guanjihuan
Date: Sun, 5 Nov 2023 01:31:11 +0800
Subject: [PATCH] 0.1.13
---
PyPI/README.md | 2 +-
PyPI/setup.cfg | 2 +-
PyPI/src/guan.egg-info/PKG-INFO | 4 +-
PyPI/src/guan.egg-info/SOURCES.txt | 13 +
PyPI/src/guan/Fourier_transform.py | 135 +
PyPI/src/guan/Green_functions.py | 153 +
.../Hamiltonian_of_finite_size_systems.py | 260 +
...miltonian_of_models_in_reciprocal_space.py | 315 ++
PyPI/src/guan/__init__.py | 4984 +----------------
.../band_structures_and_wave_functions.py | 204 +
PyPI/src/guan/basic_functions.py | 129 +
PyPI/src/guan/data_processing.py | 638 +++
PyPI/src/guan/density_of_states.py | 164 +
PyPI/src/guan/file_processing.py | 501 ++
PyPI/src/guan/plot_figures.py | 413 ++
PyPI/src/guan/quantum_transport.py | 604 ++
PyPI/src/guan/read_and_write.py | 235 +
PyPI/src/guan/topological_invariant.py | 552 ++
README.md | 2 +-
19 files changed, 4341 insertions(+), 4969 deletions(-)
create mode 100644 PyPI/src/guan/Fourier_transform.py
create mode 100644 PyPI/src/guan/Green_functions.py
create mode 100644 PyPI/src/guan/Hamiltonian_of_finite_size_systems.py
create mode 100644 PyPI/src/guan/Hamiltonian_of_models_in_reciprocal_space.py
create mode 100644 PyPI/src/guan/band_structures_and_wave_functions.py
create mode 100644 PyPI/src/guan/basic_functions.py
create mode 100644 PyPI/src/guan/data_processing.py
create mode 100644 PyPI/src/guan/density_of_states.py
create mode 100644 PyPI/src/guan/file_processing.py
create mode 100644 PyPI/src/guan/plot_figures.py
create mode 100644 PyPI/src/guan/quantum_transport.py
create mode 100644 PyPI/src/guan/read_and_write.py
create mode 100644 PyPI/src/guan/topological_invariant.py
diff --git a/PyPI/README.md b/PyPI/README.md
index c6f4673..19e90a2 100644
--- a/PyPI/README.md
+++ b/PyPI/README.md
@@ -1 +1 @@
-Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com.
\ No newline at end of file
+Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com. The GitHub location of this package is on https://github.com/guanjihuan/py.guanjihuan.com.
\ No newline at end of file
diff --git a/PyPI/setup.cfg b/PyPI/setup.cfg
index a4a91f3..06cf1da 100644
--- a/PyPI/setup.cfg
+++ b/PyPI/setup.cfg
@@ -1,7 +1,7 @@
[metadata]
# replace with your username:
name = guan
-version = 0.1.12
+version = 0.1.13
author = guanjihuan
author_email = guanjihuan@163.com
description = An open source python package
diff --git a/PyPI/src/guan.egg-info/PKG-INFO b/PyPI/src/guan.egg-info/PKG-INFO
index 138a58c..1ba1fb9 100644
--- a/PyPI/src/guan.egg-info/PKG-INFO
+++ b/PyPI/src/guan.egg-info/PKG-INFO
@@ -1,6 +1,6 @@
Metadata-Version: 2.1
Name: guan
-Version: 0.1.12
+Version: 0.1.13
Summary: An open source python package
Home-page: https://py.guanjihuan.com
Author: guanjihuan
@@ -13,4 +13,4 @@ Requires-Python: >=3.6
Description-Content-Type: text/markdown
License-File: LICENSE
-Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com.
+Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com. The GitHub location of this package is on https://github.com/guanjihuan/py.guanjihuan.com.
diff --git a/PyPI/src/guan.egg-info/SOURCES.txt b/PyPI/src/guan.egg-info/SOURCES.txt
index d26d474..6a00c55 100644
--- a/PyPI/src/guan.egg-info/SOURCES.txt
+++ b/PyPI/src/guan.egg-info/SOURCES.txt
@@ -2,7 +2,20 @@ LICENSE
README.md
pyproject.toml
setup.cfg
+src/guan/Fourier_transform.py
+src/guan/Green_functions.py
+src/guan/Hamiltonian_of_finite_size_systems.py
+src/guan/Hamiltonian_of_models_in_reciprocal_space.py
src/guan/__init__.py
+src/guan/band_structures_and_wave_functions.py
+src/guan/basic_functions.py
+src/guan/data_processing.py
+src/guan/density_of_states.py
+src/guan/file_processing.py
+src/guan/plot_figures.py
+src/guan/quantum_transport.py
+src/guan/read_and_write.py
+src/guan/topological_invariant.py
src/guan.egg-info/PKG-INFO
src/guan.egg-info/SOURCES.txt
src/guan.egg-info/dependency_links.txt
diff --git a/PyPI/src/guan/Fourier_transform.py b/PyPI/src/guan/Fourier_transform.py
new file mode 100644
index 0000000..50912f4
--- /dev/null
+++ b/PyPI/src/guan/Fourier_transform.py
@@ -0,0 +1,135 @@
+# Module: Fourier_transform
+
+# 通过元胞和跃迁项得到一维的哈密顿量(需要输入k值)
+def one_dimensional_fourier_transform(k, unit_cell, hopping):
+ import numpy as np
+ import cmath
+ unit_cell = np.array(unit_cell)
+ hopping = np.array(hopping)
+ hamiltonian = unit_cell+hopping*cmath.exp(1j*k)+hopping.transpose().conj()*cmath.exp(-1j*k)
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 通过元胞和跃迁项得到二维方格子的哈密顿量(需要输入k值)
+def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2):
+ import numpy as np
+ import cmath
+ unit_cell = np.array(unit_cell)
+ hopping_1 = np.array(hopping_1)
+ hopping_2 = np.array(hopping_2)
+ hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 通过元胞和跃迁项得到三维立方格子的哈密顿量(需要输入k值)
+def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3):
+ import numpy as np
+ import cmath
+ unit_cell = np.array(unit_cell)
+ hopping_1 = np.array(hopping_1)
+ hopping_2 = np.array(hopping_2)
+ hopping_3 = np.array(hopping_3)
+ hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)+hopping_3*cmath.exp(1j*k3)+hopping_3.transpose().conj()*cmath.exp(-1j*k3)
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 通过元胞和跃迁项得到一维的哈密顿量(返回的哈密顿量为携带k的函数)
+def one_dimensional_fourier_transform_with_k(unit_cell, hopping):
+ import functools
+ import guan
+ hamiltonian_function = functools.partial(guan.one_dimensional_fourier_transform, unit_cell=unit_cell, hopping=hopping)
+ guan.statistics_of_guan_package()
+ return hamiltonian_function
+
+# 通过元胞和跃迁项得到二维方格子的哈密顿量(返回的哈密顿量为携带k的函数)
+def two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, hopping_1, hopping_2):
+ import functools
+ import guan
+ hamiltonian_function = functools.partial(guan.two_dimensional_fourier_transform_for_square_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2)
+ guan.statistics_of_guan_package()
+ return hamiltonian_function
+
+# 通过元胞和跃迁项得到三维立方格子的哈密顿量(返回的哈密顿量为携带k的函数)
+def three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cell, hopping_1, hopping_2, hopping_3):
+ import functools
+ import guan
+ hamiltonian_function = functools.partial(guan.three_dimensional_fourier_transform_for_cubic_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2, hopping_3=hopping_3)
+ guan.statistics_of_guan_package()
+ return hamiltonian_function
+
+# 由实空间格矢得到倒空间格矢(一维)
+def calculate_one_dimensional_reciprocal_lattice_vector(a1):
+ import numpy as np
+ b1 = 2*np.pi/a1
+ import guan
+ guan.statistics_of_guan_package()
+ return b1
+
+# 由实空间格矢得到倒空间格矢(二维)
+def calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2):
+ import numpy as np
+ a1 = np.array(a1)
+ a2 = np.array(a2)
+ a1 = np.append(a1, 0)
+ a2 = np.append(a2, 0)
+ a3 = np.array([0, 0, 1])
+ b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3))
+ b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3))
+ b1 = np.delete(b1, 2)
+ b2 = np.delete(b2, 2)
+ import guan
+ guan.statistics_of_guan_package()
+ return b1, b2
+
+# 由实空间格矢得到倒空间格矢(三维)
+def calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3):
+ import numpy as np
+ a1 = np.array(a1)
+ a2 = np.array(a2)
+ a3 = np.array(a3)
+ b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3))
+ b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3))
+ b3 = 2*np.pi*np.cross(a1, a2)/np.dot(a1, np.cross(a2, a3))
+ import guan
+ guan.statistics_of_guan_package()
+ return b1, b2, b3
+
+# 由实空间格矢得到倒空间格矢(一维),这里为符号运算
+def calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1):
+ import sympy
+ b1 = 2*sympy.pi/a1
+ import guan
+ guan.statistics_of_guan_package()
+ return b1
+
+# 由实空间格矢得到倒空间格矢(二维),这里为符号运算
+def calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2):
+ import sympy
+ a1 = sympy.Matrix(1, 3, [a1[0], a1[1], 0])
+ a2 = sympy.Matrix(1, 3, [a2[0], a2[1], 0])
+ a3 = sympy.Matrix(1, 3, [0, 0, 1])
+ cross_a2_a3 = a2.cross(a3)
+ cross_a3_a1 = a3.cross(a1)
+ b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3)
+ b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3)
+ b1 = sympy.Matrix(1, 2, [b1[0], b1[1]])
+ b2 = sympy.Matrix(1, 2, [b2[0], b2[1]])
+ import guan
+ guan.statistics_of_guan_package()
+ return b1, b2
+
+# 由实空间格矢得到倒空间格矢(三维),这里为符号运算
+def calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3):
+ import sympy
+ cross_a2_a3 = a2.cross(a3)
+ cross_a3_a1 = a3.cross(a1)
+ cross_a1_a2 = a1.cross(a2)
+ b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3)
+ b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3)
+ b3 = 2*sympy.pi*cross_a1_a2/a1.dot(cross_a2_a3)
+ import guan
+ guan.statistics_of_guan_package()
+ return b1, b2, b3
diff --git a/PyPI/src/guan/Green_functions.py b/PyPI/src/guan/Green_functions.py
new file mode 100644
index 0000000..7f4713f
--- /dev/null
+++ b/PyPI/src/guan/Green_functions.py
@@ -0,0 +1,153 @@
+# Module: Green_functions
+
+# 输入哈密顿量,得到格林函数
+def green_function(fermi_energy, hamiltonian, broadening, self_energy=0):
+ import numpy as np
+ if np.array(hamiltonian).shape==():
+ dim = 1
+ else:
+ dim = np.array(hamiltonian).shape[0]
+ green = np.linalg.inv((fermi_energy+broadening*1j)*np.eye(dim)-hamiltonian-self_energy)
+ import guan
+ guan.statistics_of_guan_package()
+ return green
+
+# 在Dyson方程中的一个中间格林函数G_{nn}^{n}
+def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0):
+ import numpy as np
+ h01 = np.array(h01)
+ if np.array(h00).shape==():
+ dim = 1
+ else:
+ dim = np.array(h00).shape[0]
+ green_nn_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n_minus), h01)-self_energy)
+ import guan
+ guan.statistics_of_guan_package()
+ return green_nn_n
+
+# 在Dyson方程中的一个中间格林函数G_{in}^{n}
+def green_function_in_n(green_in_n_minus, h01, green_nn_n):
+ import numpy as np
+ green_in_n = np.dot(np.dot(green_in_n_minus, h01), green_nn_n)
+ import guan
+ guan.statistics_of_guan_package()
+ return green_in_n
+
+# 在Dyson方程中的一个中间格林函数G_{ni}^{n}
+def green_function_ni_n(green_nn_n, h01, green_ni_n_minus):
+ import numpy as np
+ h01 = np.array(h01)
+ green_ni_n = np.dot(np.dot(green_nn_n, h01.transpose().conj()), green_ni_n_minus)
+ import guan
+ guan.statistics_of_guan_package()
+ return green_ni_n
+
+# 在Dyson方程中的一个中间格林函数G_{ii}^{n}
+def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus):
+ import numpy as np
+ green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus)
+ import guan
+ guan.statistics_of_guan_package()
+ return green_ii_n
+
+# 计算转移矩阵(该矩阵可以用来计算表面格林函数)
+def transfer_matrix(fermi_energy, h00, h01):
+ import numpy as np
+ h01 = np.array(h01)
+ if np.array(h00).shape==():
+ dim = 1
+ else:
+ dim = np.array(h00).shape[0]
+ transfer = np.zeros((2*dim, 2*dim), dtype=complex)
+ transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00)
+ transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj())
+ transfer[dim:2*dim, 0:dim] = np.identity(dim)
+ transfer[dim:2*dim, dim:2*dim] = 0
+ import guan
+ guan.statistics_of_guan_package()
+ return transfer
+
+# 计算电极的表面格林函数
+def surface_green_function_of_lead(fermi_energy, h00, h01):
+ import numpy as np
+ h01 = np.array(h01)
+ if np.array(h00).shape==():
+ dim = 1
+ else:
+ dim = np.array(h00).shape[0]
+ fermi_energy = fermi_energy+1e-9*1j
+ transfer = transfer_matrix(fermi_energy, h00, h01)
+ eigenvalue, eigenvector = np.linalg.eig(transfer)
+ ind = np.argsort(np.abs(eigenvalue))
+ temp = np.zeros((2*dim, 2*dim), dtype=complex)
+ i0 = 0
+ for ind0 in ind:
+ temp[:, i0] = eigenvector[:, ind0]
+ i0 += 1
+ s1 = temp[dim:2*dim, 0:dim]
+ s2 = temp[0:dim, 0:dim]
+ s3 = temp[dim:2*dim, dim:2*dim]
+ s4 = temp[0:dim, dim:2*dim]
+ right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1)))
+ left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4)))
+ import guan
+ guan.statistics_of_guan_package()
+ return right_lead_surface, left_lead_surface
+
+# 计算电极的自能(基于Dyson方程的小矩阵形式)
+def self_energy_of_lead(fermi_energy, h00, h01):
+ import numpy as np
+ import guan
+ h01 = np.array(h01)
+ right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01)
+ right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj())
+ left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01)
+ gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j
+ gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j
+ guan.statistics_of_guan_package()
+ return right_self_energy, left_self_energy, gamma_right, gamma_left
+
+# 计算电极的自能(基于中心区整体的大矩阵形式)
+def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR):
+ import numpy as np
+ import guan
+ h_LC = np.array(h_LC)
+ h_CR = np.array(h_CR)
+ right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01)
+ right_self_energy = np.dot(np.dot(h_CR, right_lead_surface), h_CR.transpose().conj())
+ left_self_energy = np.dot(np.dot(h_LC.transpose().conj(), left_lead_surface), h_LC)
+ gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j
+ gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j
+ guan.statistics_of_guan_package()
+ return right_self_energy, left_self_energy, gamma_right, gamma_left
+
+# 计算电极的自能(基于中心区整体的大矩阵形式,可适用于多端电导的计算)
+def self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center):
+ import numpy as np
+ import guan
+ h_lead_to_center = np.array(h_lead_to_center)
+ right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01)
+ self_energy = np.dot(np.dot(h_lead_to_center.transpose().conj(), right_lead_surface), h_lead_to_center)
+ gamma = (self_energy - self_energy.transpose().conj())*1j
+ guan.statistics_of_guan_package()
+ return self_energy, gamma
+
+# 计算考虑电极自能后的中心区的格林函数
+def green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian):
+ import numpy as np
+ import guan
+ dim = np.array(center_hamiltonian).shape[0]
+ right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR)
+ green = np.linalg.inv(fermi_energy*np.identity(dim)-center_hamiltonian-left_self_energy-right_self_energy)
+ guan.statistics_of_guan_package()
+ return green, gamma_right, gamma_left
+
+# 计算用于计算局域电流的格林函数G_n
+def electron_correlation_function_green_n_for_local_current(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian):
+ import numpy as np
+ import guan
+ right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR)
+ green = guan.green_function(fermi_energy, center_hamiltonian, broadening=0, self_energy=left_self_energy+right_self_energy)
+ G_n = np.imag(np.dot(np.dot(green, gamma_left), green.transpose().conj()))
+ guan.statistics_of_guan_package()
+ return G_n
\ No newline at end of file
diff --git a/PyPI/src/guan/Hamiltonian_of_finite_size_systems.py b/PyPI/src/guan/Hamiltonian_of_finite_size_systems.py
new file mode 100644
index 0000000..a8ffaa8
--- /dev/null
+++ b/PyPI/src/guan/Hamiltonian_of_finite_size_systems.py
@@ -0,0 +1,260 @@
+# Module: Hamiltonian_of_finite_size_systems
+
+# 构建一维的有限尺寸体系哈密顿量(可设置是否为周期边界条件)
+def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0):
+ import numpy as np
+ on_site = np.array(on_site)
+ hopping = np.array(hopping)
+ if on_site.shape==():
+ dim = 1
+ else:
+ dim = on_site.shape[0]
+ hamiltonian = np.zeros((N*dim, N*dim), dtype=complex)
+ for i0 in range(N):
+ hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site
+ for i0 in range(N-1):
+ hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping
+ hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj()
+ if period == 1:
+ hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping
+ hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj()
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 构建二维的方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件)
+def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0):
+ import numpy as np
+ on_site = np.array(on_site)
+ hopping_1 = np.array(hopping_1)
+ hopping_2 = np.array(hopping_2)
+ if on_site.shape==():
+ dim = 1
+ else:
+ dim = on_site.shape[0]
+ hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex)
+ for i1 in range(N1):
+ for i2 in range(N2):
+ hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site
+ for i1 in range(N1-1):
+ for i2 in range(N2):
+ hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1
+ hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj()
+ for i1 in range(N1):
+ for i2 in range(N2-1):
+ hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2
+ hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj()
+ if period_1 == 1:
+ for i2 in range(N2):
+ hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1
+ hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj()
+ if period_2 == 1:
+ for i1 in range(N1):
+ hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2
+ hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj()
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 构建三维的立方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件)
+def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0):
+ import numpy as np
+ on_site = np.array(on_site)
+ hopping_1 = np.array(hopping_1)
+ hopping_2 = np.array(hopping_2)
+ hopping_3 = np.array(hopping_3)
+ if on_site.shape==():
+ dim = 1
+ else:
+ dim = on_site.shape[0]
+ hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex)
+ for i1 in range(N1):
+ for i2 in range(N2):
+ for i3 in range(N3):
+ hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site
+ for i1 in range(N1-1):
+ for i2 in range(N2):
+ for i3 in range(N3):
+ hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1
+ hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj()
+ for i1 in range(N1):
+ for i2 in range(N2-1):
+ for i3 in range(N3):
+ hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2
+ hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj()
+ for i1 in range(N1):
+ for i2 in range(N2):
+ for i3 in range(N3-1):
+ hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3
+ hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj()
+ if period_1 == 1:
+ for i2 in range(N2):
+ for i3 in range(N3):
+ hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1
+ hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj()
+ if period_2 == 1:
+ for i1 in range(N1):
+ for i3 in range(N3):
+ hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2
+ hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj()
+ if period_3 == 1:
+ for i1 in range(N1):
+ for i2 in range(N2):
+ hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3
+ hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj()
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 构建有限尺寸的SSH模型哈密顿量
+def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1):
+ import numpy as np
+ hamiltonian = np.zeros((2*N, 2*N))
+ for i in range(N):
+ hamiltonian[i*2+0, i*2+0] = onsite_1
+ hamiltonian[i*2+1, i*2+1] = onsite_2
+ hamiltonian[i*2+0, i*2+1] = v
+ hamiltonian[i*2+1, i*2+0] = v
+ for i in range(N-1):
+ hamiltonian[i*2+1, (i+1)*2+0] = w
+ hamiltonian[(i+1)*2+0, i*2+1] = w
+ if period==1:
+ hamiltonian[0, 2*N-1] = w
+ hamiltonian[2*N-1, 0] = w
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 获取Zigzag边的石墨烯条带的元胞间跃迁
+def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0):
+ import numpy as np
+ hopping = np.zeros((4*N, 4*N), dtype=complex)
+ for i0 in range(N):
+ hopping[4*i0+0, 4*i0+0] = eta
+ hopping[4*i0+1, 4*i0+1] = eta
+ hopping[4*i0+2, 4*i0+2] = eta
+ hopping[4*i0+3, 4*i0+3] = eta
+ hopping[4*i0+1, 4*i0+0] = 1
+ hopping[4*i0+2, 4*i0+3] = 1
+ import guan
+ guan.statistics_of_guan_package()
+ return hopping
+
+# 构建有限尺寸的石墨烯哈密顿量(可设置是否为周期边界条件)
+def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0):
+ import numpy as np
+ import guan
+ on_site = guan.hamiltonian_of_finite_size_system_along_one_direction(4)
+ hopping_1 = guan.get_hopping_term_of_graphene_ribbon_along_zigzag_direction(1)
+ hopping_2 = np.zeros((4, 4), dtype=complex)
+ hopping_2[3, 0] = 1
+ hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2)
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 获取石墨烯有效模型沿着x方向的在位能和跃迁项(其中,动量qy为参数)
+def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0):
+ import numpy as np
+ constant = -np.sqrt(3)/2
+ h00 = np.zeros((2, 2), dtype=complex)
+ h00[0, 0] = staggered_potential
+ h00[1, 1] = -staggered_potential
+ h00[0, 1] = -1j*constant*t*np.sin(qy)
+ h00[1, 0] = 1j*constant*t*np.sin(qy)
+ h01 = np.zeros((2, 2), dtype=complex)
+ h01[0, 0] = eta
+ h01[1, 1] = eta
+ if valley_index == 0:
+ h01[0, 1] = constant*t*(-1j/2)
+ h01[1, 0] = constant*t*(-1j/2)
+ else:
+ h01[0, 1] = constant*t*(1j/2)
+ h01[1, 0] = constant*t*(1j/2)
+ import guan
+ guan.statistics_of_guan_package()
+ return h00, h01
+
+# 获取BHZ模型的在位能和跃迁项
+def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
+ import numpy as np
+ E_s = C+M-4*(D+B)/(a**2)
+ E_p = C-M-4*(D-B)/(a**2)
+ V_ss = (D+B)/(a**2)
+ V_pp = (D-B)/(a**2)
+ V_sp = -1j*A/(2*a)
+ H0 = np.zeros((4, 4), dtype=complex)
+ H1 = np.zeros((4, 4), dtype=complex)
+ H2 = np.zeros((4, 4), dtype=complex)
+ H0[0, 0] = E_s
+ H0[1, 1] = E_p
+ H0[2, 2] = E_s
+ H0[3, 3] = E_p
+ H1[0, 0] = V_ss
+ H1[1, 1] = V_pp
+ H1[2, 2] = V_ss
+ H1[3, 3] = V_pp
+ H1[0, 1] = V_sp
+ H1[1, 0] = -np.conj(V_sp)
+ H1[2, 3] = np.conj(V_sp)
+ H1[3, 2] = -V_sp
+ H2[0, 0] = V_ss
+ H2[1, 1] = V_pp
+ H2[2, 2] = V_ss
+ H2[3, 3] = V_pp
+ H2[0, 1] = 1j*V_sp
+ H2[1, 0] = 1j*np.conj(V_sp)
+ H2[2, 3] = -1j*np.conj(V_sp)
+ H2[3, 2] = -1j*V_sp
+ import guan
+ guan.statistics_of_guan_package()
+ return H0, H1, H2
+
+# 获取半个BHZ模型的在位能和跃迁项(自旋向上)
+def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
+ import numpy as np
+ E_s = C+M-4*(D+B)/(a**2)
+ E_p = C-M-4*(D-B)/(a**2)
+ V_ss = (D+B)/(a**2)
+ V_pp = (D-B)/(a**2)
+ V_sp = -1j*A/(2*a)
+ H0 = np.zeros((2, 2), dtype=complex)
+ H1 = np.zeros((2, 2), dtype=complex)
+ H2 = np.zeros((2, 2), dtype=complex)
+ H0[0, 0] = E_s
+ H0[1, 1] = E_p
+ H1[0, 0] = V_ss
+ H1[1, 1] = V_pp
+ H1[0, 1] = V_sp
+ H1[1, 0] = -np.conj(V_sp)
+ H2[0, 0] = V_ss
+ H2[1, 1] = V_pp
+ H2[0, 1] = 1j*V_sp
+ H2[1, 0] = 1j*np.conj(V_sp)
+ import guan
+ guan.statistics_of_guan_package()
+ return H0, H1, H2
+
+# 获取半个BHZ模型的在位能和跃迁项(自旋向下)
+def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
+ import numpy as np
+ E_s = C+M-4*(D+B)/(a**2)
+ E_p = C-M-4*(D-B)/(a**2)
+ V_ss = (D+B)/(a**2)
+ V_pp = (D-B)/(a**2)
+ V_sp = -1j*A/(2*a)
+ H0 = np.zeros((2, 2), dtype=complex)
+ H1 = np.zeros((2, 2), dtype=complex)
+ H2 = np.zeros((2, 2), dtype=complex)
+ H0[0, 0] = E_s
+ H0[1, 1] = E_p
+ H1[0, 0] = V_ss
+ H1[1, 1] = V_pp
+ H1[0, 1] = np.conj(V_sp)
+ H1[1, 0] = -V_sp
+ H2[0, 0] = V_ss
+ H2[1, 1] = V_pp
+ H2[0, 1] = -1j*np.conj(V_sp)
+ H2[1, 0] = -1j*V_sp
+ import guan
+ guan.statistics_of_guan_package()
+ return H0, H1, H2
\ No newline at end of file
diff --git a/PyPI/src/guan/Hamiltonian_of_models_in_reciprocal_space.py b/PyPI/src/guan/Hamiltonian_of_models_in_reciprocal_space.py
new file mode 100644
index 0000000..ffd5bbd
--- /dev/null
+++ b/PyPI/src/guan/Hamiltonian_of_models_in_reciprocal_space.py
@@ -0,0 +1,315 @@
+# Module: Hamiltonian_of_models_in_reciprocal_space
+
+# 一维链的哈密顿量
+def hamiltonian_of_simple_chain(k):
+ import guan
+ hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1)
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 二维方格子的哈密顿量
+def hamiltonian_of_square_lattice(k1, k2):
+ import guan
+ hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1)
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 准一维方格子条带的哈密顿量
+def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0):
+ import numpy as np
+ import guan
+ h00 = np.zeros((N, N), dtype=complex) # hopping in a unit cell
+ h01 = np.zeros((N, N), dtype=complex) # hopping between unit cells
+ for i in range(N-1):
+ h00[i, i+1] = 1
+ h00[i+1, i] = 1
+ if period == 1:
+ h00[N-1, 0] = 1
+ h00[0, N-1] = 1
+ for i in range(N):
+ h01[i, i] = 1
+ hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 三维立方格子的哈密顿量
+def hamiltonian_of_cubic_lattice(k1, k2, k3):
+ import guan
+ hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1)
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# SSH模型的哈密顿量
+def hamiltonian_of_ssh_model(k, v=0.6, w=1):
+ import numpy as np
+ import cmath
+ hamiltonian = np.zeros((2, 2), dtype=complex)
+ hamiltonian[0,1] = v+w*cmath.exp(-1j*k)
+ hamiltonian[1,0] = v+w*cmath.exp(1j*k)
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 石墨烯的哈密顿量
+def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default'):
+ import numpy as np
+ import cmath
+ import math
+ if a == 'default':
+ a = 1/math.sqrt(3)
+ h0 = np.zeros((2, 2), dtype=complex) # mass term
+ h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
+ h0[0, 0] = staggered_potential
+ h0[1, 1] = -staggered_potential
+ h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))
+ h1[0, 1] = h1[1, 0].conj()
+ hamiltonian = h0 + h1
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 石墨烯有效模型的哈密顿量
+def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0):
+ import numpy as np
+ hamiltonian = np.zeros((2, 2), dtype=complex)
+ hamiltonian[0, 0] = staggered_potential
+ hamiltonian[1, 1] = -staggered_potential
+ constant = -np.sqrt(3)/2
+ if valley_index == 0:
+ hamiltonian[0, 1] = constant*t*(qx-1j*qy)
+ hamiltonian[1, 0] = constant*t*(qx+1j*qy)
+ else:
+ hamiltonian[0, 1] = constant*t*(-qx-1j*qy)
+ hamiltonian[1, 0] = constant*t*(-qx+1j*qy)
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 石墨烯有效模型离散化后的哈密顿量
+def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggered_potential=0, valley_index=0):
+ import numpy as np
+ hamiltonian = np.zeros((2, 2), dtype=complex)
+ hamiltonian[0, 0] = staggered_potential
+ hamiltonian[1, 1] = -staggered_potential
+ constant = -np.sqrt(3)/2
+ if valley_index == 0:
+ hamiltonian[0, 1] = constant*t*(np.sin(qx)-1j*np.sin(qy))
+ hamiltonian[1, 0] = constant*t*(np.sin(qx)+1j*np.sin(qy))
+ else:
+ hamiltonian[0, 1] = constant*t*(-np.sin(qx)-1j*np.sin(qy))
+ hamiltonian[1, 0] = constant*t*(-np.sin(qx)+1j*np.sin(qy))
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 准一维Zigzag边石墨烯条带的哈密顿量
+def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0):
+ import numpy as np
+ import guan
+ h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell
+ h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells
+ for i in range(N):
+ h00[i*4+0, i*4+0] = M
+ h00[i*4+1, i*4+1] = -M
+ h00[i*4+2, i*4+2] = M
+ h00[i*4+3, i*4+3] = -M
+ h00[i*4+0, i*4+1] = t
+ h00[i*4+1, i*4+0] = t
+ h00[i*4+1, i*4+2] = t
+ h00[i*4+2, i*4+1] = t
+ h00[i*4+2, i*4+3] = t
+ h00[i*4+3, i*4+2] = t
+ for i in range(N-1):
+ h00[i*4+3, (i+1)*4+0] = t
+ h00[(i+1)*4+0, i*4+3] = t
+ if period == 1:
+ h00[(N-1)*4+3, 0] = t
+ h00[0, (N-1)*4+3] = t
+ for i in range(N):
+ h01[i*4+1, i*4+0] = t
+ h01[i*4+2, i*4+3] = t
+ hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# Haldane模型的哈密顿量
+def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a='default'):
+ import numpy as np
+ import cmath
+ import math
+ if phi == 'default':
+ phi=math.pi/4
+ if a == 'default':
+ a=1/math.sqrt(3)
+ h0 = np.zeros((2, 2), dtype=complex) # mass term
+ h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
+ h2 = np.zeros((2, 2), dtype=complex) # next nearest hopping
+ h0[0, 0] = M
+ h0[1, 1] = -M
+ h1[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))
+ h1[0, 1] = h1[1, 0].conj()
+ h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a))
+ h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a))
+ hamiltonian = h0 + h1 + h2 + h2.transpose().conj()
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 准一维Haldane模型条带的哈密顿量
+def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi='default', period=0):
+ import numpy as np
+ import cmath
+ import math
+ if phi == 'default':
+ phi=math.pi/4
+ h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell
+ h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells
+ for i in range(N):
+ h00[i*4+0, i*4+0] = M
+ h00[i*4+1, i*4+1] = -M
+ h00[i*4+2, i*4+2] = M
+ h00[i*4+3, i*4+3] = -M
+ h00[i*4+0, i*4+1] = t1
+ h00[i*4+1, i*4+0] = t1
+ h00[i*4+1, i*4+2] = t1
+ h00[i*4+2, i*4+1] = t1
+ h00[i*4+2, i*4+3] = t1
+ h00[i*4+3, i*4+2] = t1
+ h00[i*4+0, i*4+2] = t2*cmath.exp(-1j*phi)
+ h00[i*4+2, i*4+0] = h00[i*4+0, i*4+2].conj()
+ h00[i*4+1, i*4+3] = t2*cmath.exp(-1j*phi)
+ h00[i*4+3, i*4+1] = h00[i*4+1, i*4+3].conj()
+ for i in range(N-1):
+ h00[i*4+3, (i+1)*4+0] = t1
+ h00[(i+1)*4+0, i*4+3] = t1
+ h00[i*4+2, (i+1)*4+0] = t2*cmath.exp(1j*phi)
+ h00[(i+1)*4+0, i*4+2] = h00[i*4+2, (i+1)*4+0].conj()
+ h00[i*4+3, (i+1)*4+1] = t2*cmath.exp(1j*phi)
+ h00[(i+1)*4+1, i*4+3] = h00[i*4+3, (i+1)*4+1].conj()
+ if period == 1:
+ h00[(N-1)*4+3, 0] = t1
+ h00[0, (N-1)*4+3] = t1
+ h00[(N-1)*4+2, 0] = t2*cmath.exp(1j*phi)
+ h00[0, (N-1)*4+2] = h00[(N-1)*4+2, 0].conj()
+ h00[(N-1)*4+3, 1] = t2*cmath.exp(1j*phi)
+ h00[1, (N-1)*4+3] = h00[(N-1)*4+3, 1].conj()
+ for i in range(N):
+ h01[i*4+1, i*4+0] = t1
+ h01[i*4+2, i*4+3] = t1
+ h01[i*4+0, i*4+0] = t2*cmath.exp(1j*phi)
+ h01[i*4+1, i*4+1] = t2*cmath.exp(-1j*phi)
+ h01[i*4+2, i*4+2] = t2*cmath.exp(1j*phi)
+ h01[i*4+3, i*4+3] = t2*cmath.exp(-1j*phi)
+ h01[i*4+1, i*4+3] = t2*cmath.exp(1j*phi)
+ h01[i*4+2, i*4+0] = t2*cmath.exp(-1j*phi)
+ if i != 0:
+ h01[i*4+1, (i-1)*4+3] = t2*cmath.exp(1j*phi)
+ for i in range(N-1):
+ h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi)
+ hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k)
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 一个量子反常霍尔效应的哈密顿量
+def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1):
+ import numpy as np
+ import math
+ hamiltonian = np.zeros((2, 2), dtype=complex)
+ hamiltonian[0, 1] = 2*t1*math.cos(k1)-1j*2*t1*math.cos(k2)
+ hamiltonian[1, 0] = 2*t1*math.cos(k1)+1j*2*t1*math.cos(k2)
+ hamiltonian[0, 0] = m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2)
+ hamiltonian[1, 1] = -(m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2))
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# BHZ模型的哈密顿量
+def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
+ import numpy as np
+ import math
+ hamiltonian = np.zeros((4, 4), dtype=complex)
+ varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
+ d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
+ d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
+ hamiltonian[0, 0] = varepsilon+d3
+ hamiltonian[1, 1] = varepsilon-d3
+ hamiltonian[0, 1] = np.conj(d1_d2)
+ hamiltonian[1, 0] = d1_d2
+ hamiltonian[2, 2] = varepsilon+d3
+ hamiltonian[3, 3] = varepsilon-d3
+ hamiltonian[2, 3] = -d1_d2
+ hamiltonian[3, 2] = -np.conj(d1_d2)
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 半BHZ模型的哈密顿量(自旋向上)
+def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
+ import numpy as np
+ import math
+ hamiltonian = np.zeros((2, 2), dtype=complex)
+ varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
+ d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
+ d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
+ hamiltonian[0, 0] = varepsilon+d3
+ hamiltonian[1, 1] = varepsilon-d3
+ hamiltonian[0, 1] = np.conj(d1_d2)
+ hamiltonian[1, 0] = d1_d2
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# 半BHZ模型的哈密顿量(自旋向下)
+def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
+ import numpy as np
+ import math
+ hamiltonian = np.zeros((2, 2), dtype=complex)
+ varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
+ d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
+ d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
+ hamiltonian[0, 0] = varepsilon+d3
+ hamiltonian[1, 1] = varepsilon-d3
+ hamiltonian[0, 1] = -d1_d2
+ hamiltonian[1, 0] = -np.conj(d1_d2)
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# BBH模型的哈密顿量
+def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1):
+ import numpy as np
+ import cmath
+ # label of atoms in a unit cell
+ # (2) —— (0)
+ # | |
+ # (1) —— (3)
+ hamiltonian = np.zeros((4, 4), dtype=complex)
+ hamiltonian[0, 2] = gamma_x+lambda_x*cmath.exp(1j*kx)
+ hamiltonian[1, 3] = gamma_x+lambda_x*cmath.exp(-1j*kx)
+ hamiltonian[0, 3] = gamma_y+lambda_y*cmath.exp(1j*ky)
+ hamiltonian[1, 2] = -gamma_y-lambda_y*cmath.exp(-1j*ky)
+ hamiltonian[2, 0] = np.conj(hamiltonian[0, 2])
+ hamiltonian[3, 1] = np.conj(hamiltonian[1, 3])
+ hamiltonian[3, 0] = np.conj(hamiltonian[0, 3])
+ hamiltonian[2, 1] = np.conj(hamiltonian[1, 2])
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
+
+# Kagome模型的哈密顿量
+def hamiltonian_of_kagome_lattice(kx, ky, t=1):
+ import numpy as np
+ import math
+ k1_dot_a1 = kx
+ k2_dot_a2 = kx/2+ky*math.sqrt(3)/2
+ k3_dot_a3 = -kx/2+ky*math.sqrt(3)/2
+ hamiltonian = np.zeros((3, 3), dtype=complex)
+ hamiltonian[0, 1] = 2*math.cos(k1_dot_a1)
+ hamiltonian[0, 2] = 2*math.cos(k2_dot_a2)
+ hamiltonian[1, 2] = 2*math.cos(k3_dot_a3)
+ hamiltonian = hamiltonian + hamiltonian.transpose().conj()
+ hamiltonian = -t*hamiltonian
+ import guan
+ guan.statistics_of_guan_package()
+ return hamiltonian
\ No newline at end of file
diff --git a/PyPI/src/guan/__init__.py b/PyPI/src/guan/__init__.py
index 11e2dee..182b332 100644
--- a/PyPI/src/guan/__init__.py
+++ b/PyPI/src/guan/__init__.py
@@ -1,4964 +1,20 @@
-# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com. GitHub link: https://github.com/guanjihuan/py.guanjihuan.com.
-
-# The current version is guan-0.1.12, updated on November 02, 2023.
-
-# Installation: pip install --upgrade guan
-
-# Modules:
-
-# # Module 1: basic functions
-# # Module 2: Fourier transform
-# # Module 3: Hamiltonian of finite size systems
-# # Module 4: Hamiltonian of models in the reciprocal space
-# # Module 5: band structures and wave functions
-# # Module 6: Green functions
-# # Module 7: density of states
-# # Module 8: quantum transport
-# # Module 9: topological invariant
-# # Module 10: plot figures
-# # Module 11: read and write
-# # Module 12: file processing
-# # Module 13: data processing
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-# Module 1: basic functions
-
-# 测试
-def test():
- print('\nSuccess in the installation of Guan package!\n')
- import guan
- guan.statistics_of_guan_package()
-
-# 泡利矩阵
-def sigma_0():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.eye(2)
-
-def sigma_x():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.array([[0, 1],[1, 0]])
-
-def sigma_y():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.array([[0, -1j],[1j, 0]])
-
-def sigma_z():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.array([[1, 0],[0, -1]])
-
-# 泡利矩阵的张量积
-def sigma_00():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.kron(guan.sigma_0(), guan.sigma_0())
-
-def sigma_0x():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.kron(guan.sigma_0(), guan.sigma_x())
-
-def sigma_0y():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.kron(guan.sigma_0(), guan.sigma_y())
-
-def sigma_0z():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.kron(guan.sigma_0(), guan.sigma_z())
-
-def sigma_x0():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.kron(guan.sigma_x(), guan.sigma_0())
-
-def sigma_xx():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.kron(guan.sigma_x(), guan.sigma_x())
-
-def sigma_xy():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.kron(guan.sigma_x(), guan.sigma_y())
-
-def sigma_xz():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.kron(guan.sigma_x(), guan.sigma_z())
-
-def sigma_y0():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.kron(guan.sigma_y(), guan.sigma_0())
-
-def sigma_yx():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.kron(guan.sigma_y(), guan.sigma_x())
-
-def sigma_yy():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.kron(guan.sigma_y(), guan.sigma_y())
-
-def sigma_yz():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.kron(guan.sigma_y(), guan.sigma_z())
-
-def sigma_z0():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.kron(guan.sigma_z(), guan.sigma_0())
-
-def sigma_zx():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.kron(guan.sigma_z(), guan.sigma_x())
-
-def sigma_zy():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.kron(guan.sigma_z(), guan.sigma_y())
-
-def sigma_zz():
- import numpy as np
- import guan
- guan.statistics_of_guan_package()
- return np.kron(guan.sigma_z(), guan.sigma_z())
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-# Module 2: Fourier_transform
-
-# 通过元胞和跃迁项得到一维的哈密顿量(需要输入k值)
-def one_dimensional_fourier_transform(k, unit_cell, hopping):
- import numpy as np
- import cmath
- unit_cell = np.array(unit_cell)
- hopping = np.array(hopping)
- hamiltonian = unit_cell+hopping*cmath.exp(1j*k)+hopping.transpose().conj()*cmath.exp(-1j*k)
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 通过元胞和跃迁项得到二维方格子的哈密顿量(需要输入k值)
-def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2):
- import numpy as np
- import cmath
- unit_cell = np.array(unit_cell)
- hopping_1 = np.array(hopping_1)
- hopping_2 = np.array(hopping_2)
- hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 通过元胞和跃迁项得到三维立方格子的哈密顿量(需要输入k值)
-def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3):
- import numpy as np
- import cmath
- unit_cell = np.array(unit_cell)
- hopping_1 = np.array(hopping_1)
- hopping_2 = np.array(hopping_2)
- hopping_3 = np.array(hopping_3)
- hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)+hopping_3*cmath.exp(1j*k3)+hopping_3.transpose().conj()*cmath.exp(-1j*k3)
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 通过元胞和跃迁项得到一维的哈密顿量(返回的哈密顿量为携带k的函数)
-def one_dimensional_fourier_transform_with_k(unit_cell, hopping):
- import functools
- import guan
- hamiltonian_function = functools.partial(guan.one_dimensional_fourier_transform, unit_cell=unit_cell, hopping=hopping)
- guan.statistics_of_guan_package()
- return hamiltonian_function
-
-# 通过元胞和跃迁项得到二维方格子的哈密顿量(返回的哈密顿量为携带k的函数)
-def two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, hopping_1, hopping_2):
- import functools
- import guan
- hamiltonian_function = functools.partial(guan.two_dimensional_fourier_transform_for_square_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2)
- guan.statistics_of_guan_package()
- return hamiltonian_function
-
-# 通过元胞和跃迁项得到三维立方格子的哈密顿量(返回的哈密顿量为携带k的函数)
-def three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cell, hopping_1, hopping_2, hopping_3):
- import functools
- import guan
- hamiltonian_function = functools.partial(guan.three_dimensional_fourier_transform_for_cubic_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2, hopping_3=hopping_3)
- guan.statistics_of_guan_package()
- return hamiltonian_function
-
-# 由实空间格矢得到倒空间格矢(一维)
-def calculate_one_dimensional_reciprocal_lattice_vector(a1):
- import numpy as np
- b1 = 2*np.pi/a1
- import guan
- guan.statistics_of_guan_package()
- return b1
-
-# 由实空间格矢得到倒空间格矢(二维)
-def calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2):
- import numpy as np
- a1 = np.array(a1)
- a2 = np.array(a2)
- a1 = np.append(a1, 0)
- a2 = np.append(a2, 0)
- a3 = np.array([0, 0, 1])
- b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3))
- b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3))
- b1 = np.delete(b1, 2)
- b2 = np.delete(b2, 2)
- import guan
- guan.statistics_of_guan_package()
- return b1, b2
-
-# 由实空间格矢得到倒空间格矢(三维)
-def calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3):
- import numpy as np
- a1 = np.array(a1)
- a2 = np.array(a2)
- a3 = np.array(a3)
- b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3))
- b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3))
- b3 = 2*np.pi*np.cross(a1, a2)/np.dot(a1, np.cross(a2, a3))
- import guan
- guan.statistics_of_guan_package()
- return b1, b2, b3
-
-# 由实空间格矢得到倒空间格矢(一维),这里为符号运算
-def calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1):
- import sympy
- b1 = 2*sympy.pi/a1
- import guan
- guan.statistics_of_guan_package()
- return b1
-
-# 由实空间格矢得到倒空间格矢(二维),这里为符号运算
-def calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2):
- import sympy
- a1 = sympy.Matrix(1, 3, [a1[0], a1[1], 0])
- a2 = sympy.Matrix(1, 3, [a2[0], a2[1], 0])
- a3 = sympy.Matrix(1, 3, [0, 0, 1])
- cross_a2_a3 = a2.cross(a3)
- cross_a3_a1 = a3.cross(a1)
- b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3)
- b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3)
- b1 = sympy.Matrix(1, 2, [b1[0], b1[1]])
- b2 = sympy.Matrix(1, 2, [b2[0], b2[1]])
- import guan
- guan.statistics_of_guan_package()
- return b1, b2
-
-# 由实空间格矢得到倒空间格矢(三维),这里为符号运算
-def calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3):
- import sympy
- cross_a2_a3 = a2.cross(a3)
- cross_a3_a1 = a3.cross(a1)
- cross_a1_a2 = a1.cross(a2)
- b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3)
- b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3)
- b3 = 2*sympy.pi*cross_a1_a2/a1.dot(cross_a2_a3)
- import guan
- guan.statistics_of_guan_package()
- return b1, b2, b3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-# Module 3: Hamiltonian of finite size systems
-
-# 构建一维的有限尺寸体系哈密顿量(可设置是否为周期边界条件)
-def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0):
- import numpy as np
- on_site = np.array(on_site)
- hopping = np.array(hopping)
- if on_site.shape==():
- dim = 1
- else:
- dim = on_site.shape[0]
- hamiltonian = np.zeros((N*dim, N*dim), dtype=complex)
- for i0 in range(N):
- hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site
- for i0 in range(N-1):
- hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping
- hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj()
- if period == 1:
- hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping
- hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj()
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 构建二维的方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件)
-def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0):
- import numpy as np
- on_site = np.array(on_site)
- hopping_1 = np.array(hopping_1)
- hopping_2 = np.array(hopping_2)
- if on_site.shape==():
- dim = 1
- else:
- dim = on_site.shape[0]
- hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex)
- for i1 in range(N1):
- for i2 in range(N2):
- hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site
- for i1 in range(N1-1):
- for i2 in range(N2):
- hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1
- hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj()
- for i1 in range(N1):
- for i2 in range(N2-1):
- hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2
- hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj()
- if period_1 == 1:
- for i2 in range(N2):
- hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1
- hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj()
- if period_2 == 1:
- for i1 in range(N1):
- hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2
- hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj()
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 构建三维的立方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件)
-def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0):
- import numpy as np
- on_site = np.array(on_site)
- hopping_1 = np.array(hopping_1)
- hopping_2 = np.array(hopping_2)
- hopping_3 = np.array(hopping_3)
- if on_site.shape==():
- dim = 1
- else:
- dim = on_site.shape[0]
- hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex)
- for i1 in range(N1):
- for i2 in range(N2):
- for i3 in range(N3):
- hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site
- for i1 in range(N1-1):
- for i2 in range(N2):
- for i3 in range(N3):
- hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1
- hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj()
- for i1 in range(N1):
- for i2 in range(N2-1):
- for i3 in range(N3):
- hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2
- hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj()
- for i1 in range(N1):
- for i2 in range(N2):
- for i3 in range(N3-1):
- hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3
- hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj()
- if period_1 == 1:
- for i2 in range(N2):
- for i3 in range(N3):
- hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1
- hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj()
- if period_2 == 1:
- for i1 in range(N1):
- for i3 in range(N3):
- hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2
- hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj()
- if period_3 == 1:
- for i1 in range(N1):
- for i2 in range(N2):
- hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3
- hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj()
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 构建有限尺寸的SSH模型哈密顿量
-def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1):
- import numpy as np
- hamiltonian = np.zeros((2*N, 2*N))
- for i in range(N):
- hamiltonian[i*2+0, i*2+0] = onsite_1
- hamiltonian[i*2+1, i*2+1] = onsite_2
- hamiltonian[i*2+0, i*2+1] = v
- hamiltonian[i*2+1, i*2+0] = v
- for i in range(N-1):
- hamiltonian[i*2+1, (i+1)*2+0] = w
- hamiltonian[(i+1)*2+0, i*2+1] = w
- if period==1:
- hamiltonian[0, 2*N-1] = w
- hamiltonian[2*N-1, 0] = w
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 获取Zigzag边的石墨烯条带的元胞间跃迁
-def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0):
- import numpy as np
- hopping = np.zeros((4*N, 4*N), dtype=complex)
- for i0 in range(N):
- hopping[4*i0+0, 4*i0+0] = eta
- hopping[4*i0+1, 4*i0+1] = eta
- hopping[4*i0+2, 4*i0+2] = eta
- hopping[4*i0+3, 4*i0+3] = eta
- hopping[4*i0+1, 4*i0+0] = 1
- hopping[4*i0+2, 4*i0+3] = 1
- import guan
- guan.statistics_of_guan_package()
- return hopping
-
-# 构建有限尺寸的石墨烯哈密顿量(可设置是否为周期边界条件)
-def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0):
- import numpy as np
- import guan
- on_site = guan.hamiltonian_of_finite_size_system_along_one_direction(4)
- hopping_1 = guan.get_hopping_term_of_graphene_ribbon_along_zigzag_direction(1)
- hopping_2 = np.zeros((4, 4), dtype=complex)
- hopping_2[3, 0] = 1
- hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2)
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 获取石墨烯有效模型沿着x方向的在位能和跃迁项(其中,动量qy为参数)
-def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0):
- import numpy as np
- constant = -np.sqrt(3)/2
- h00 = np.zeros((2, 2), dtype=complex)
- h00[0, 0] = staggered_potential
- h00[1, 1] = -staggered_potential
- h00[0, 1] = -1j*constant*t*np.sin(qy)
- h00[1, 0] = 1j*constant*t*np.sin(qy)
- h01 = np.zeros((2, 2), dtype=complex)
- h01[0, 0] = eta
- h01[1, 1] = eta
- if valley_index == 0:
- h01[0, 1] = constant*t*(-1j/2)
- h01[1, 0] = constant*t*(-1j/2)
- else:
- h01[0, 1] = constant*t*(1j/2)
- h01[1, 0] = constant*t*(1j/2)
- import guan
- guan.statistics_of_guan_package()
- return h00, h01
-
-# 获取BHZ模型的在位能和跃迁项
-def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
- import numpy as np
- E_s = C+M-4*(D+B)/(a**2)
- E_p = C-M-4*(D-B)/(a**2)
- V_ss = (D+B)/(a**2)
- V_pp = (D-B)/(a**2)
- V_sp = -1j*A/(2*a)
- H0 = np.zeros((4, 4), dtype=complex)
- H1 = np.zeros((4, 4), dtype=complex)
- H2 = np.zeros((4, 4), dtype=complex)
- H0[0, 0] = E_s
- H0[1, 1] = E_p
- H0[2, 2] = E_s
- H0[3, 3] = E_p
- H1[0, 0] = V_ss
- H1[1, 1] = V_pp
- H1[2, 2] = V_ss
- H1[3, 3] = V_pp
- H1[0, 1] = V_sp
- H1[1, 0] = -np.conj(V_sp)
- H1[2, 3] = np.conj(V_sp)
- H1[3, 2] = -V_sp
- H2[0, 0] = V_ss
- H2[1, 1] = V_pp
- H2[2, 2] = V_ss
- H2[3, 3] = V_pp
- H2[0, 1] = 1j*V_sp
- H2[1, 0] = 1j*np.conj(V_sp)
- H2[2, 3] = -1j*np.conj(V_sp)
- H2[3, 2] = -1j*V_sp
- import guan
- guan.statistics_of_guan_package()
- return H0, H1, H2
-
-# 获取半个BHZ模型的在位能和跃迁项(自旋向上)
-def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
- import numpy as np
- E_s = C+M-4*(D+B)/(a**2)
- E_p = C-M-4*(D-B)/(a**2)
- V_ss = (D+B)/(a**2)
- V_pp = (D-B)/(a**2)
- V_sp = -1j*A/(2*a)
- H0 = np.zeros((2, 2), dtype=complex)
- H1 = np.zeros((2, 2), dtype=complex)
- H2 = np.zeros((2, 2), dtype=complex)
- H0[0, 0] = E_s
- H0[1, 1] = E_p
- H1[0, 0] = V_ss
- H1[1, 1] = V_pp
- H1[0, 1] = V_sp
- H1[1, 0] = -np.conj(V_sp)
- H2[0, 0] = V_ss
- H2[1, 1] = V_pp
- H2[0, 1] = 1j*V_sp
- H2[1, 0] = 1j*np.conj(V_sp)
- import guan
- guan.statistics_of_guan_package()
- return H0, H1, H2
-
-# 获取半个BHZ模型的在位能和跃迁项(自旋向下)
-def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
- import numpy as np
- E_s = C+M-4*(D+B)/(a**2)
- E_p = C-M-4*(D-B)/(a**2)
- V_ss = (D+B)/(a**2)
- V_pp = (D-B)/(a**2)
- V_sp = -1j*A/(2*a)
- H0 = np.zeros((2, 2), dtype=complex)
- H1 = np.zeros((2, 2), dtype=complex)
- H2 = np.zeros((2, 2), dtype=complex)
- H0[0, 0] = E_s
- H0[1, 1] = E_p
- H1[0, 0] = V_ss
- H1[1, 1] = V_pp
- H1[0, 1] = np.conj(V_sp)
- H1[1, 0] = -V_sp
- H2[0, 0] = V_ss
- H2[1, 1] = V_pp
- H2[0, 1] = -1j*np.conj(V_sp)
- H2[1, 0] = -1j*V_sp
- import guan
- guan.statistics_of_guan_package()
- return H0, H1, H2
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-# Module 4: Hamiltonian of models in the reciprocal space
-
-# 一维链的哈密顿量
-def hamiltonian_of_simple_chain(k):
- import guan
- hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1)
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 二维方格子的哈密顿量
-def hamiltonian_of_square_lattice(k1, k2):
- import guan
- hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1)
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 准一维方格子条带的哈密顿量
-def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0):
- import numpy as np
- import guan
- h00 = np.zeros((N, N), dtype=complex) # hopping in a unit cell
- h01 = np.zeros((N, N), dtype=complex) # hopping between unit cells
- for i in range(N-1):
- h00[i, i+1] = 1
- h00[i+1, i] = 1
- if period == 1:
- h00[N-1, 0] = 1
- h00[0, N-1] = 1
- for i in range(N):
- h01[i, i] = 1
- hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 三维立方格子的哈密顿量
-def hamiltonian_of_cubic_lattice(k1, k2, k3):
- import guan
- hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1)
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# SSH模型的哈密顿量
-def hamiltonian_of_ssh_model(k, v=0.6, w=1):
- import numpy as np
- import cmath
- hamiltonian = np.zeros((2, 2), dtype=complex)
- hamiltonian[0,1] = v+w*cmath.exp(-1j*k)
- hamiltonian[1,0] = v+w*cmath.exp(1j*k)
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 石墨烯的哈密顿量
-def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default'):
- import numpy as np
- import cmath
- import math
- if a == 'default':
- a = 1/math.sqrt(3)
- h0 = np.zeros((2, 2), dtype=complex) # mass term
- h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
- h0[0, 0] = staggered_potential
- h0[1, 1] = -staggered_potential
- h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))
- h1[0, 1] = h1[1, 0].conj()
- hamiltonian = h0 + h1
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 石墨烯有效模型的哈密顿量
-def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0):
- import numpy as np
- hamiltonian = np.zeros((2, 2), dtype=complex)
- hamiltonian[0, 0] = staggered_potential
- hamiltonian[1, 1] = -staggered_potential
- constant = -np.sqrt(3)/2
- if valley_index == 0:
- hamiltonian[0, 1] = constant*t*(qx-1j*qy)
- hamiltonian[1, 0] = constant*t*(qx+1j*qy)
- else:
- hamiltonian[0, 1] = constant*t*(-qx-1j*qy)
- hamiltonian[1, 0] = constant*t*(-qx+1j*qy)
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 石墨烯有效模型离散化后的哈密顿量
-def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggered_potential=0, valley_index=0):
- import numpy as np
- hamiltonian = np.zeros((2, 2), dtype=complex)
- hamiltonian[0, 0] = staggered_potential
- hamiltonian[1, 1] = -staggered_potential
- constant = -np.sqrt(3)/2
- if valley_index == 0:
- hamiltonian[0, 1] = constant*t*(np.sin(qx)-1j*np.sin(qy))
- hamiltonian[1, 0] = constant*t*(np.sin(qx)+1j*np.sin(qy))
- else:
- hamiltonian[0, 1] = constant*t*(-np.sin(qx)-1j*np.sin(qy))
- hamiltonian[1, 0] = constant*t*(-np.sin(qx)+1j*np.sin(qy))
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 准一维Zigzag边石墨烯条带的哈密顿量
-def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0):
- import numpy as np
- import guan
- h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell
- h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells
- for i in range(N):
- h00[i*4+0, i*4+0] = M
- h00[i*4+1, i*4+1] = -M
- h00[i*4+2, i*4+2] = M
- h00[i*4+3, i*4+3] = -M
- h00[i*4+0, i*4+1] = t
- h00[i*4+1, i*4+0] = t
- h00[i*4+1, i*4+2] = t
- h00[i*4+2, i*4+1] = t
- h00[i*4+2, i*4+3] = t
- h00[i*4+3, i*4+2] = t
- for i in range(N-1):
- h00[i*4+3, (i+1)*4+0] = t
- h00[(i+1)*4+0, i*4+3] = t
- if period == 1:
- h00[(N-1)*4+3, 0] = t
- h00[0, (N-1)*4+3] = t
- for i in range(N):
- h01[i*4+1, i*4+0] = t
- h01[i*4+2, i*4+3] = t
- hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# Haldane模型的哈密顿量
-def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a='default'):
- import numpy as np
- import cmath
- import math
- if phi == 'default':
- phi=math.pi/4
- if a == 'default':
- a=1/math.sqrt(3)
- h0 = np.zeros((2, 2), dtype=complex) # mass term
- h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
- h2 = np.zeros((2, 2), dtype=complex) # next nearest hopping
- h0[0, 0] = M
- h0[1, 1] = -M
- h1[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))
- h1[0, 1] = h1[1, 0].conj()
- h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a))
- h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a))
- hamiltonian = h0 + h1 + h2 + h2.transpose().conj()
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 准一维Haldane模型条带的哈密顿量
-def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi='default', period=0):
- import numpy as np
- import cmath
- import math
- if phi == 'default':
- phi=math.pi/4
- h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell
- h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells
- for i in range(N):
- h00[i*4+0, i*4+0] = M
- h00[i*4+1, i*4+1] = -M
- h00[i*4+2, i*4+2] = M
- h00[i*4+3, i*4+3] = -M
- h00[i*4+0, i*4+1] = t1
- h00[i*4+1, i*4+0] = t1
- h00[i*4+1, i*4+2] = t1
- h00[i*4+2, i*4+1] = t1
- h00[i*4+2, i*4+3] = t1
- h00[i*4+3, i*4+2] = t1
- h00[i*4+0, i*4+2] = t2*cmath.exp(-1j*phi)
- h00[i*4+2, i*4+0] = h00[i*4+0, i*4+2].conj()
- h00[i*4+1, i*4+3] = t2*cmath.exp(-1j*phi)
- h00[i*4+3, i*4+1] = h00[i*4+1, i*4+3].conj()
- for i in range(N-1):
- h00[i*4+3, (i+1)*4+0] = t1
- h00[(i+1)*4+0, i*4+3] = t1
- h00[i*4+2, (i+1)*4+0] = t2*cmath.exp(1j*phi)
- h00[(i+1)*4+0, i*4+2] = h00[i*4+2, (i+1)*4+0].conj()
- h00[i*4+3, (i+1)*4+1] = t2*cmath.exp(1j*phi)
- h00[(i+1)*4+1, i*4+3] = h00[i*4+3, (i+1)*4+1].conj()
- if period == 1:
- h00[(N-1)*4+3, 0] = t1
- h00[0, (N-1)*4+3] = t1
- h00[(N-1)*4+2, 0] = t2*cmath.exp(1j*phi)
- h00[0, (N-1)*4+2] = h00[(N-1)*4+2, 0].conj()
- h00[(N-1)*4+3, 1] = t2*cmath.exp(1j*phi)
- h00[1, (N-1)*4+3] = h00[(N-1)*4+3, 1].conj()
- for i in range(N):
- h01[i*4+1, i*4+0] = t1
- h01[i*4+2, i*4+3] = t1
- h01[i*4+0, i*4+0] = t2*cmath.exp(1j*phi)
- h01[i*4+1, i*4+1] = t2*cmath.exp(-1j*phi)
- h01[i*4+2, i*4+2] = t2*cmath.exp(1j*phi)
- h01[i*4+3, i*4+3] = t2*cmath.exp(-1j*phi)
- h01[i*4+1, i*4+3] = t2*cmath.exp(1j*phi)
- h01[i*4+2, i*4+0] = t2*cmath.exp(-1j*phi)
- if i != 0:
- h01[i*4+1, (i-1)*4+3] = t2*cmath.exp(1j*phi)
- for i in range(N-1):
- h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi)
- hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k)
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 一个量子反常霍尔效应的哈密顿量
-def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1):
- import numpy as np
- import math
- hamiltonian = np.zeros((2, 2), dtype=complex)
- hamiltonian[0, 1] = 2*t1*math.cos(k1)-1j*2*t1*math.cos(k2)
- hamiltonian[1, 0] = 2*t1*math.cos(k1)+1j*2*t1*math.cos(k2)
- hamiltonian[0, 0] = m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2)
- hamiltonian[1, 1] = -(m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2))
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# BHZ模型的哈密顿量
-def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
- import numpy as np
- import math
- hamiltonian = np.zeros((4, 4), dtype=complex)
- varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
- d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
- d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
- hamiltonian[0, 0] = varepsilon+d3
- hamiltonian[1, 1] = varepsilon-d3
- hamiltonian[0, 1] = np.conj(d1_d2)
- hamiltonian[1, 0] = d1_d2
- hamiltonian[2, 2] = varepsilon+d3
- hamiltonian[3, 3] = varepsilon-d3
- hamiltonian[2, 3] = -d1_d2
- hamiltonian[3, 2] = -np.conj(d1_d2)
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 半BHZ模型的哈密顿量(自旋向上)
-def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
- import numpy as np
- import math
- hamiltonian = np.zeros((2, 2), dtype=complex)
- varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
- d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
- d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
- hamiltonian[0, 0] = varepsilon+d3
- hamiltonian[1, 1] = varepsilon-d3
- hamiltonian[0, 1] = np.conj(d1_d2)
- hamiltonian[1, 0] = d1_d2
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# 半BHZ模型的哈密顿量(自旋向下)
-def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
- import numpy as np
- import math
- hamiltonian = np.zeros((2, 2), dtype=complex)
- varepsilon = C-2*D*(2-math.cos(kx)-math.cos(ky))
- d3 = -2*B*(2-(M/2/B)-math.cos(kx)-math.cos(ky))
- d1_d2 = A*(math.sin(kx)+1j*math.sin(ky))
- hamiltonian[0, 0] = varepsilon+d3
- hamiltonian[1, 1] = varepsilon-d3
- hamiltonian[0, 1] = -d1_d2
- hamiltonian[1, 0] = -np.conj(d1_d2)
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# BBH模型的哈密顿量
-def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1):
- import numpy as np
- import cmath
- # label of atoms in a unit cell
- # (2) —— (0)
- # | |
- # (1) —— (3)
- hamiltonian = np.zeros((4, 4), dtype=complex)
- hamiltonian[0, 2] = gamma_x+lambda_x*cmath.exp(1j*kx)
- hamiltonian[1, 3] = gamma_x+lambda_x*cmath.exp(-1j*kx)
- hamiltonian[0, 3] = gamma_y+lambda_y*cmath.exp(1j*ky)
- hamiltonian[1, 2] = -gamma_y-lambda_y*cmath.exp(-1j*ky)
- hamiltonian[2, 0] = np.conj(hamiltonian[0, 2])
- hamiltonian[3, 1] = np.conj(hamiltonian[1, 3])
- hamiltonian[3, 0] = np.conj(hamiltonian[0, 3])
- hamiltonian[2, 1] = np.conj(hamiltonian[1, 2])
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-# Kagome模型的哈密顿量
-def hamiltonian_of_kagome_lattice(kx, ky, t=1):
- import numpy as np
- import math
- k1_dot_a1 = kx
- k2_dot_a2 = kx/2+ky*math.sqrt(3)/2
- k3_dot_a3 = -kx/2+ky*math.sqrt(3)/2
- hamiltonian = np.zeros((3, 3), dtype=complex)
- hamiltonian[0, 1] = 2*math.cos(k1_dot_a1)
- hamiltonian[0, 2] = 2*math.cos(k2_dot_a2)
- hamiltonian[1, 2] = 2*math.cos(k3_dot_a3)
- hamiltonian = hamiltonian + hamiltonian.transpose().conj()
- hamiltonian = -t*hamiltonian
- import guan
- guan.statistics_of_guan_package()
- return hamiltonian
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-# Module 5: band structures and wave functions
-
-# 计算哈密顿量的本征值
-def calculate_eigenvalue(hamiltonian):
- import numpy as np
- if np.array(hamiltonian).shape==():
- eigenvalue = np.real(hamiltonian)
- else:
- eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
- import guan
- guan.statistics_of_guan_package()
- return eigenvalue
-
-# 输入哈密顿量函数(带一组参数),计算一组参数下的本征值,返回本征值向量组
-def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0):
- import numpy as np
- dim_x = np.array(x_array).shape[0]
- i0 = 0
- if np.array(hamiltonian_function(0)).shape==():
- eigenvalue_array = np.zeros((dim_x, 1))
- for x0 in x_array:
- hamiltonian = hamiltonian_function(x0)
- eigenvalue_array[i0, 0] = np.real(hamiltonian)
- i0 += 1
- else:
- dim = np.array(hamiltonian_function(0)).shape[0]
- eigenvalue_array = np.zeros((dim_x, dim))
- for x0 in x_array:
- if print_show==1:
- print(x0)
- hamiltonian = hamiltonian_function(x0)
- eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
- eigenvalue_array[i0, :] = eigenvalue
- i0 += 1
- import guan
- guan.statistics_of_guan_package()
- return eigenvalue_array
-
-# 输入哈密顿量函数(带两组参数),计算两组参数下的本征值,返回本征值向量组
-def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0):
- import numpy as np
- dim_x = np.array(x_array).shape[0]
- dim_y = np.array(y_array).shape[0]
- if np.array(hamiltonian_function(0,0)).shape==():
- eigenvalue_array = np.zeros((dim_y, dim_x, 1))
- i0 = 0
- for y0 in y_array:
- j0 = 0
- for x0 in x_array:
- hamiltonian = hamiltonian_function(x0, y0)
- eigenvalue_array[i0, j0, 0] = np.real(hamiltonian)
- j0 += 1
- i0 += 1
- else:
- dim = np.array(hamiltonian_function(0, 0)).shape[0]
- eigenvalue_array = np.zeros((dim_y, dim_x, dim))
- i0 = 0
- for y0 in y_array:
- j0 = 0
- if print_show==1:
- print(y0)
- for x0 in x_array:
- if print_show_more==1:
- print(x0)
- hamiltonian = hamiltonian_function(x0, y0)
- eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
- eigenvalue_array[i0, j0, :] = eigenvalue
- j0 += 1
- i0 += 1
- import guan
- guan.statistics_of_guan_package()
- return eigenvalue_array
-
-# 计算哈密顿量的本征矢
-def calculate_eigenvector(hamiltonian):
- import numpy as np
- eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
- import guan
- guan.statistics_of_guan_package()
- return eigenvector
-
-# 通过二分查找的方法获取和相邻波函数一样规范的波函数
-def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=1000, precision=1e-6):
- import numpy as np
- import cmath
- phase_1_pre = 0
- phase_2_pre = np.pi
- for i0 in range(n_test):
- test_1 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_1_pre) - vector_ref))
- test_2 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_2_pre) - vector_ref))
- if test_1 < precision:
- phase = phase_1_pre
- if show_times==1:
- print('Binary search times=', i0)
- break
- if i0 == n_test-1:
- phase = phase_1_pre
- if show_error==1:
- print('Gauge not found with binary search times=', i0)
- if test_1 < test_2:
- if i0 == 0:
- phase_1 = phase_1_pre-(phase_2_pre-phase_1_pre)/2
- phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2
- else:
- phase_1 = phase_1_pre
- phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2
- else:
- if i0 == 0:
- phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2
- phase_2 = phase_2_pre+(phase_2_pre-phase_1_pre)/2
- else:
- phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2
- phase_2 = phase_2_pre
- phase_1_pre = phase_1
- phase_2_pre = phase_2
- vector_target = vector_target*cmath.exp(1j*phase)
- if show_phase==1:
- print('Phase=', phase)
- import guan
- guan.statistics_of_guan_package()
- return vector_target
-
-# 通过使得波函数的一个非零分量为实数,得到固定规范的波函数
-def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None):
- import numpy as np
- import cmath
- vector = np.array(vector)
- if index == None:
- index = np.argmax(np.abs(vector))
- sign_pre = np.sign(np.imag(vector[index]))
- for phase in np.arange(0, 2*np.pi, precision):
- sign = np.sign(np.imag(vector[index]*cmath.exp(1j*phase)))
- if np.abs(np.imag(vector[index]*cmath.exp(1j*phase))) < 1e-9 or sign == -sign_pre:
- break
- sign_pre = sign
- vector = vector*cmath.exp(1j*phase)
- if np.real(vector[index]) < 0:
- vector = -vector
- import guan
- guan.statistics_of_guan_package()
- return vector
-
-# 通过使得波函数的一个非零分量为实数,得到固定规范的波函数(在一组波函数中选取最大的那个分量)
-def find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array, precision=0.005):
- import numpy as np
- import guan
- vector_sum = 0
- Num_k = np.array(vector_array).shape[0]
- for i0 in range(Num_k):
- vector_sum += np.abs(vector_array[i0])
- index = np.argmax(np.abs(vector_sum))
- for i0 in range(Num_k):
- vector_array[i0] = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector_array[i0], precision=precision, index=index)
- guan.statistics_of_guan_package()
- return vector_array
-
-# 旋转两个简并的波函数(说明:参数比较多,效率不高)
-def rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, precision=0.01, criterion=0.01, show_theta=0):
- import numpy as np
- import math
- import cmath
- vector1 = np.array(vector1)
- vector2 = np.array(vector2)
- if index1 == None:
- index1 = np.argmax(np.abs(vector1))
- if index2 == None:
- index2 = np.argmax(np.abs(vector2))
- if np.abs(vector1[index2])>criterion or np.abs(vector2[index1])>criterion:
- for theta in np.arange(0, 2*math.pi, precision):
- if show_theta==1:
- print(theta)
- for phi1 in np.arange(0, 2*math.pi, precision):
- for phi2 in np.arange(0, 2*math.pi, precision):
- vector1_test = cmath.exp(1j*phi1)*vector1*math.cos(theta)+cmath.exp(1j*phi2)*vector2*math.sin(theta)
- vector2_test = -cmath.exp(-1j*phi2)*vector1*math.sin(theta)+cmath.exp(-1j*phi1)*vector2*math.cos(theta)
- if np.abs(vector1_test[index2]) 1.001:
- print('Error Alert: scattering matrix is not normalized!')
- guan.statistics_of_guan_package()
- return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active
-
-# 从散射矩阵中,获取散射矩阵的信息
-def information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active):
- import numpy as np
- if np.array(transmission_matrix).shape==():
- dim = 1
- else:
- dim = np.array(transmission_matrix).shape[0]
- number_of_active_channels = ind_right_active
- number_of_evanescent_channels = dim-ind_right_active
- k_of_right_moving_active_channels = np.real(k_right[0:ind_right_active])
- k_of_left_moving_active_channels = np.real(k_left[0:ind_right_active])
- velocity_of_right_moving_active_channels = np.real(velocity_right[0:ind_right_active])
- velocity_of_left_moving_active_channels = np.real(velocity_left[0:ind_right_active])
- transmission_matrix_for_active_channels = np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))
- reflection_matrix_for_active_channels = np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active]))
- total_transmission_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
- total_conductance = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])))
- total_reflection_of_channels = np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
- sum_of_transmission_and_reflection_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
- import guan
- guan.statistics_of_guan_package()
- return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels
-
-# 已知h00和h01,计算散射矩阵并获得散射矩阵的信息
-def calculate_scattering_matrix_and_get_information(fermi_energy, h00, h01, length=100):
- import guan
- transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length)
-
- number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active)
-
- guan.statistics_of_guan_package()
-
- return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels
-
-# 从散射矩阵中,打印出散射矩阵的信息
-def print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=1, write_file=0, filename='a', file_format='.txt'):
- if print_show == 1:
- print('\nActive channel (left or right) = ', number_of_active_channels)
- print('Evanescent channel (left or right) = ', number_of_evanescent_channels, '\n')
- print('K of right-moving active channels:\n', k_of_right_moving_active_channels)
- print('K of left-moving active channels:\n', k_of_left_moving_active_channels, '\n')
- print('Velocity of right-moving active channels:\n', velocity_of_right_moving_active_channels)
- print('Velocity of left-moving active channels:\n', velocity_of_left_moving_active_channels, '\n')
- print('Transmission matrix:\n', transmission_matrix_for_active_channels)
- print('Reflection matrix:\n', reflection_matrix_for_active_channels, '\n')
- print('Total transmission of channels:\n', total_transmission_of_channels)
- print('Total conductance = ', total_conductance, '\n')
- print('Total reflection of channels:\n', total_reflection_of_channels)
- print('Sum of transmission and reflection of channels:\n', sum_of_transmission_and_reflection_of_channels, '\n')
- if write_file == 1:
- with open(filename+file_format, 'w') as f:
- f.write('Active channel (left or right) = ' + str(number_of_active_channels) + '\n')
- f.write('Evanescent channel (left or right) = ' + str(number_of_evanescent_channels) + '\n\n')
- f.write('Channel K Velocity\n')
- for ind0 in range(number_of_active_channels):
- f.write(' '+str(ind0 + 1) + ' | '+str(k_of_right_moving_active_channels[ind0])+' ' + str(velocity_of_right_moving_active_channels[ind0])+'\n')
- f.write('\n')
- for ind0 in range(number_of_active_channels):
- f.write(' -' + str(ind0 + 1) + ' | ' + str(k_of_left_moving_active_channels[ind0]) + ' ' + str(velocity_of_left_moving_active_channels[ind0]) + '\n')
- f.write('\nScattering matrix:\n ')
- for ind0 in range(number_of_active_channels):
- f.write(str(ind0+1)+' ')
- f.write('\n')
- for ind1 in range(number_of_active_channels):
- f.write(' '+str(ind1+1)+' ')
- for ind2 in range(number_of_active_channels):
- f.write('%f' % transmission_matrix_for_active_channels[ind1, ind2]+' ')
- f.write('\n')
- f.write('\n')
- for ind1 in range(number_of_active_channels):
- f.write(' -'+str(ind1+1)+' ')
- for ind2 in range(number_of_active_channels):
- f.write('%f' % reflection_matrix_for_active_channels[ind1, ind2]+' ')
- f.write('\n')
- f.write('\n')
- f.write('Total transmission of channels:\n'+str(total_transmission_of_channels)+'\n')
- f.write('Total conductance = '+str(total_conductance)+'\n')
- import guan
- guan.statistics_of_guan_package()
-
-# 已知h00和h01,计算散射矩阵并打印出散射矩阵的信息
-def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', file_format='.txt'):
- import guan
- transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length)
-
- number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active)
-
- guan.print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=print_show, write_file=write_file, filename=filename, file_format=file_format)
-
- guan.statistics_of_guan_package()
-
-# 在无序下,计算散射矩阵
-def calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0):
- import numpy as np
- import math
- import copy
- import guan
- h01 = np.array(h01)
- if np.array(h00).shape==():
- dim = 1
- else:
- dim = np.array(h00).shape[0]
- k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = guan.get_classified_k_velocity_u_and_f(fermi_energy, h00, h01)
- right_self_energy = np.dot(h01, f_right)
- left_self_energy = np.dot(h01.transpose().conj(), np.linalg.inv(f_left))
- for i0 in range(length):
- disorder = np.zeros((dim, dim))
- for dim0 in range(dim):
- if np.random.uniform(0, 1)<=disorder_concentration:
- disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity)
- if i0 == 0:
- green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
- green_00_n = copy.deepcopy(green_nn_n)
- green_0n_n = copy.deepcopy(green_nn_n)
- green_n0_n = copy.deepcopy(green_nn_n)
- elif i0 != length-1:
- green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0)
- else:
- green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
- green_00_n = guan.green_function_ii_n(green_00_n, green_0n_n, h01, green_nn_n, green_n0_n)
- green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
- green_n0_n = guan.green_function_ni_n(green_nn_n, h01, green_n0_n)
- temp = np.dot(h01.transpose().conj(), np.linalg.inv(f_right)-np.linalg.inv(f_left))
- transmission_matrix = np.dot(np.dot(np.linalg.inv(u_right), np.dot(green_n0_n, temp)), u_right)
- reflection_matrix = np.dot(np.dot(np.linalg.inv(u_left), np.dot(green_00_n, temp)-np.identity(dim)), u_right)
- for dim0 in range(dim):
- for dim1 in range(dim):
- if_active = guan.if_active_channel(k_right[dim0])*guan.if_active_channel(k_right[dim1])
- if if_active == 1:
- transmission_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_right[dim0]/velocity_right[dim1])) * transmission_matrix[dim0, dim1]
- reflection_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_left[dim0]/velocity_right[dim1]))*reflection_matrix[dim0, dim1]
- else:
- transmission_matrix[dim0, dim1] = 0
- reflection_matrix[dim0, dim1] = 0
- sum_of_tran_refl_array = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)+np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
- for sum_of_tran_refl in sum_of_tran_refl_array:
- if sum_of_tran_refl > 1.001:
- print('Error Alert: scattering matrix is not normalized!')
- guan.statistics_of_guan_package()
- return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active
-
-# 在无序下,计算散射矩阵,并获取散射矩阵多次计算的平均信息
-def calculate_scattering_matrix_with_disorder_and_get_averaged_information(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1):
- import guan
- transmission_matrix_for_active_channels_averaged = 0
- reflection_matrix_for_active_channels_averaged = 0
- for i0 in range(calculation_times):
- transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length, disorder_intensity, disorder_concentration)
-
- number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active)
-
- transmission_matrix_for_active_channels_averaged += transmission_matrix_for_active_channels
- reflection_matrix_for_active_channels_averaged += reflection_matrix_for_active_channels
- transmission_matrix_for_active_channels_averaged = transmission_matrix_for_active_channels_averaged/calculation_times
- reflection_matrix_for_active_channels_averaged = reflection_matrix_for_active_channels_averaged/calculation_times
- guan.statistics_of_guan_package()
- return transmission_matrix_for_active_channels_averaged, reflection_matrix_for_active_channels_averaged
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-# Module 9: topological invariant
-
-# 通过高效法计算方格子的陈数
-def calculate_chern_number_for_square_lattice_with_efficient_method(hamiltonian_function, precision=100, print_show=0):
- import numpy as np
- import math
- import cmath
- import guan
- if np.array(hamiltonian_function(0, 0)).shape==():
- dim = 1
- else:
- dim = np.array(hamiltonian_function(0, 0)).shape[0]
- delta = 2*math.pi/precision
- chern_number = np.zeros(dim, dtype=complex)
- for kx in np.arange(-math.pi, math.pi, delta):
- if print_show == 1:
- print(kx)
- for ky in np.arange(-math.pi, math.pi, delta):
- H = hamiltonian_function(kx, ky)
- vector = guan.calculate_eigenvector(H)
- H_delta_kx = hamiltonian_function(kx+delta, ky)
- vector_delta_kx = guan.calculate_eigenvector(H_delta_kx)
- H_delta_ky = hamiltonian_function(kx, ky+delta)
- vector_delta_ky = guan.calculate_eigenvector(H_delta_ky)
- H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta)
- vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky)
- for i in range(dim):
- vector_i = vector[:, i]
- vector_delta_kx_i = vector_delta_kx[:, i]
- vector_delta_ky_i = vector_delta_ky[:, i]
- vector_delta_kx_ky_i = vector_delta_kx_ky[:, i]
- Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i))
- Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i))
- Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i))
- Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i))
- F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))
- chern_number[i] = chern_number[i] + F
- chern_number = chern_number/(2*math.pi*1j)
- guan.statistics_of_guan_package()
- return chern_number
-
-# 通过高效法计算方格子的陈数(可计算简并的情况)
-def calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision=100, print_show=0):
- import numpy as np
- import math
- import cmath
- delta = 2*math.pi/precision
- chern_number = 0
- for kx in np.arange(-math.pi, math.pi, delta):
- if print_show == 1:
- print(kx)
- for ky in np.arange(-math.pi, math.pi, delta):
- H = hamiltonian_function(kx, ky)
- eigenvalue, vector = np.linalg.eigh(H)
- H_delta_kx = hamiltonian_function(kx+delta, ky)
- eigenvalue, vector_delta_kx = np.linalg.eigh(H_delta_kx)
- H_delta_ky = hamiltonian_function(kx, ky+delta)
- eigenvalue, vector_delta_ky = np.linalg.eigh(H_delta_ky)
- H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta)
- eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky)
- dim = len(index_of_bands)
- det_value = 1
- # first dot product
- dot_matrix = np.zeros((dim , dim), dtype=complex)
- i0 = 0
- for dim1 in index_of_bands:
- j0 = 0
- for dim2 in index_of_bands:
- dot_matrix[i0, j0] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2])
- j0 += 1
- i0 += 1
- dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
- det_value = det_value*dot_matrix
- # second dot product
- dot_matrix = np.zeros((dim , dim), dtype=complex)
- i0 = 0
- for dim1 in index_of_bands:
- j0 = 0
- for dim2 in index_of_bands:
- dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2])
- j0 += 1
- i0 += 1
- dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
- det_value = det_value*dot_matrix
- # third dot product
- dot_matrix = np.zeros((dim , dim), dtype=complex)
- i0 = 0
- for dim1 in index_of_bands:
- j0 = 0
- for dim2 in index_of_bands:
- dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2])
- j0 += 1
- i0 += 1
- dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
- det_value = det_value*dot_matrix
- # four dot product
- dot_matrix = np.zeros((dim , dim), dtype=complex)
- i0 = 0
- for dim1 in index_of_bands:
- j0 = 0
- for dim2 in index_of_bands:
- dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2])
- j0 += 1
- i0 += 1
- dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
- det_value= det_value*dot_matrix
- chern_number += cmath.log(det_value)
- chern_number = chern_number/(2*math.pi*1j)
- import guan
- guan.statistics_of_guan_package()
- return chern_number
-
-# 通过Wilson loop方法计算方格子的陈数
-def calculate_chern_number_for_square_lattice_with_wilson_loop(hamiltonian_function, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
- import numpy as np
- import math
- delta = 2*math.pi/precision_of_plaquettes
- chern_number = 0
- for kx in np.arange(-math.pi, math.pi, delta):
- if print_show == 1:
- print(kx)
- for ky in np.arange(-math.pi, math.pi, delta):
- vector_array = []
- # line_1
- for i0 in range(precision_of_wilson_loop):
- H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky)
- eigenvalue, eigenvector = np.linalg.eig(H_delta)
- vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
- vector_array.append(vector_delta)
- # line_2
- for i0 in range(precision_of_wilson_loop):
- H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0)
- eigenvalue, eigenvector = np.linalg.eig(H_delta)
- vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
- vector_array.append(vector_delta)
- # line_3
- for i0 in range(precision_of_wilson_loop):
- H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta)
- eigenvalue, eigenvector = np.linalg.eig(H_delta)
- vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
- vector_array.append(vector_delta)
- # line_4
- for i0 in range(precision_of_wilson_loop):
- H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0)
- eigenvalue, eigenvector = np.linalg.eig(H_delta)
- vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
- vector_array.append(vector_delta)
- wilson_loop = 1
- for i0 in range(len(vector_array)-1):
- wilson_loop = wilson_loop*np.dot(vector_array[i0].transpose().conj(), vector_array[i0+1])
- wilson_loop = wilson_loop*np.dot(vector_array[len(vector_array)-1].transpose().conj(), vector_array[0])
- arg = np.log(np.diagonal(wilson_loop))/1j
- chern_number = chern_number + arg
- chern_number = chern_number/(2*math.pi)
- import guan
- guan.statistics_of_guan_package()
- return chern_number
-
-# 通过Wilson loop方法计算方格子的陈数(可计算简并的情况)
-def calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
- import numpy as np
- import math
- delta = 2*math.pi/precision_of_plaquettes
- chern_number = 0
- for kx in np.arange(-math.pi, math.pi, delta):
- if print_show == 1:
- print(kx)
- for ky in np.arange(-math.pi, math.pi, delta):
- vector_array = []
- # line_1
- for i0 in range(precision_of_wilson_loop):
- H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky)
- eigenvalue, eigenvector = np.linalg.eig(H_delta)
- vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
- vector_array.append(vector_delta)
- # line_2
- for i0 in range(precision_of_wilson_loop):
- H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0)
- eigenvalue, eigenvector = np.linalg.eig(H_delta)
- vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
- vector_array.append(vector_delta)
- # line_3
- for i0 in range(precision_of_wilson_loop):
- H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta)
- eigenvalue, eigenvector = np.linalg.eig(H_delta)
- vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
- vector_array.append(vector_delta)
- # line_4
- for i0 in range(precision_of_wilson_loop):
- H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0)
- eigenvalue, eigenvector = np.linalg.eig(H_delta)
- vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
- vector_array.append(vector_delta)
- wilson_loop = 1
- dim = len(index_of_bands)
- for i0 in range(len(vector_array)-1):
- dot_matrix = np.zeros((dim , dim), dtype=complex)
- i01 = 0
- for dim1 in index_of_bands:
- i02 = 0
- for dim2 in index_of_bands:
- dot_matrix[i01, i02] = np.dot(vector_array[i0][:, dim1].transpose().conj(), vector_array[i0+1][:, dim2])
- i02 += 1
- i01 += 1
- det_value = np.linalg.det(dot_matrix)
- wilson_loop = wilson_loop*det_value
- dot_matrix_plus = np.zeros((dim , dim), dtype=complex)
- i01 = 0
- for dim1 in index_of_bands:
- i02 = 0
- for dim2 in index_of_bands:
- dot_matrix_plus[i01, i02] = np.dot(vector_array[len(vector_array)-1][:, dim1].transpose().conj(), vector_array[0][:, dim2])
- i02 += 1
- i01 += 1
- det_value = np.linalg.det(dot_matrix_plus)
- wilson_loop = wilson_loop*det_value
- arg = np.log(wilson_loop)/1j
- chern_number = chern_number + arg
- chern_number = chern_number/(2*math.pi)
- import guan
- guan.statistics_of_guan_package()
- return chern_number
-
-# 通过高效法计算贝利曲率
-def calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0):
- import numpy as np
- import cmath
- import guan
- import math
- if k_min == 'default':
- k_min = -math.pi
- if k_max == 'default':
- k_max=math.pi
- if np.array(hamiltonian_function(0, 0)).shape==():
- dim = 1
- else:
- dim = np.array(hamiltonian_function(0, 0)).shape[0]
- delta = (k_max-k_min)/precision
- k_array = np.arange(k_min, k_max, delta)
- berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0], dim), dtype=complex)
- i0 = 0
- for kx in k_array:
- if print_show == 1:
- print(kx)
- j0 = 0
- for ky in k_array:
- H = hamiltonian_function(kx, ky)
- vector = guan.calculate_eigenvector(H)
- H_delta_kx = hamiltonian_function(kx+delta, ky)
- vector_delta_kx = guan.calculate_eigenvector(H_delta_kx)
- H_delta_ky = hamiltonian_function(kx, ky+delta)
- vector_delta_ky = guan.calculate_eigenvector(H_delta_ky)
- H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta)
- vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky)
- for i in range(dim):
- vector_i = vector[:, i]
- vector_delta_kx_i = vector_delta_kx[:, i]
- vector_delta_ky_i = vector_delta_ky[:, i]
- vector_delta_kx_ky_i = vector_delta_kx_ky[:, i]
- Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i))
- Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i))
- Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i))
- Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i))
- berry_curvature = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))/delta/delta*1j
- berry_curvature_array[j0, i0, i] = berry_curvature
- j0 += 1
- i0 += 1
- guan.statistics_of_guan_package()
- return k_array, berry_curvature_array
-
-# 通过高效法计算贝利曲率(可计算简并的情况)
-def calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision=100, print_show=0):
- import numpy as np
- import cmath
- import math
- if k_min == 'default':
- k_min = -math.pi
- if k_max == 'default':
- k_max=math.pi
- delta = (k_max-k_min)/precision
- k_array = np.arange(k_min, k_max, delta)
- berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0]), dtype=complex)
- i00 = 0
- for kx in np.arange(k_min, k_max, delta):
- if print_show == 1:
- print(kx)
- j00 = 0
- for ky in np.arange(k_min, k_max, delta):
- H = hamiltonian_function(kx, ky)
- eigenvalue, vector = np.linalg.eigh(H)
- H_delta_kx = hamiltonian_function(kx+delta, ky)
- eigenvalue, vector_delta_kx = np.linalg.eigh(H_delta_kx)
- H_delta_ky = hamiltonian_function(kx, ky+delta)
- eigenvalue, vector_delta_ky = np.linalg.eigh(H_delta_ky)
- H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta)
- eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky)
- dim = len(index_of_bands)
- det_value = 1
- # first dot product
- dot_matrix = np.zeros((dim , dim), dtype=complex)
- i0 = 0
- for dim1 in index_of_bands:
- j0 = 0
- for dim2 in index_of_bands:
- dot_matrix[i0, j0] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2])
- j0 += 1
- i0 += 1
- dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
- det_value = det_value*dot_matrix
- # second dot product
- dot_matrix = np.zeros((dim , dim), dtype=complex)
- i0 = 0
- for dim1 in index_of_bands:
- j0 = 0
- for dim2 in index_of_bands:
- dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2])
- j0 += 1
- i0 += 1
- dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
- det_value = det_value*dot_matrix
- # third dot product
- dot_matrix = np.zeros((dim , dim), dtype=complex)
- i0 = 0
- for dim1 in index_of_bands:
- j0 = 0
- for dim2 in index_of_bands:
- dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2])
- j0 += 1
- i0 += 1
- dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
- det_value = det_value*dot_matrix
- # four dot product
- dot_matrix = np.zeros((dim , dim), dtype=complex)
- i0 = 0
- for dim1 in index_of_bands:
- j0 = 0
- for dim2 in index_of_bands:
- dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2])
- j0 += 1
- i0 += 1
- dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
- det_value= det_value*dot_matrix
- berry_curvature = cmath.log(det_value)/delta/delta*1j
- berry_curvature_array[j00, i00] = berry_curvature
- j00 += 1
- i00 += 1
- import guan
- guan.statistics_of_guan_package()
- return k_array, berry_curvature_array
-
-# 通过Wilson loop方法计算贝里曲率
-def calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
- import numpy as np
- import math
- if k_min == 'default':
- k_min = -math.pi
- if k_max == 'default':
- k_max=math.pi
- if np.array(hamiltonian_function(0, 0)).shape==():
- dim = 1
- else:
- dim = np.array(hamiltonian_function(0, 0)).shape[0]
- delta = (k_max-k_min)/precision_of_plaquettes
- k_array = np.arange(k_min, k_max, delta)
- berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0], dim), dtype=complex)
- i00 = 0
- for kx in k_array:
- if print_show == 1:
- print(kx)
- j00 = 0
- for ky in k_array:
- vector_array = []
- # line_1
- for i0 in range(precision_of_wilson_loop):
- H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky)
- eigenvalue, eigenvector = np.linalg.eig(H_delta)
- vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
- vector_array.append(vector_delta)
- # line_2
- for i0 in range(precision_of_wilson_loop):
- H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0)
- eigenvalue, eigenvector = np.linalg.eig(H_delta)
- vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
- vector_array.append(vector_delta)
- # line_3
- for i0 in range(precision_of_wilson_loop):
- H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta)
- eigenvalue, eigenvector = np.linalg.eig(H_delta)
- vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
- vector_array.append(vector_delta)
- # line_4
- for i0 in range(precision_of_wilson_loop):
- H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0)
- eigenvalue, eigenvector = np.linalg.eig(H_delta)
- vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
- vector_array.append(vector_delta)
- wilson_loop = 1
- for i0 in range(len(vector_array)-1):
- wilson_loop = wilson_loop*np.dot(vector_array[i0].transpose().conj(), vector_array[i0+1])
- wilson_loop = wilson_loop*np.dot(vector_array[len(vector_array)-1].transpose().conj(), vector_array[0])
- berry_curvature = np.log(np.diagonal(wilson_loop))/delta/delta*1j
- berry_curvature_array[j00, i00, :]=berry_curvature
- j00 += 1
- i00 += 1
- import guan
- guan.statistics_of_guan_package()
- return k_array, berry_curvature_array
-
-# 通过Wilson loop方法计算贝里曲率(可计算简并的情况)
-def calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
- import numpy as np
- import math
- if k_min == 'default':
- k_min = -math.pi
- if k_max == 'default':
- k_max=math.pi
- delta = (k_max-k_min)/precision_of_plaquettes
- k_array = np.arange(k_min, k_max, delta)
- berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0]), dtype=complex)
- i000 = 0
- for kx in k_array:
- if print_show == 1:
- print(kx)
- j000 = 0
- for ky in k_array:
- vector_array = []
- # line_1
- for i0 in range(precision_of_wilson_loop):
- H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky)
- eigenvalue, eigenvector = np.linalg.eig(H_delta)
- vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
- vector_array.append(vector_delta)
- # line_2
- for i0 in range(precision_of_wilson_loop):
- H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0)
- eigenvalue, eigenvector = np.linalg.eig(H_delta)
- vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
- vector_array.append(vector_delta)
- # line_3
- for i0 in range(precision_of_wilson_loop):
- H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta)
- eigenvalue, eigenvector = np.linalg.eig(H_delta)
- vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
- vector_array.append(vector_delta)
- # line_4
- for i0 in range(precision_of_wilson_loop):
- H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0)
- eigenvalue, eigenvector = np.linalg.eig(H_delta)
- vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
- vector_array.append(vector_delta)
- wilson_loop = 1
- dim = len(index_of_bands)
- for i0 in range(len(vector_array)-1):
- dot_matrix = np.zeros((dim , dim), dtype=complex)
- i01 = 0
- for dim1 in index_of_bands:
- i02 = 0
- for dim2 in index_of_bands:
- dot_matrix[i01, i02] = np.dot(vector_array[i0][:, dim1].transpose().conj(), vector_array[i0+1][:, dim2])
- i02 += 1
- i01 += 1
- det_value = np.linalg.det(dot_matrix)
- wilson_loop = wilson_loop*det_value
- dot_matrix_plus = np.zeros((dim , dim), dtype=complex)
- i01 = 0
- for dim1 in index_of_bands:
- i02 = 0
- for dim2 in index_of_bands:
- dot_matrix_plus[i01, i02] = np.dot(vector_array[len(vector_array)-1][:, dim1].transpose().conj(), vector_array[0][:, dim2])
- i02 += 1
- i01 += 1
- det_value = np.linalg.det(dot_matrix_plus)
- wilson_loop = wilson_loop*det_value
- berry_curvature = np.log(wilson_loop)/delta/delta*1j
- berry_curvature_array[j000, i000]=berry_curvature
- j000 += 1
- i000 += 1
- import guan
- guan.statistics_of_guan_package()
- return k_array, berry_curvature_array
-
-# 计算蜂窝格子的陈数(高效法)
-def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0):
- import numpy as np
- import math
- import cmath
- import guan
- if np.array(hamiltonian_function(0, 0)).shape==():
- dim = 1
- else:
- dim = np.array(hamiltonian_function(0, 0)).shape[0]
- chern_number = np.zeros(dim, dtype=complex)
- L1 = 4*math.sqrt(3)*math.pi/9/a
- L2 = 2*math.sqrt(3)*math.pi/9/a
- L3 = 2*math.pi/3/a
- delta1 = 2*L1/precision
- delta3 = 2*L3/precision
- for kx in np.arange(-L1, L1, delta1):
- if print_show == 1:
- print(kx)
- for ky in np.arange(-L3, L3, delta3):
- if (-L2<=kx<=L2) or (kx>L2 and -(L1-kx)*math.tan(math.pi/3)<=ky<=(L1-kx)*math.tan(math.pi/3)) or (kx<-L2 and -(kx-(-L1))*math.tan(math.pi/3)<=ky<=(kx-(-L1))*math.tan(math.pi/3)):
- H = hamiltonian_function(kx, ky)
- vector = guan.calculate_eigenvector(H)
- H_delta_kx = hamiltonian_function(kx+delta1, ky)
- vector_delta_kx = guan.calculate_eigenvector(H_delta_kx)
- H_delta_ky = hamiltonian_function(kx, ky+delta3)
- vector_delta_ky = guan.calculate_eigenvector(H_delta_ky)
- H_delta_kx_ky = hamiltonian_function(kx+delta1, ky+delta3)
- vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky)
- for i in range(dim):
- vector_i = vector[:, i]
- vector_delta_kx_i = vector_delta_kx[:, i]
- vector_delta_ky_i = vector_delta_ky[:, i]
- vector_delta_kx_ky_i = vector_delta_kx_ky[:, i]
- Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i))
- Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i))
- Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i))
- Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i))
- F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))
- chern_number[i] = chern_number[i] + F
- chern_number = chern_number/(2*math.pi*1j)
- guan.statistics_of_guan_package()
- return chern_number
-
-# 计算Wilson loop
-def calculate_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0):
- import numpy as np
- import guan
- import math
- if k_min == 'default':
- k_min = -math.pi
- if k_max == 'default':
- k_max=math.pi
- k_array = np.linspace(k_min, k_max, precision)
- dim = np.array(hamiltonian_function(0)).shape[0]
- wilson_loop_array = np.ones(dim, dtype=complex)
- for i in range(dim):
- if print_show == 1:
- print(i)
- eigenvector_array = []
- for k in k_array:
- eigenvector = guan.calculate_eigenvector(hamiltonian_function(k))
- if k != k_max:
- eigenvector_array.append(eigenvector[:, i])
- else:
- eigenvector_array.append(eigenvector_array[0])
- for i0 in range(precision-1):
- F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0])
- wilson_loop_array[i] = np.dot(F, wilson_loop_array[i])
- guan.statistics_of_guan_package()
- return wilson_loop_array
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-# Module 10: plot figures
-
-# 导入plt, fig, ax
-def import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20):
- import matplotlib.pyplot as plt
- fig, ax = plt.subplots()
- plt.subplots_adjust(bottom=adjust_bottom, left=adjust_left)
- ax.grid()
- ax.tick_params(labelsize=labelsize)
- labels = ax.get_xticklabels() + ax.get_yticklabels()
- [label.set_fontname('Times New Roman') for label in labels]
- import guan
- guan.statistics_of_guan_package()
- return plt, fig, ax
-
-# 基于plt, fig, ax开始画图
-def plot_without_starting_fig(plt, fig, ax, x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, style='', y_min=None, y_max=None, linewidth=None, markersize=None, color=None):
- if color==None:
- ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize)
- else:
- ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize, color=color)
- ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
- if y_min!=None or y_max!=None:
- if y_min==None:
- y_min=min(y_array)
- if y_max==None:
- y_max=max(y_array)
- ax.set_ylim(y_min, y_max)
- import guan
- guan.statistics_of_guan_package()
-
-# 画图
-def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2):
- import guan
- plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
- ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize)
- ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
- if y_min!=None or y_max!=None:
- if y_min==None:
- y_min=min(y_array)
- if y_max==None:
- y_max=max(y_array)
- ax.set_ylim(y_min, y_max)
- if save == 1:
- plt.savefig(filename+file_format, dpi=dpi)
- if show == 1:
- plt.show()
- plt.close('all')
- guan.statistics_of_guan_package()
-
-# 一组横坐标数据,两组纵坐标数据画图
-def plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):
- import guan
- plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
- ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1)
- ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2)
- ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
- if y_min!=None or y_max!=None:
- if y_min==None:
- y1_min=min(y1_array)
- y2_min=min(y2_array)
- y_min=min([y1_min, y2_min])
- if y_max==None:
- y1_max=max(y1_array)
- y2_max=max(y2_array)
- y_max=max([y1_max, y2_max])
- ax.set_ylim(y_min, y_max)
- if save == 1:
- plt.savefig(filename+file_format, dpi=dpi)
- if show == 1:
- plt.show()
- plt.close('all')
- guan.statistics_of_guan_package()
-
-# 两组横坐标数据,两组纵坐标数据画图
-def plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):
- import guan
- plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
- ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1)
- ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2)
- ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
- if y_min!=None or y_max!=None:
- if y_min==None:
- y1_min=min(y1_array)
- y2_min=min(y2_array)
- y_min=min([y1_min, y2_min])
- if y_max==None:
- y1_max=max(y1_array)
- y2_max=max(y2_array)
- y_max=max([y1_max, y2_max])
- ax.set_ylim(y_min, y_max)
- if save == 1:
- plt.savefig(filename+file_format, dpi=dpi)
- if show == 1:
- plt.show()
- plt.close('all')
- guan.statistics_of_guan_package()
-
-# 一组横坐标数据,三组纵坐标数据画图
-def plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):
- import guan
- plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
- ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1)
- ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2)
- ax.plot(x_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3)
- ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
- if y_min!=None or y_max!=None:
- if y_min==None:
- y1_min=min(y1_array)
- y2_min=min(y2_array)
- y3_min=min(y3_array)
- y_min=min([y1_min, y2_min, y3_min])
- if y_max==None:
- y1_max=max(y1_array)
- y2_max=max(y2_array)
- y3_max=max(y3_array)
- y_max=max([y1_max, y2_max, y3_max])
- ax.set_ylim(y_min, y_max)
- if save == 1:
- plt.savefig(filename+file_format, dpi=dpi)
- if show == 1:
- plt.show()
- plt.close('all')
- guan.statistics_of_guan_package()
-
-# 三组横坐标数据,三组纵坐标数据画图
-def plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):
- import guan
- plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
- ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1)
- ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2)
- ax.plot(x3_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3)
- ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
- if y_min!=None or y_max!=None:
- if y_min==None:
- y1_min=min(y1_array)
- y2_min=min(y2_array)
- y3_min=min(y3_array)
- y_min=min([y1_min, y2_min, y3_min])
- if y_max==None:
- y1_max=max(y1_array)
- y2_max=max(y2_array)
- y3_max=max(y3_array)
- y_max=max([y1_max, y2_max, y3_max])
- ax.set_ylim(y_min, y_max)
- if save == 1:
- plt.savefig(filename+file_format, dpi=dpi)
- if show == 1:
- plt.show()
- plt.close('all')
- guan.statistics_of_guan_package()
-
-# 画三维图
-def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', file_format='.jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100):
- import numpy as np
- import matplotlib.pyplot as plt
- from matplotlib import cm
- from matplotlib.ticker import LinearLocator
- matrix = np.array(matrix)
- fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
- plt.subplots_adjust(bottom=0.1, right=0.65)
- x_array, y_array = np.meshgrid(x_array, y_array)
- if len(matrix.shape) == 2:
- surf = ax.plot_surface(x_array, y_array, matrix, rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)
- elif len(matrix.shape) == 3:
- for i0 in range(matrix.shape[2]):
- surf = ax.plot_surface(x_array, y_array, matrix[:,:,i0], rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)
- ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_zlabel(zlabel, fontsize=fontsize, fontfamily='Times New Roman')
- ax.zaxis.set_major_locator(LinearLocator(5))
- ax.zaxis.set_major_formatter('{x:.2f}')
- if z_min!=None or z_max!=None:
- if z_min==None:
- z_min=matrix.min()
- if z_max==None:
- z_max=matrix.max()
- ax.set_zlim(z_min, z_max)
- ax.tick_params(labelsize=labelsize)
- labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels()
- [label.set_fontname('Times New Roman') for label in labels]
- cax = plt.axes([0.8, 0.1, 0.05, 0.8])
- cbar = fig.colorbar(surf, cax=cax)
- cbar.ax.tick_params(labelsize=labelsize)
- for l in cbar.ax.yaxis.get_ticklabels():
- l.set_family('Times New Roman')
- if save == 1:
- plt.savefig(filename+file_format, dpi=dpi)
- if show == 1:
- plt.show()
- plt.close('all')
- import guan
- guan.statistics_of_guan_package()
-
-# 画Contour图
-def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300):
- import numpy as np
- import matplotlib.pyplot as plt
- fig, ax = plt.subplots()
- plt.subplots_adjust(bottom=0.2, right=0.75, left=0.2)
- x_array, y_array = np.meshgrid(x_array, y_array)
- contour = ax.contourf(x_array,y_array,matrix,cmap=cmap, levels=levels)
- ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
- ax.tick_params(labelsize=labelsize)
- labels = ax.get_xticklabels() + ax.get_yticklabels()
- [label.set_fontname('Times New Roman') for label in labels]
- cax = plt.axes([0.8, 0.2, 0.05, 0.68])
- cbar = fig.colorbar(contour, cax=cax)
- cbar.ax.tick_params(labelsize=labelsize)
- for l in cbar.ax.yaxis.get_ticklabels():
- l.set_family('Times New Roman')
- if save == 1:
- plt.savefig(filename+file_format, dpi=dpi)
- if show == 1:
- plt.show()
- plt.close('all')
- import guan
- guan.statistics_of_guan_package()
-
-# 画棋盘图/伪彩色图
-def plot_pcolor(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300):
- import numpy as np
- import matplotlib.pyplot as plt
- fig, ax = plt.subplots()
- plt.subplots_adjust(bottom=0.2, right=0.75, left=0.2)
- x_array, y_array = np.meshgrid(x_array, y_array)
- contour = ax.pcolor(x_array,y_array,matrix, cmap=cmap)
- ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')
- ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')
- ax.tick_params(labelsize=labelsize)
- labels = ax.get_xticklabels() + ax.get_yticklabels()
- [label.set_fontname('Times New Roman') for label in labels]
- cax = plt.axes([0.8, 0.2, 0.05, 0.68])
- cbar = fig.colorbar(contour, cax=cax)
- cbar.ax.tick_params(labelsize=labelsize)
- for l in cbar.ax.yaxis.get_ticklabels():
- l.set_family('Times New Roman')
- if save == 1:
- plt.savefig(filename+file_format, dpi=dpi)
- if show == 1:
- plt.show()
- plt.close('all')
- import guan
- guan.statistics_of_guan_package()
-
-# 通过坐标画点和线
-def draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distance=1.1, line_style='-k', linewidth=1, dot_style='ro', markersize=3, show=1, save=0, filename='a', file_format='.eps', dpi=300):
- import numpy as np
- import matplotlib.pyplot as plt
- coordinate_array = np.array(coordinate_array)
- print(coordinate_array.shape)
- x_range = max(coordinate_array[:, 0])-min(coordinate_array[:, 0])
- y_range = max(coordinate_array[:, 1])-min(coordinate_array[:, 1])
- fig, ax = plt.subplots(figsize=(6*x_range/y_range,6))
- plt.subplots_adjust(left=0, bottom=0, right=1, top=1)
- plt.axis('off')
- if draw_lines==1:
- for i1 in range(coordinate_array.shape[0]):
- for i2 in range(coordinate_array.shape[0]):
- if np.sqrt((coordinate_array[i1, 0] - coordinate_array[i2, 0])**2+(coordinate_array[i1, 1] - coordinate_array[i2, 1])**2) < max_distance:
- ax.plot([coordinate_array[i1, 0], coordinate_array[i2, 0]], [coordinate_array[i1, 1], coordinate_array[i2, 1]], line_style, linewidth=linewidth)
- if draw_dots==1:
- for i in range(coordinate_array.shape[0]):
- ax.plot(coordinate_array[i, 0], coordinate_array[i, 1], dot_style, markersize=markersize)
- if show==1:
- plt.show()
- if save==1:
- if file_format=='.eps':
- plt.savefig(filename+file_format)
- else:
- plt.savefig(filename+file_format, dpi=dpi)
- import guan
- guan.statistics_of_guan_package()
-
-# 合并两个图片
-def combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filename='a', file_format='.jpg', dpi=300):
- import numpy as np
- num = np.array(image_path_array).shape[0]
- if num != 2:
- print('Error: The number of images should be two!')
- else:
- import matplotlib.pyplot as plt
- import matplotlib.image as mpimg
- fig = plt.figure(figsize=figsize)
- plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)
- ax1 = fig.add_subplot(121)
- ax2 = fig.add_subplot(122)
- image_1 = mpimg.imread(image_path_array[0])
- image_2 = mpimg.imread(image_path_array[1])
- ax1.imshow(image_1)
- ax2.imshow(image_2)
- ax1.axis('off')
- ax2.axis('off')
- if show == 1:
- plt.show()
- if save == 1:
- plt.savefig(filename+file_format, dpi=dpi)
- plt.close('all')
- import guan
- guan.statistics_of_guan_package()
-
-# 合并三个图片
-def combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filename='a', file_format='.jpg', dpi=300):
- import numpy as np
- num = np.array(image_path_array).shape[0]
- if num != 3:
- print('Error: The number of images should be three!')
- else:
- import matplotlib.pyplot as plt
- import matplotlib.image as mpimg
- fig = plt.figure(figsize=figsize)
- plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)
- ax1 = fig.add_subplot(131)
- ax2 = fig.add_subplot(132)
- ax3 = fig.add_subplot(133)
- image_1 = mpimg.imread(image_path_array[0])
- image_2 = mpimg.imread(image_path_array[1])
- image_3 = mpimg.imread(image_path_array[2])
- ax1.imshow(image_1)
- ax2.imshow(image_2)
- ax3.imshow(image_3)
- ax1.axis('off')
- ax2.axis('off')
- ax3.axis('off')
- if show == 1:
- plt.show()
- if save == 1:
- plt.savefig(filename+file_format, dpi=dpi)
- plt.close('all')
- import guan
- guan.statistics_of_guan_package()
-
-# 合并四个图片
-def combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filename='a', file_format='.jpg', dpi=300):
- import numpy as np
- num = np.array(image_path_array).shape[0]
- if num != 4:
- print('Error: The number of images should be four!')
- else:
- import matplotlib.pyplot as plt
- import matplotlib.image as mpimg
- fig = plt.figure(figsize=figsize)
- plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)
- ax1 = fig.add_subplot(221)
- ax2 = fig.add_subplot(222)
- ax3 = fig.add_subplot(223)
- ax4 = fig.add_subplot(224)
- image_1 = mpimg.imread(image_path_array[0])
- image_2 = mpimg.imread(image_path_array[1])
- image_3 = mpimg.imread(image_path_array[2])
- image_4 = mpimg.imread(image_path_array[3])
- ax1.imshow(image_1)
- ax2.imshow(image_2)
- ax3.imshow(image_3)
- ax4.imshow(image_4)
- ax1.axis('off')
- ax2.axis('off')
- ax3.axis('off')
- ax4.axis('off')
- if show == 1:
- plt.show()
- if save == 1:
- plt.savefig(filename+file_format, dpi=dpi)
- plt.close('all')
- import guan
- guan.statistics_of_guan_package()
-
-# 对于某个目录中的txt文件,批量读取和画图
-def batch_reading_and_plotting(directory, xlabel='x', ylabel='y'):
- import re
- import os
- import guan
- for root, dirs, files in os.walk(directory):
- for file in files:
- if re.search('^txt.', file[::-1]):
- filename = file[:-4]
- x_array, y_array = guan.read_one_dimensional_data(filename=filename)
- guan.plot(x_array, y_array, xlabel=xlabel, ylabel=ylabel, title=filename, show=0, save=1, filename=filename)
- guan.statistics_of_guan_package()
-
-# 制作GIF动画
-def make_gif(image_path_array, filename='a', duration=0.1):
- import imageio
- images = []
- for image_path in image_path_array:
- im = imageio.imread(image_path)
- images.append(im)
- imageio.mimsave(filename+'.gif', images, 'GIF', duration=duration)
- import guan
- guan.statistics_of_guan_package()
-
-# 选取颜色
-def color_matplotlib():
- color_array = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan']
- import guan
- guan.statistics_of_guan_package()
- return color_array
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-# Module 11: read and write
-
-# 将数据存到文件
-def dump_data(data, filename, file_format='.txt'):
- import pickle
- with open(filename+file_format, 'wb') as f:
- pickle.dump(data, f)
- import guan
- guan.statistics_of_guan_package()
-
-# 从文件中恢复数据到变量
-def load_data(filename, file_format='.txt'):
- import pickle
- with open(filename+file_format, 'rb') as f:
- data = pickle.load(f)
- import guan
- guan.statistics_of_guan_package()
- return data
-
-# 读取文件中的一维数据(每一行一组x和y)
-def read_one_dimensional_data(filename='a', file_format='.txt'):
- import numpy as np
- f = open(filename+file_format, 'r')
- text = f.read()
- f.close()
- row_list = np.array(text.split('\n'))
- dim_column = np.array(row_list[0].split()).shape[0]
- x_array = np.array([])
- y_array = np.array([])
- for row in row_list:
- column = np.array(row.split())
- if column.shape[0] != 0:
- x_array = np.append(x_array, [float(column[0])], axis=0)
- y_row = np.zeros(dim_column-1)
- for dim0 in range(dim_column-1):
- y_row[dim0] = float(column[dim0+1])
- if np.array(y_array).shape[0] == 0:
- y_array = [y_row]
- else:
- y_array = np.append(y_array, [y_row], axis=0)
- import guan
- guan.statistics_of_guan_package()
- return x_array, y_array
-
-# 读取文件中的一维数据(每一行一组x和y)(支持复数形式)
-def read_one_dimensional_complex_data(filename='a', file_format='.txt'):
- import numpy as np
- f = open(filename+file_format, 'r')
- text = f.read()
- f.close()
- row_list = np.array(text.split('\n'))
- dim_column = np.array(row_list[0].split()).shape[0]
- x_array = np.array([])
- y_array = np.array([])
- for row in row_list:
- column = np.array(row.split())
- if column.shape[0] != 0:
- x_array = np.append(x_array, [complex(column[0])], axis=0)
- y_row = np.zeros(dim_column-1, dtype=complex)
- for dim0 in range(dim_column-1):
- y_row[dim0] = complex(column[dim0+1])
- if np.array(y_array).shape[0] == 0:
- y_array = [y_row]
- else:
- y_array = np.append(y_array, [y_row], axis=0)
- import guan
- guan.statistics_of_guan_package()
- return x_array, y_array
-
-# 读取文件中的二维数据(第一行和列分别为横纵坐标)
-def read_two_dimensional_data(filename='a', file_format='.txt'):
- import numpy as np
- f = open(filename+file_format, 'r')
- text = f.read()
- f.close()
- row_list = np.array(text.split('\n'))
- dim_column = np.array(row_list[0].split()).shape[0]
- x_array = np.array([])
- y_array = np.array([])
- matrix = np.array([])
- for i0 in range(row_list.shape[0]):
- column = np.array(row_list[i0].split())
- if i0 == 0:
- x_str = column[1::]
- x_array = np.zeros(x_str.shape[0])
- for i00 in range(x_str.shape[0]):
- x_array[i00] = float(x_str[i00])
- elif column.shape[0] != 0:
- y_array = np.append(y_array, [float(column[0])], axis=0)
- matrix_row = np.zeros(dim_column-1)
- for dim0 in range(dim_column-1):
- matrix_row[dim0] = float(column[dim0+1])
- if np.array(matrix).shape[0] == 0:
- matrix = [matrix_row]
- else:
- matrix = np.append(matrix, [matrix_row], axis=0)
- import guan
- guan.statistics_of_guan_package()
- return x_array, y_array, matrix
-
-# 读取文件中的二维数据(第一行和列分别为横纵坐标)(支持复数形式)
-def read_two_dimensional_complex_data(filename='a', file_format='.txt'):
- import numpy as np
- f = open(filename+file_format, 'r')
- text = f.read()
- f.close()
- row_list = np.array(text.split('\n'))
- dim_column = np.array(row_list[0].split()).shape[0]
- x_array = np.array([])
- y_array = np.array([])
- matrix = np.array([])
- for i0 in range(row_list.shape[0]):
- column = np.array(row_list[i0].split())
- if i0 == 0:
- x_str = column[1::]
- x_array = np.zeros(x_str.shape[0], dtype=complex)
- for i00 in range(x_str.shape[0]):
- x_array[i00] = complex(x_str[i00])
- elif column.shape[0] != 0:
- y_array = np.append(y_array, [complex(column[0])], axis=0)
- matrix_row = np.zeros(dim_column-1, dtype=complex)
- for dim0 in range(dim_column-1):
- matrix_row[dim0] = complex(column[dim0+1])
- if np.array(matrix).shape[0] == 0:
- matrix = [matrix_row]
- else:
- matrix = np.append(matrix, [matrix_row], axis=0)
- import guan
- guan.statistics_of_guan_package()
- return x_array, y_array, matrix
-
-# 读取文件中的二维数据(不包括x和y)
-def read_two_dimensional_data_without_xy_array(filename='a', file_format='.txt'):
- import numpy as np
- matrix = np.loadtxt(filename+file_format)
- import guan
- guan.statistics_of_guan_package()
- return matrix
-
-# 打开文件用于新增内容
-def open_file(filename='a', file_format='.txt'):
- f = open(filename+file_format, 'a', encoding='UTF-8')
- import guan
- guan.statistics_of_guan_package()
- return f
-
-# 在文件中写入一维数据(每一行一组x和y)
-def write_one_dimensional_data(x_array, y_array, filename='a', file_format='.txt'):
- import guan
- with open(filename+file_format, 'w', encoding='UTF-8') as f:
- guan.write_one_dimensional_data_without_opening_file(x_array, y_array, f)
- import guan
- guan.statistics_of_guan_package()
-
-# 在文件中写入一维数据(每一行一组x和y)(需要输入文件)
-def write_one_dimensional_data_without_opening_file(x_array, y_array, f):
- import numpy as np
- x_array = np.array(x_array)
- y_array = np.array(y_array)
- i0 = 0
- for x0 in x_array:
- f.write(str(x0)+' ')
- if len(y_array.shape) == 1:
- f.write(str(y_array[i0])+'\n')
- elif len(y_array.shape) == 2:
- for j0 in range(y_array.shape[1]):
- f.write(str(y_array[i0, j0])+' ')
- f.write('\n')
- i0 += 1
- import guan
- guan.statistics_of_guan_package()
-
-# 在文件中写入二维数据(第一行和列分别为横纵坐标)
-def write_two_dimensional_data(x_array, y_array, matrix, filename='a', file_format='.txt'):
- import guan
- with open(filename+file_format, 'w', encoding='UTF-8') as f:
- guan.write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f)
- guan.statistics_of_guan_package()
-
-# 在文件中写入二维数据(第一行和列分别为横纵坐标)(需要输入文件)
-def write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f):
- import numpy as np
- x_array = np.array(x_array)
- y_array = np.array(y_array)
- matrix = np.array(matrix)
- f.write('0 ')
- for x0 in x_array:
- f.write(str(x0)+' ')
- f.write('\n')
- i0 = 0
- for y0 in y_array:
- f.write(str(y0))
- j0 = 0
- for x0 in x_array:
- f.write(' '+str(matrix[i0, j0])+' ')
- j0 += 1
- f.write('\n')
- i0 += 1
- import guan
- guan.statistics_of_guan_package()
-
-# 在文件中写入二维数据(不包括x和y)
-def write_two_dimensional_data_without_xy_array(matrix, filename='a', file_format='.txt'):
- import guan
- with open(filename+file_format, 'w', encoding='UTF-8') as f:
- guan.write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f)
- guan.statistics_of_guan_package()
-
-# 在文件中写入二维数据(不包括x和y)(需要输入文件)
-def write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f):
- for row in matrix:
- for element in row:
- f.write(str(element)+' ')
- f.write('\n')
- import guan
- guan.statistics_of_guan_package()
-
-# 以显示编号的样式,打印数组
-def print_array_with_index(array, show_index=1, index_type=0):
- if show_index==0:
- for i0 in array:
- print(i0)
- else:
- if index_type==0:
- index = 0
- for i0 in array:
- print(index, i0)
- index += 1
- else:
- index = 0
- for i0 in array:
- index += 1
- print(index, i0)
- import guan
- guan.statistics_of_guan_package()
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-# Module 12: file processing
-
-# 自动先后运行程序(串行)
-def run_programs_sequentially(program_files=['./a.py', './b.py'], execute='python ', show_time=0):
- import os
- import time
- if show_time == 1:
- start = time.time()
- i0 = 0
- for program_file in program_files:
- i0 += 1
- if show_time == 1:
- start_0 = time.time()
- os.system(execute+program_file)
- if show_time == 1:
- end_0 = time.time()
- print('Running time of program_'+str(i0)+' = '+str((end_0-start_0)/60)+' min')
- if show_time == 1:
- end = time.time()
- print('Total running time = '+str((end-start)/60)+' min')
- import guan
- guan.statistics_of_guan_package()
-
-# 如果不存在文件夹,则新建文件夹
-def make_directory(directory='./test'):
- import os
- if not os.path.exists(directory):
- os.makedirs(directory)
- import guan
- guan.statistics_of_guan_package()
-
-# 复制一份文件
-def copy_file(file1='./a.txt', file2='./b.txt'):
- import shutil
- shutil.copy(file1, file2)
- import guan
- guan.statistics_of_guan_package()
-
-# 拼接两个PDF文件
-def combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_file='combined_file.pdf'):
- import PyPDF2
- output_pdf = PyPDF2.PdfWriter()
- with open(input_file_1, 'rb') as file1:
- pdf1 = PyPDF2.PdfReader(file1)
- for page in range(len(pdf1.pages)):
- output_pdf.add_page(pdf1.pages[page])
- with open(input_file_2, 'rb') as file2:
- pdf2 = PyPDF2.PdfReader(file2)
- for page in range(len(pdf2.pages)):
- output_pdf.add_page(pdf2.pages[page])
- with open(output_file, 'wb') as combined_file:
- output_pdf.write(combined_file)
- import guan
- guan.statistics_of_guan_package()
-
-# 将PDF文件转成文本
-def pdf_to_text(pdf_path):
- from pdfminer.pdfparser import PDFParser, PDFDocument
- from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
- from pdfminer.converter import PDFPageAggregator
- from pdfminer.layout import LAParams, LTTextBox
- from pdfminer.pdfinterp import PDFTextExtractionNotAllowed
- import logging
- logging.Logger.propagate = False
- logging.getLogger().setLevel(logging.ERROR)
- praser = PDFParser(open(pdf_path, 'rb'))
- doc = PDFDocument()
- praser.set_document(doc)
- doc.set_parser(praser)
- doc.initialize()
- if not doc.is_extractable:
- raise PDFTextExtractionNotAllowed
- else:
- rsrcmgr = PDFResourceManager()
- laparams = LAParams()
- device = PDFPageAggregator(rsrcmgr, laparams=laparams)
- interpreter = PDFPageInterpreter(rsrcmgr, device)
- content = ''
- for page in doc.get_pages():
- interpreter.process_page(page)
- layout = device.get_result()
- for x in layout:
- if isinstance(x, LTTextBox):
- content = content + x.get_text().strip()
- import guan
- guan.statistics_of_guan_package()
- return content
-
-# 获取PDF文件页数
-def get_pdf_page_number(pdf_path):
- import PyPDF2
- pdf_file = open(pdf_path, 'rb')
- pdf_reader = PyPDF2.PdfReader(pdf_file)
- num_pages = len(pdf_reader.pages)
- import guan
- guan.statistics_of_guan_package()
- return num_pages
-
-# 获取PDF文件指定页面的内容
-def pdf_to_txt_for_a_specific_page(pdf_path, page_num=1):
- import PyPDF2
- pdf_file = open(pdf_path, 'rb')
- pdf_reader = PyPDF2.PdfReader(pdf_file)
- num_pages = len(pdf_reader.pages)
- for page_num0 in range(num_pages):
- if page_num0 == page_num-1:
- page = pdf_reader.pages[page_num0]
- page_text = page.extract_text()
- pdf_file.close()
- import guan
- guan.statistics_of_guan_package()
- return page_text
-
-# 获取PDF文献中的链接。例如: link_starting_form='https://doi.org'
-def get_links_from_pdf(pdf_path, link_starting_form=''):
- import PyPDF2
- import re
- pdfReader = PyPDF2.PdfFileReader(pdf_path)
- pages = pdfReader.getNumPages()
- i0 = 0
- links = []
- for page in range(pages):
- pageSliced = pdfReader.getPage(page)
- pageObject = pageSliced.getObject()
- if '/Annots' in pageObject.keys():
- ann = pageObject['/Annots']
- old = ''
- for a in ann:
- u = a.getObject()
- if '/A' in u.keys():
- if re.search(re.compile('^'+link_starting_form), u['/A']['/URI']):
- if u['/A']['/URI'] != old:
- links.append(u['/A']['/URI'])
- i0 += 1
- old = u['/A']['/URI']
- import guan
- guan.statistics_of_guan_package()
- return links
-
-# 通过Sci-Hub网站下载文献
-def download_with_scihub(address=None, num=1):
- from bs4 import BeautifulSoup
- import re
- import requests
- import os
- if num==1 and address!=None:
- address_array = [address]
- else:
- address_array = []
- for i in range(num):
- address = input('\nInput:')
- address_array.append(address)
- for address in address_array:
- r = requests.post('https://sci-hub.st/', data={'request': address})
- print('\nResponse:', r)
- print('Address:', r.url)
- soup = BeautifulSoup(r.text, features='lxml')
- pdf_URL = soup.embed['src']
- # pdf_URL = soup.iframe['src'] # This is a code line of history version which fails to get pdf URL.
- if re.search(re.compile('^https:'), pdf_URL):
- pass
- else:
- pdf_URL = 'https:'+pdf_URL
- print('PDF address:', pdf_URL)
- name = re.search(re.compile('fdp.*?/'),pdf_URL[::-1]).group()[::-1][1::]
- print('PDF name:', name)
- print('Directory:', os.getcwd())
- print('\nDownloading...')
- r = requests.get(pdf_URL, stream=True)
- with open(name, 'wb') as f:
- for chunk in r.iter_content(chunk_size=32):
- f.write(chunk)
- print('Completed!\n')
- if num != 1:
- print('All completed!\n')
- import guan
- guan.statistics_of_guan_package()
-
-# 将文件目录结构写入Markdown文件
-def write_file_list_in_markdown(directory='./', filename='a', reverse_positive_or_negative=1, starting_from_h1=None, banned_file_format=[], hide_file_format=None, divided_line=None, show_second_number=None, show_third_number=None):
- import os
- f = open(filename+'.md', 'w', encoding="utf-8")
- filenames1 = os.listdir(directory)
- u0 = 0
- for filename1 in filenames1[::reverse_positive_or_negative]:
- filename1_with_path = os.path.join(directory,filename1)
- if os.path.isfile(filename1_with_path):
- if os.path.splitext(filename1)[1] not in banned_file_format:
- if hide_file_format == None:
- f.write('+ '+str(filename1)+'\n\n')
- else:
- f.write('+ '+str(os.path.splitext(filename1)[0])+'\n\n')
- else:
- u0 += 1
- if divided_line != None and u0 != 1:
- f.write('--------\n\n')
- if starting_from_h1 == None:
- f.write('#')
- f.write('# '+str(filename1)+'\n\n')
-
- filenames2 = os.listdir(filename1_with_path)
- i0 = 0
- for filename2 in filenames2[::reverse_positive_or_negative]:
- filename2_with_path = os.path.join(directory, filename1, filename2)
- if os.path.isfile(filename2_with_path):
- if os.path.splitext(filename2)[1] not in banned_file_format:
- if hide_file_format == None:
- f.write('+ '+str(filename2)+'\n\n')
- else:
- f.write('+ '+str(os.path.splitext(filename2)[0])+'\n\n')
- else:
- i0 += 1
- if starting_from_h1 == None:
- f.write('#')
- if show_second_number != None:
- f.write('## '+str(i0)+'. '+str(filename2)+'\n\n')
- else:
- f.write('## '+str(filename2)+'\n\n')
-
- j0 = 0
- filenames3 = os.listdir(filename2_with_path)
- for filename3 in filenames3[::reverse_positive_or_negative]:
- filename3_with_path = os.path.join(directory, filename1, filename2, filename3)
- if os.path.isfile(filename3_with_path):
- if os.path.splitext(filename3)[1] not in banned_file_format:
- if hide_file_format == None:
- f.write('+ '+str(filename3)+'\n\n')
- else:
- f.write('+ '+str(os.path.splitext(filename3)[0])+'\n\n')
- else:
- j0 += 1
- if starting_from_h1 == None:
- f.write('#')
- if show_third_number != None:
- f.write('### ('+str(j0)+') '+str(filename3)+'\n\n')
- else:
- f.write('### '+str(filename3)+'\n\n')
-
- filenames4 = os.listdir(filename3_with_path)
- for filename4 in filenames4[::reverse_positive_or_negative]:
- filename4_with_path = os.path.join(directory, filename1, filename2, filename3, filename4)
- if os.path.isfile(filename4_with_path):
- if os.path.splitext(filename4)[1] not in banned_file_format:
- if hide_file_format == None:
- f.write('+ '+str(filename4)+'\n\n')
- else:
- f.write('+ '+str(os.path.splitext(filename4)[0])+'\n\n')
- else:
- if starting_from_h1 == None:
- f.write('#')
- f.write('#### '+str(filename4)+'\n\n')
-
- filenames5 = os.listdir(filename4_with_path)
- for filename5 in filenames5[::reverse_positive_or_negative]:
- filename5_with_path = os.path.join(directory, filename1, filename2, filename3, filename4, filename5)
- if os.path.isfile(filename5_with_path):
- if os.path.splitext(filename5)[1] not in banned_file_format:
- if hide_file_format == None:
- f.write('+ '+str(filename5)+'\n\n')
- else:
- f.write('+ '+str(os.path.splitext(filename5)[0])+'\n\n')
- else:
- if starting_from_h1 == None:
- f.write('#')
- f.write('##### '+str(filename5)+'\n\n')
-
- filenames6 = os.listdir(filename5_with_path)
- for filename6 in filenames6[::reverse_positive_or_negative]:
- filename6_with_path = os.path.join(directory, filename1, filename2, filename3, filename4, filename5, filename6)
- if os.path.isfile(filename6_with_path):
- if os.path.splitext(filename6)[1] not in banned_file_format:
- if hide_file_format == None:
- f.write('+ '+str(filename6)+'\n\n')
- else:
- f.write('+ '+str(os.path.splitext(filename6)[0])+'\n\n')
- else:
- if starting_from_h1 == None:
- f.write('#')
- f.write('###### '+str(filename6)+'\n\n')
- f.close()
- import guan
- guan.statistics_of_guan_package()
-
-# 查找文件名相同的文件
-def find_repeated_file_with_same_filename(directory='./', ignored_directory_with_words=[], ignored_file_with_words=[], num=1000):
- import os
- from collections import Counter
- file_list = []
- for root, dirs, files in os.walk(directory):
- for i0 in range(len(files)):
- file_list.append(files[i0])
- for word in ignored_directory_with_words:
- if word in root:
- file_list.remove(files[i0])
- for word in ignored_file_with_words:
- if word in files[i0]:
- try:
- file_list.remove(files[i0])
- except:
- pass
- count_file = Counter(file_list).most_common(num)
- repeated_file = []
- for item in count_file:
- if item[1]>1:
- repeated_file.append(item)
- import guan
- guan.statistics_of_guan_package()
- return repeated_file
-
-# 统计各个子文件夹中的文件数量
-def count_file_in_sub_directory(directory='./', smaller_than_num=None):
- import os
- from collections import Counter
- dirs_list = []
- for root, dirs, files in os.walk(directory):
- if dirs != []:
- for i0 in range(len(dirs)):
- dirs_list.append(root+'/'+dirs[i0])
- for sub_dir in dirs_list:
- file_list = []
- for root, dirs, files in os.walk(sub_dir):
- for i0 in range(len(files)):
- file_list.append(files[i0])
- count_file = len(file_list)
- if smaller_than_num == None:
- print(sub_dir)
- print(count_file)
- print()
- else:
- if count_filei0 and abs(a1-a2)
', html, re.S)
- if random_on==1:
- random.shuffle(contents)
- if reverse==1:
- contents.reverse()
- for content in contents:
- soup2 = BeautifulSoup(content, features='lxml')
- all_h2 = soup2.find_all('h2')
- for h2 in all_h2:
- if re.search('\d*. ', h2.get_text()):
- word = re.findall('[a-zA-Z].*', h2.get_text(), re.S)[0]
- exist = os.path.exists(directory+word+'.mp3')
- if not exist:
- try:
- if re.search(word, html_file):
- r = requests.get("https://file.guanjihuan.com/words/"+directory+word+".mp3", stream=True)
- with open(directory+word+'.mp3', 'wb') as f:
- for chunk in r.iter_content(chunk_size=32):
- f.write(chunk)
- except:
- pass
- print(h2.get_text())
- try:
- pygame.mixer.init()
- track = pygame.mixer.music.load(directory+word+'.mp3')
- pygame.mixer.music.play()
- if show_link==1:
- print('https://www.ldoceonline.com/dictionary/'+word)
- except:
- pass
- translation = re.findall('.*?
', content, re.S)[0][3:-4]
- if show_translation==1:
- time.sleep(translation_time)
- print(translation)
- time.sleep(rest_time)
- pygame.mixer.music.stop()
- print()
- import guan
- guan.statistics_of_guan_package()
-
-# 播放挑选过后的学术单词
-def play_selected_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_link=1, rest_time=3):
- from bs4 import BeautifulSoup
- import re
- import urllib.request
- import requests
- import os
- import pygame
- import time
- import ssl
- import random
- ssl._create_default_https_context = ssl._create_unverified_context
- html = urllib.request.urlopen("https://www.guanjihuan.com/archives/24732").read().decode('utf-8')
- if bre_or_ame == 'ame':
- directory = 'words_mp3_ameProns/'
- elif bre_or_ame == 'bre':
- directory = 'words_mp3_breProns/'
- exist_directory = os.path.exists(directory)
- html_file = urllib.request.urlopen("https://file.guanjihuan.com/words/"+directory).read().decode('utf-8')
- if exist_directory == 0:
- os.makedirs(directory)
- soup = BeautifulSoup(html, features='lxml')
- contents = re.findall('\d.*?', html, re.S)
- if random_on==1:
- random.shuffle(contents)
- if reverse==1:
- contents.reverse()
- for content in contents:
- soup2 = BeautifulSoup(content, features='lxml')
- all_li = soup2.find_all('li')
- for li in all_li:
- if re.search('\d*. ', li.get_text()):
- word = re.findall('\s[a-zA-Z].*?\s', li.get_text(), re.S)[0][1:-1]
- exist = os.path.exists(directory+word+'.mp3')
- if not exist:
- try:
- if re.search(word, html_file):
- r = requests.get("https://file.guanjihuan.com/words/"+directory+word+".mp3", stream=True)
- with open(directory+word+'.mp3', 'wb') as f:
- for chunk in r.iter_content(chunk_size=32):
- f.write(chunk)
- except:
- pass
- print(li.get_text())
- try:
- pygame.mixer.init()
- track = pygame.mixer.music.load(directory+word+'.mp3')
- pygame.mixer.music.play()
- if show_link==1:
- print('https://www.ldoceonline.com/dictionary/'+word)
- except:
- pass
- time.sleep(rest_time)
- pygame.mixer.music.stop()
- print()
- import guan
- guan.statistics_of_guan_package()
-
-# 播放元素周期表上的单词
-def play_element_words(random_on=0, show_translation=1, show_link=1, translation_time=2, rest_time=1):
- from bs4 import BeautifulSoup
- import re
- import urllib.request
- import requests
- import os
- import pygame
- import time
- import ssl
- import random
- ssl._create_default_https_context = ssl._create_unverified_context
- html = urllib.request.urlopen("https://www.guanjihuan.com/archives/10897").read().decode('utf-8')
- directory = 'prons/'
- exist_directory = os.path.exists(directory)
- html_file = urllib.request.urlopen("https://file.guanjihuan.com/words/periodic_table_of_elements/"+directory).read().decode('utf-8')
- if exist_directory == 0:
- os.makedirs(directory)
- soup = BeautifulSoup(html, features='lxml')
- contents = re.findall('', html, re.S)
- if random_on==1:
- random.shuffle(contents)
- for content in contents:
- soup2 = BeautifulSoup(content, features='lxml')
- all_h2 = soup2.find_all('h2')
- for h2 in all_h2:
- if re.search('\d*. ', h2.get_text()):
- word = re.findall('[a-zA-Z].* \(', h2.get_text(), re.S)[0][:-2]
- exist = os.path.exists(directory+word+'.mp3')
- if not exist:
- try:
- if re.search(word, html_file):
- r = requests.get("https://file.guanjihuan.com/words/periodic_table_of_elements/prons/"+word+".mp3", stream=True)
- with open(directory+word+'.mp3', 'wb') as f:
- for chunk in r.iter_content(chunk_size=32):
- f.write(chunk)
- except:
- pass
- print(h2.get_text())
- try:
- pygame.mixer.init()
- track = pygame.mixer.music.load(directory+word+'.mp3')
- pygame.mixer.music.play()
- if show_link==1:
- print('https://www.merriam-webster.com/dictionary/'+word)
- except:
- pass
- translation = re.findall('.*?
', content, re.S)[0][3:-4]
- if show_translation==1:
- time.sleep(translation_time)
- print(translation)
- time.sleep(rest_time)
- pygame.mixer.music.stop()
- print()
- import guan
- guan.statistics_of_guan_package()
-
-# 获取Guan软件包当前模块的所有函数名
-def get_all_function_names_in_current_module():
- import inspect
- current_module = inspect.getmodule(inspect.currentframe())
- function_names = [name for name, obj in inspect.getmembers(current_module) if inspect.isfunction(obj)]
- import guan
- guan.statistics_of_guan_package()
- return function_names
-
-# 统计Guan软件包中的函数数量
-def count_functions_in_current_module():
- import guan
- function_names = guan.get_all_function_names_in_current_module()
- num_functions = len(function_names)
- guan.statistics_of_guan_package()
- return num_functions
-
-# 获取当前函数名
-def get_current_function_name():
- import inspect
- current_function_name = inspect.currentframe().f_code.co_name
- import guan
- guan.statistics_of_guan_package()
- return current_function_name
-
-# 获取调用本函数的函数名
-def get_calling_function_name(layer=1):
- import inspect
- caller = inspect.stack()[layer]
- calling_function_name = caller.function
- return calling_function_name
-
-# 获取当前日期字符串
-def get_date(bar=True):
- import datetime
- datetime_date = str(datetime.date.today())
- if bar==False:
- datetime_date = datetime_date.replace('-', '')
- return datetime_date
-
-# 获取当前时间字符串
-def get_time():
- import datetime
- datetime_time = datetime.datetime.now().strftime('%H:%M:%S')
- return datetime_time
-
-# 获取MAC地址
-def get_mac_address():
- import uuid
- mac_address = uuid.UUID(int=uuid.getnode()).hex[-12:].upper()
- mac_address = '-'.join([mac_address[i:i+2] for i in range(0, 11, 2)])
- return mac_address
-
-# Guan软件包的使用统计(不涉及到用户的个人数据)
-def statistics_of_guan_package():
- try:
- import guan
- message_calling = guan.get_calling_function_name(layer=3)
- if message_calling == '':
- import socket
- datetime_date = guan.get_date()
- datetime_time = guan.get_time()
- current_version = guan.get_current_version('guan')
- client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
- client_socket.settimeout(0.5)
- client_socket.connect(('py.guanjihuan.com', 12345))
- message = guan.get_calling_function_name(layer=2)
- send_message = datetime_date + ' ' + datetime_time + ' version_'+current_version+' guan.' + message+'\n'
- client_socket.send(send_message.encode())
- client_socket.close()
- client_socket2 = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
- client_socket2.settimeout(0.5)
- client_socket2.connect(('py.guanjihuan.com', 12345))
- mac_address = guan.get_mac_address()
- send_mac_address = 'version_'+current_version+' MAC_address: '+mac_address+'\n'
- client_socket2.send(send_mac_address.encode())
- client_socket2.close()
- except:
- pass
-
-# 获取Python软件包的最新版本
-def get_latest_version(package_name='guan', timeout=2):
- import requests
- url = f"https://pypi.org/pypi/{package_name}/json"
- try:
- response = requests.get(url, timeout=timeout)
- except:
- return None
- if response.status_code == 200:
- data = response.json()
- latest_version = data["info"]["version"]
- return latest_version
- else:
- return None
-
-# 获取软件包的本机版本
-def get_current_version(package_name='guan'):
- import importlib.metadata
- try:
- current_version = importlib.metadata.version(package_name)
- return current_version
- except:
- return None
-
-# Guan软件包升级提示
-def notification_of_upgrade():
- try:
- import guan
- latest_version = guan.get_latest_version(package_name='guan', timeout=2)
- current_version = guan.get_current_version('guan')
- if latest_version != None and current_version != None:
- if latest_version != current_version:
- print('提示:您当前使用的版本是 guan-'+current_version+',目前已经有最新版本 guan-'+latest_version+'。您可以通过以下命令对软件包进行升级:pip install --upgrade guan')
- except:
- pass
-
-notification_of_upgrade()
\ No newline at end of file
+# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com. The GitHub location of this package is on https://github.com/guanjihuan/py.guanjihuan.com.
+
+from basic_functions import *
+from Fourier_transform import *
+from Hamiltonian_of_finite_size_systems import *
+from Hamiltonian_of_models_in_reciprocal_space import *
+from band_structures_and_wave_functions import *
+from Green_functions import *
+from density_of_states import *
+from quantum_transport import *
+from topological_invariant import *
+from plot_figures import *
+from read_and_write import *
+from file_processing import *
+from data_processing import *
+
+import guan
+rand_number = guan.get_random_number(start=1, end=10)
+if rand_number == 5:
+ guan.notification_of_upgrade()
\ No newline at end of file
diff --git a/PyPI/src/guan/band_structures_and_wave_functions.py b/PyPI/src/guan/band_structures_and_wave_functions.py
new file mode 100644
index 0000000..7d51264
--- /dev/null
+++ b/PyPI/src/guan/band_structures_and_wave_functions.py
@@ -0,0 +1,204 @@
+# Module: band_structures_and_wave_functions
+
+# 计算哈密顿量的本征值
+def calculate_eigenvalue(hamiltonian):
+ import numpy as np
+ if np.array(hamiltonian).shape==():
+ eigenvalue = np.real(hamiltonian)
+ else:
+ eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
+ import guan
+ guan.statistics_of_guan_package()
+ return eigenvalue
+
+# 输入哈密顿量函数(带一组参数),计算一组参数下的本征值,返回本征值向量组
+def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0):
+ import numpy as np
+ dim_x = np.array(x_array).shape[0]
+ i0 = 0
+ if np.array(hamiltonian_function(0)).shape==():
+ eigenvalue_array = np.zeros((dim_x, 1))
+ for x0 in x_array:
+ hamiltonian = hamiltonian_function(x0)
+ eigenvalue_array[i0, 0] = np.real(hamiltonian)
+ i0 += 1
+ else:
+ dim = np.array(hamiltonian_function(0)).shape[0]
+ eigenvalue_array = np.zeros((dim_x, dim))
+ for x0 in x_array:
+ if print_show==1:
+ print(x0)
+ hamiltonian = hamiltonian_function(x0)
+ eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
+ eigenvalue_array[i0, :] = eigenvalue
+ i0 += 1
+ import guan
+ guan.statistics_of_guan_package()
+ return eigenvalue_array
+
+# 输入哈密顿量函数(带两组参数),计算两组参数下的本征值,返回本征值向量组
+def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0):
+ import numpy as np
+ dim_x = np.array(x_array).shape[0]
+ dim_y = np.array(y_array).shape[0]
+ if np.array(hamiltonian_function(0,0)).shape==():
+ eigenvalue_array = np.zeros((dim_y, dim_x, 1))
+ i0 = 0
+ for y0 in y_array:
+ j0 = 0
+ for x0 in x_array:
+ hamiltonian = hamiltonian_function(x0, y0)
+ eigenvalue_array[i0, j0, 0] = np.real(hamiltonian)
+ j0 += 1
+ i0 += 1
+ else:
+ dim = np.array(hamiltonian_function(0, 0)).shape[0]
+ eigenvalue_array = np.zeros((dim_y, dim_x, dim))
+ i0 = 0
+ for y0 in y_array:
+ j0 = 0
+ if print_show==1:
+ print(y0)
+ for x0 in x_array:
+ if print_show_more==1:
+ print(x0)
+ hamiltonian = hamiltonian_function(x0, y0)
+ eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
+ eigenvalue_array[i0, j0, :] = eigenvalue
+ j0 += 1
+ i0 += 1
+ import guan
+ guan.statistics_of_guan_package()
+ return eigenvalue_array
+
+# 计算哈密顿量的本征矢
+def calculate_eigenvector(hamiltonian):
+ import numpy as np
+ eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
+ import guan
+ guan.statistics_of_guan_package()
+ return eigenvector
+
+# 通过二分查找的方法获取和相邻波函数一样规范的波函数
+def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=1000, precision=1e-6):
+ import numpy as np
+ import cmath
+ phase_1_pre = 0
+ phase_2_pre = np.pi
+ for i0 in range(n_test):
+ test_1 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_1_pre) - vector_ref))
+ test_2 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_2_pre) - vector_ref))
+ if test_1 < precision:
+ phase = phase_1_pre
+ if show_times==1:
+ print('Binary search times=', i0)
+ break
+ if i0 == n_test-1:
+ phase = phase_1_pre
+ if show_error==1:
+ print('Gauge not found with binary search times=', i0)
+ if test_1 < test_2:
+ if i0 == 0:
+ phase_1 = phase_1_pre-(phase_2_pre-phase_1_pre)/2
+ phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2
+ else:
+ phase_1 = phase_1_pre
+ phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2
+ else:
+ if i0 == 0:
+ phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2
+ phase_2 = phase_2_pre+(phase_2_pre-phase_1_pre)/2
+ else:
+ phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2
+ phase_2 = phase_2_pre
+ phase_1_pre = phase_1
+ phase_2_pre = phase_2
+ vector_target = vector_target*cmath.exp(1j*phase)
+ if show_phase==1:
+ print('Phase=', phase)
+ import guan
+ guan.statistics_of_guan_package()
+ return vector_target
+
+# 通过使得波函数的一个非零分量为实数,得到固定规范的波函数
+def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None):
+ import numpy as np
+ import cmath
+ vector = np.array(vector)
+ if index == None:
+ index = np.argmax(np.abs(vector))
+ sign_pre = np.sign(np.imag(vector[index]))
+ for phase in np.arange(0, 2*np.pi, precision):
+ sign = np.sign(np.imag(vector[index]*cmath.exp(1j*phase)))
+ if np.abs(np.imag(vector[index]*cmath.exp(1j*phase))) < 1e-9 or sign == -sign_pre:
+ break
+ sign_pre = sign
+ vector = vector*cmath.exp(1j*phase)
+ if np.real(vector[index]) < 0:
+ vector = -vector
+ import guan
+ guan.statistics_of_guan_package()
+ return vector
+
+# 通过使得波函数的一个非零分量为实数,得到固定规范的波函数(在一组波函数中选取最大的那个分量)
+def find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array, precision=0.005):
+ import numpy as np
+ import guan
+ vector_sum = 0
+ Num_k = np.array(vector_array).shape[0]
+ for i0 in range(Num_k):
+ vector_sum += np.abs(vector_array[i0])
+ index = np.argmax(np.abs(vector_sum))
+ for i0 in range(Num_k):
+ vector_array[i0] = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector_array[i0], precision=precision, index=index)
+ guan.statistics_of_guan_package()
+ return vector_array
+
+# 旋转两个简并的波函数(说明:参数比较多,效率不高)
+def rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, precision=0.01, criterion=0.01, show_theta=0):
+ import numpy as np
+ import math
+ import cmath
+ vector1 = np.array(vector1)
+ vector2 = np.array(vector2)
+ if index1 == None:
+ index1 = np.argmax(np.abs(vector1))
+ if index2 == None:
+ index2 = np.argmax(np.abs(vector2))
+ if np.abs(vector1[index2])>criterion or np.abs(vector2[index1])>criterion:
+ for theta in np.arange(0, 2*math.pi, precision):
+ if show_theta==1:
+ print(theta)
+ for phi1 in np.arange(0, 2*math.pi, precision):
+ for phi2 in np.arange(0, 2*math.pi, precision):
+ vector1_test = cmath.exp(1j*phi1)*vector1*math.cos(theta)+cmath.exp(1j*phi2)*vector2*math.sin(theta)
+ vector2_test = -cmath.exp(-1j*phi2)*vector1*math.sin(theta)+cmath.exp(-1j*phi1)*vector2*math.cos(theta)
+ if np.abs(vector1_test[index2])i0 and abs(a1-a2)', html, re.S)
+ if random_on==1:
+ random.shuffle(contents)
+ if reverse==1:
+ contents.reverse()
+ for content in contents:
+ soup2 = BeautifulSoup(content, features='lxml')
+ all_h2 = soup2.find_all('h2')
+ for h2 in all_h2:
+ if re.search('\d*. ', h2.get_text()):
+ word = re.findall('[a-zA-Z].*', h2.get_text(), re.S)[0]
+ exist = os.path.exists(directory+word+'.mp3')
+ if not exist:
+ try:
+ if re.search(word, html_file):
+ r = requests.get("https://file.guanjihuan.com/words/"+directory+word+".mp3", stream=True)
+ with open(directory+word+'.mp3', 'wb') as f:
+ for chunk in r.iter_content(chunk_size=32):
+ f.write(chunk)
+ except:
+ pass
+ print(h2.get_text())
+ try:
+ pygame.mixer.init()
+ track = pygame.mixer.music.load(directory+word+'.mp3')
+ pygame.mixer.music.play()
+ if show_link==1:
+ print('https://www.ldoceonline.com/dictionary/'+word)
+ except:
+ pass
+ translation = re.findall('.*?
', content, re.S)[0][3:-4]
+ if show_translation==1:
+ time.sleep(translation_time)
+ print(translation)
+ time.sleep(rest_time)
+ pygame.mixer.music.stop()
+ print()
+ import guan
+ guan.statistics_of_guan_package()
+
+# 播放挑选过后的学术单词
+def play_selected_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_link=1, rest_time=3):
+ from bs4 import BeautifulSoup
+ import re
+ import urllib.request
+ import requests
+ import os
+ import pygame
+ import time
+ import ssl
+ import random
+ ssl._create_default_https_context = ssl._create_unverified_context
+ html = urllib.request.urlopen("https://www.guanjihuan.com/archives/24732").read().decode('utf-8')
+ if bre_or_ame == 'ame':
+ directory = 'words_mp3_ameProns/'
+ elif bre_or_ame == 'bre':
+ directory = 'words_mp3_breProns/'
+ exist_directory = os.path.exists(directory)
+ html_file = urllib.request.urlopen("https://file.guanjihuan.com/words/"+directory).read().decode('utf-8')
+ if exist_directory == 0:
+ os.makedirs(directory)
+ soup = BeautifulSoup(html, features='lxml')
+ contents = re.findall('\d.*?', html, re.S)
+ if random_on==1:
+ random.shuffle(contents)
+ if reverse==1:
+ contents.reverse()
+ for content in contents:
+ soup2 = BeautifulSoup(content, features='lxml')
+ all_li = soup2.find_all('li')
+ for li in all_li:
+ if re.search('\d*. ', li.get_text()):
+ word = re.findall('\s[a-zA-Z].*?\s', li.get_text(), re.S)[0][1:-1]
+ exist = os.path.exists(directory+word+'.mp3')
+ if not exist:
+ try:
+ if re.search(word, html_file):
+ r = requests.get("https://file.guanjihuan.com/words/"+directory+word+".mp3", stream=True)
+ with open(directory+word+'.mp3', 'wb') as f:
+ for chunk in r.iter_content(chunk_size=32):
+ f.write(chunk)
+ except:
+ pass
+ print(li.get_text())
+ try:
+ pygame.mixer.init()
+ track = pygame.mixer.music.load(directory+word+'.mp3')
+ pygame.mixer.music.play()
+ if show_link==1:
+ print('https://www.ldoceonline.com/dictionary/'+word)
+ except:
+ pass
+ time.sleep(rest_time)
+ pygame.mixer.music.stop()
+ print()
+ import guan
+ guan.statistics_of_guan_package()
+
+# 播放元素周期表上的单词
+def play_element_words(random_on=0, show_translation=1, show_link=1, translation_time=2, rest_time=1):
+ from bs4 import BeautifulSoup
+ import re
+ import urllib.request
+ import requests
+ import os
+ import pygame
+ import time
+ import ssl
+ import random
+ ssl._create_default_https_context = ssl._create_unverified_context
+ html = urllib.request.urlopen("https://www.guanjihuan.com/archives/10897").read().decode('utf-8')
+ directory = 'prons/'
+ exist_directory = os.path.exists(directory)
+ html_file = urllib.request.urlopen("https://file.guanjihuan.com/words/periodic_table_of_elements/"+directory).read().decode('utf-8')
+ if exist_directory == 0:
+ os.makedirs(directory)
+ soup = BeautifulSoup(html, features='lxml')
+ contents = re.findall('', html, re.S)
+ if random_on==1:
+ random.shuffle(contents)
+ for content in contents:
+ soup2 = BeautifulSoup(content, features='lxml')
+ all_h2 = soup2.find_all('h2')
+ for h2 in all_h2:
+ if re.search('\d*. ', h2.get_text()):
+ word = re.findall('[a-zA-Z].* \(', h2.get_text(), re.S)[0][:-2]
+ exist = os.path.exists(directory+word+'.mp3')
+ if not exist:
+ try:
+ if re.search(word, html_file):
+ r = requests.get("https://file.guanjihuan.com/words/periodic_table_of_elements/prons/"+word+".mp3", stream=True)
+ with open(directory+word+'.mp3', 'wb') as f:
+ for chunk in r.iter_content(chunk_size=32):
+ f.write(chunk)
+ except:
+ pass
+ print(h2.get_text())
+ try:
+ pygame.mixer.init()
+ track = pygame.mixer.music.load(directory+word+'.mp3')
+ pygame.mixer.music.play()
+ if show_link==1:
+ print('https://www.merriam-webster.com/dictionary/'+word)
+ except:
+ pass
+ translation = re.findall('.*?
', content, re.S)[0][3:-4]
+ if show_translation==1:
+ time.sleep(translation_time)
+ print(translation)
+ time.sleep(rest_time)
+ pygame.mixer.music.stop()
+ print()
+ import guan
+ guan.statistics_of_guan_package()
+
+# 获取Guan软件包当前模块的所有函数名
+def get_all_function_names_in_current_module():
+ import inspect
+ current_module = inspect.getmodule(inspect.currentframe())
+ function_names = [name for name, obj in inspect.getmembers(current_module) if inspect.isfunction(obj)]
+ import guan
+ guan.statistics_of_guan_package()
+ return function_names
+
+# 统计Guan软件包中的函数数量
+def count_functions_in_current_module():
+ import guan
+ function_names = guan.get_all_function_names_in_current_module()
+ num_functions = len(function_names)
+ guan.statistics_of_guan_package()
+ return num_functions
+
+# 获取当前函数名
+def get_current_function_name():
+ import inspect
+ current_function_name = inspect.currentframe().f_code.co_name
+ import guan
+ guan.statistics_of_guan_package()
+ return current_function_name
+
+# 获取调用本函数的函数名
+def get_calling_function_name(layer=1):
+ import inspect
+ caller = inspect.stack()[layer]
+ calling_function_name = caller.function
+ return calling_function_name
+
+# 获取当前日期字符串
+def get_date(bar=True):
+ import datetime
+ datetime_date = str(datetime.date.today())
+ if bar==False:
+ datetime_date = datetime_date.replace('-', '')
+ return datetime_date
+
+# 获取当前时间字符串
+def get_time():
+ import datetime
+ datetime_time = datetime.datetime.now().strftime('%H:%M:%S')
+ return datetime_time
+
+# 获取MAC地址
+def get_mac_address():
+ import uuid
+ mac_address = uuid.UUID(int=uuid.getnode()).hex[-12:].upper()
+ mac_address = '-'.join([mac_address[i:i+2] for i in range(0, 11, 2)])
+ return mac_address
+
+# Guan软件包的使用统计(不涉及到用户的个人数据)
+def statistics_of_guan_package():
+ try:
+ import guan
+ message_calling = guan.get_calling_function_name(layer=3)
+ if message_calling == '':
+ import socket
+ datetime_date = guan.get_date()
+ datetime_time = guan.get_time()
+ current_version = guan.get_current_version('guan')
+ client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
+ client_socket.settimeout(0.5)
+ client_socket.connect(('py.guanjihuan.com', 12345))
+ mac_address = guan.get_mac_address()
+ message = guan.get_calling_function_name(layer=2)
+ send_message = datetime_date + ' ' + datetime_time + ' version_'+current_version + ' MAC_address: '+mac_address+' guan.' + message+'\n'
+ client_socket.send(send_message.encode())
+ client_socket.close()
+ except:
+ pass
+
+# 获取Python软件包的最新版本
+def get_latest_version(package_name='guan', timeout=0.5):
+ import requests
+ url = f"https://pypi.org/pypi/{package_name}/json"
+ try:
+ response = requests.get(url, timeout=timeout)
+ except:
+ return None
+ if response.status_code == 200:
+ data = response.json()
+ latest_version = data["info"]["version"]
+ return latest_version
+ else:
+ return None
+
+# 获取软件包的本机版本
+def get_current_version(package_name='guan'):
+ import importlib.metadata
+ try:
+ current_version = importlib.metadata.version(package_name)
+ return current_version
+ except:
+ return None
+
+# Guan软件包升级提示
+def notification_of_upgrade(timeout=0.5):
+ try:
+ import guan
+ latest_version = guan.get_latest_version(package_name='guan', timeout=timeout)
+ current_version = guan.get_current_version('guan')
+ if latest_version != None and current_version != None:
+ if latest_version != current_version:
+ print('提示:您当前使用的版本是 guan-'+current_version+',目前已经有最新版本 guan-'+latest_version+'。您可以通过以下命令对软件包进行升级:pip install --upgrade guan')
+ except:
+ pass
\ No newline at end of file
diff --git a/PyPI/src/guan/density_of_states.py b/PyPI/src/guan/density_of_states.py
new file mode 100644
index 0000000..ed4b48f
--- /dev/null
+++ b/PyPI/src/guan/density_of_states.py
@@ -0,0 +1,164 @@
+# Module: density_of_states
+
+# 计算体系的总态密度
+def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01):
+ import numpy as np
+ import math
+ import guan
+ green = guan.green_function(fermi_energy, hamiltonian, broadening)
+ total_dos = -np.trace(np.imag(green))/math.pi
+ guan.statistics_of_guan_package()
+ return total_dos
+
+# 对于不同费米能,计算体系的总态密度
+def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01, print_show=0):
+ import numpy as np
+ import guan
+ dim = np.array(fermi_energy_array).shape[0]
+ total_dos_array = np.zeros(dim)
+ i0 = 0
+ for fermi_energy in fermi_energy_array:
+ if print_show == 1:
+ print(fermi_energy)
+ total_dos_array[i0] = guan.total_density_of_states(fermi_energy, hamiltonian, broadening)
+ i0 += 1
+ guan.statistics_of_guan_package()
+ return total_dos_array
+
+# 计算方格子的局域态密度(其中,哈密顿量的维度为:dim_hamiltonian = N1*N2*internal_degree)
+def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01):
+ import numpy as np
+ import math
+ import guan
+ green = guan.green_function(fermi_energy, hamiltonian, broadening)
+ local_dos = np.zeros((N2, N1))
+ for i1 in range(N1):
+ for i2 in range(N2):
+ for i in range(internal_degree):
+ local_dos[i2, i1] = local_dos[i2, i1]-np.imag(green[i1*N2*internal_degree+i2*internal_degree+i, i1*N2*internal_degree+i2*internal_degree+i])/math.pi
+ guan.statistics_of_guan_package()
+ return local_dos
+
+# 计算立方格子的局域态密度(其中,哈密顿量的维度为:dim_hamiltonian = N1*N2*N3*internal_degree)
+def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01):
+ import numpy as np
+ import math
+ import guan
+ green = guan.green_function(fermi_energy, hamiltonian, broadening)
+ local_dos = np.zeros((N3, N2, N1))
+ for i1 in range(N1):
+ for i2 in range(N2):
+ for i3 in range(N3):
+ for i in range(internal_degree):
+ local_dos[i3, i2, i1] = local_dos[i3, i2, i1]-np.imag(green[i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i, i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i])/math.pi
+ guan.statistics_of_guan_package()
+ return local_dos
+
+# 利用Dyson方程,计算方格子的局域态密度(其中,h00的维度为:dim_h00 = N2*internal_degree)
+def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01):
+ import numpy as np
+ import math
+ import guan
+ local_dos = np.zeros((N2, N1))
+ green_11_1 = guan.green_function(fermi_energy, h00, broadening)
+ for i1 in range(N1):
+ green_nn_n_minus = green_11_1
+ green_in_n_minus = green_11_1
+ green_ni_n_minus = green_11_1
+ green_ii_n_minus = green_11_1
+ for i2_0 in range(i1):
+ green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
+ green_nn_n_minus = green_nn_n
+ if i1!=0:
+ green_in_n_minus = green_nn_n
+ green_ni_n_minus = green_nn_n
+ green_ii_n_minus = green_nn_n
+ for size_0 in range(N1-1-i1):
+ green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
+ green_nn_n_minus = green_nn_n
+ green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
+ green_ii_n_minus = green_ii_n
+ green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
+ green_in_n_minus = green_in_n
+ green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
+ green_ni_n_minus = green_ni_n
+ for i2 in range(N2):
+ for i in range(internal_degree):
+ local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/math.pi
+ guan.statistics_of_guan_package()
+ return local_dos
+
+# 利用Dyson方程,计算立方格子的局域态密度(其中,h00的维度为:dim_h00 = N2*N3*internal_degree)
+def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01):
+ import numpy as np
+ import math
+ import guan
+ local_dos = np.zeros((N3, N2, N1))
+ green_11_1 = guan.green_function(fermi_energy, h00, broadening)
+ for i1 in range(N1):
+ green_nn_n_minus = green_11_1
+ green_in_n_minus = green_11_1
+ green_ni_n_minus = green_11_1
+ green_ii_n_minus = green_11_1
+ for i1_0 in range(i1):
+ green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
+ green_nn_n_minus = green_nn_n
+ if i1!=0:
+ green_in_n_minus = green_nn_n
+ green_ni_n_minus = green_nn_n
+ green_ii_n_minus = green_nn_n
+ for size_0 in range(N1-1-i1):
+ green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
+ green_nn_n_minus = green_nn_n
+ green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
+ green_ii_n_minus = green_ii_n
+ green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
+ green_in_n_minus = green_in_n
+ green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
+ green_ni_n_minus = green_ni_n
+ for i2 in range(N2):
+ for i3 in range(N3):
+ for i in range(internal_degree):
+ local_dos[i3, i2, i1] = local_dos[i3, i2, i1] -np.imag(green_ii_n_minus[i2*N3*internal_degree+i3*internal_degree+i, i2*N3*internal_degree+i3*internal_degree+i])/math.pi
+ guan.statistics_of_guan_package()
+ return local_dos
+
+# 利用Dyson方程,计算方格子条带(考虑了电极自能)的局域态密度(其中,h00的维度为:dim_h00 = N2*internal_degree)
+def local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01):
+ import numpy as np
+ import math
+ import guan
+ local_dos = np.zeros((N2, N1))
+ green_11_1 = guan.green_function(fermi_energy, h00+left_self_energy, broadening)
+ for i1 in range(N1):
+ green_nn_n_minus = green_11_1
+ green_in_n_minus = green_11_1
+ green_ni_n_minus = green_11_1
+ green_ii_n_minus = green_11_1
+ for i2_0 in range(i1):
+ if i2_0 == N1-1-1:
+ green_nn_n = guan.green_function_nn_n(fermi_energy, h00+right_self_energy, h01, green_nn_n_minus, broadening)
+ else:
+ green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
+ green_nn_n_minus = green_nn_n
+ if i1!=0:
+ green_in_n_minus = green_nn_n
+ green_ni_n_minus = green_nn_n
+ green_ii_n_minus = green_nn_n
+ for size_0 in range(N1-1-i1):
+ if size_0 == N1-1-i1-1:
+ green_nn_n = guan.green_function_nn_n(fermi_energy, h00+right_self_energy, h01, green_nn_n_minus, broadening)
+ else:
+ green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
+ green_nn_n_minus = green_nn_n
+ green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
+ green_ii_n_minus = green_ii_n
+ green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
+ green_in_n_minus = green_in_n
+ green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
+ green_ni_n_minus = green_ni_n
+ for i2 in range(N2):
+ for i in range(internal_degree):
+ local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/math.pi
+ guan.statistics_of_guan_package()
+ return local_dos
diff --git a/PyPI/src/guan/file_processing.py b/PyPI/src/guan/file_processing.py
new file mode 100644
index 0000000..6e410d9
--- /dev/null
+++ b/PyPI/src/guan/file_processing.py
@@ -0,0 +1,501 @@
+# Module: file_processing
+
+# 自动先后运行程序(串行)
+def run_programs_sequentially(program_files=['./a.py', './b.py'], execute='python ', show_time=0):
+ import os
+ import time
+ if show_time == 1:
+ start = time.time()
+ i0 = 0
+ for program_file in program_files:
+ i0 += 1
+ if show_time == 1:
+ start_0 = time.time()
+ os.system(execute+program_file)
+ if show_time == 1:
+ end_0 = time.time()
+ print('Running time of program_'+str(i0)+' = '+str((end_0-start_0)/60)+' min')
+ if show_time == 1:
+ end = time.time()
+ print('Total running time = '+str((end-start)/60)+' min')
+ import guan
+ guan.statistics_of_guan_package()
+
+# 如果不存在文件夹,则新建文件夹
+def make_directory(directory='./test'):
+ import os
+ if not os.path.exists(directory):
+ os.makedirs(directory)
+ import guan
+ guan.statistics_of_guan_package()
+
+# 复制一份文件
+def copy_file(file1='./a.txt', file2='./b.txt'):
+ import shutil
+ shutil.copy(file1, file2)
+ import guan
+ guan.statistics_of_guan_package()
+
+# 拼接两个PDF文件
+def combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_file='combined_file.pdf'):
+ import PyPDF2
+ output_pdf = PyPDF2.PdfWriter()
+ with open(input_file_1, 'rb') as file1:
+ pdf1 = PyPDF2.PdfReader(file1)
+ for page in range(len(pdf1.pages)):
+ output_pdf.add_page(pdf1.pages[page])
+ with open(input_file_2, 'rb') as file2:
+ pdf2 = PyPDF2.PdfReader(file2)
+ for page in range(len(pdf2.pages)):
+ output_pdf.add_page(pdf2.pages[page])
+ with open(output_file, 'wb') as combined_file:
+ output_pdf.write(combined_file)
+ import guan
+ guan.statistics_of_guan_package()
+
+# 将PDF文件转成文本
+def pdf_to_text(pdf_path):
+ from pdfminer.pdfparser import PDFParser, PDFDocument
+ from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
+ from pdfminer.converter import PDFPageAggregator
+ from pdfminer.layout import LAParams, LTTextBox
+ from pdfminer.pdfinterp import PDFTextExtractionNotAllowed
+ import logging
+ logging.Logger.propagate = False
+ logging.getLogger().setLevel(logging.ERROR)
+ praser = PDFParser(open(pdf_path, 'rb'))
+ doc = PDFDocument()
+ praser.set_document(doc)
+ doc.set_parser(praser)
+ doc.initialize()
+ if not doc.is_extractable:
+ raise PDFTextExtractionNotAllowed
+ else:
+ rsrcmgr = PDFResourceManager()
+ laparams = LAParams()
+ device = PDFPageAggregator(rsrcmgr, laparams=laparams)
+ interpreter = PDFPageInterpreter(rsrcmgr, device)
+ content = ''
+ for page in doc.get_pages():
+ interpreter.process_page(page)
+ layout = device.get_result()
+ for x in layout:
+ if isinstance(x, LTTextBox):
+ content = content + x.get_text().strip()
+ import guan
+ guan.statistics_of_guan_package()
+ return content
+
+# 获取PDF文件页数
+def get_pdf_page_number(pdf_path):
+ import PyPDF2
+ pdf_file = open(pdf_path, 'rb')
+ pdf_reader = PyPDF2.PdfReader(pdf_file)
+ num_pages = len(pdf_reader.pages)
+ import guan
+ guan.statistics_of_guan_package()
+ return num_pages
+
+# 获取PDF文件指定页面的内容
+def pdf_to_txt_for_a_specific_page(pdf_path, page_num=1):
+ import PyPDF2
+ pdf_file = open(pdf_path, 'rb')
+ pdf_reader = PyPDF2.PdfReader(pdf_file)
+ num_pages = len(pdf_reader.pages)
+ for page_num0 in range(num_pages):
+ if page_num0 == page_num-1:
+ page = pdf_reader.pages[page_num0]
+ page_text = page.extract_text()
+ pdf_file.close()
+ import guan
+ guan.statistics_of_guan_package()
+ return page_text
+
+# 获取PDF文献中的链接。例如: link_starting_form='https://doi.org'
+def get_links_from_pdf(pdf_path, link_starting_form=''):
+ import PyPDF2
+ import re
+ pdfReader = PyPDF2.PdfFileReader(pdf_path)
+ pages = pdfReader.getNumPages()
+ i0 = 0
+ links = []
+ for page in range(pages):
+ pageSliced = pdfReader.getPage(page)
+ pageObject = pageSliced.getObject()
+ if '/Annots' in pageObject.keys():
+ ann = pageObject['/Annots']
+ old = ''
+ for a in ann:
+ u = a.getObject()
+ if '/A' in u.keys():
+ if re.search(re.compile('^'+link_starting_form), u['/A']['/URI']):
+ if u['/A']['/URI'] != old:
+ links.append(u['/A']['/URI'])
+ i0 += 1
+ old = u['/A']['/URI']
+ import guan
+ guan.statistics_of_guan_package()
+ return links
+
+# 通过Sci-Hub网站下载文献
+def download_with_scihub(address=None, num=1):
+ from bs4 import BeautifulSoup
+ import re
+ import requests
+ import os
+ if num==1 and address!=None:
+ address_array = [address]
+ else:
+ address_array = []
+ for i in range(num):
+ address = input('\nInput:')
+ address_array.append(address)
+ for address in address_array:
+ r = requests.post('https://sci-hub.st/', data={'request': address})
+ print('\nResponse:', r)
+ print('Address:', r.url)
+ soup = BeautifulSoup(r.text, features='lxml')
+ pdf_URL = soup.embed['src']
+ # pdf_URL = soup.iframe['src'] # This is a code line of history version which fails to get pdf URL.
+ if re.search(re.compile('^https:'), pdf_URL):
+ pass
+ else:
+ pdf_URL = 'https:'+pdf_URL
+ print('PDF address:', pdf_URL)
+ name = re.search(re.compile('fdp.*?/'),pdf_URL[::-1]).group()[::-1][1::]
+ print('PDF name:', name)
+ print('Directory:', os.getcwd())
+ print('\nDownloading...')
+ r = requests.get(pdf_URL, stream=True)
+ with open(name, 'wb') as f:
+ for chunk in r.iter_content(chunk_size=32):
+ f.write(chunk)
+ print('Completed!\n')
+ if num != 1:
+ print('All completed!\n')
+ import guan
+ guan.statistics_of_guan_package()
+
+# 将文件目录结构写入Markdown文件
+def write_file_list_in_markdown(directory='./', filename='a', reverse_positive_or_negative=1, starting_from_h1=None, banned_file_format=[], hide_file_format=None, divided_line=None, show_second_number=None, show_third_number=None):
+ import os
+ f = open(filename+'.md', 'w', encoding="utf-8")
+ filenames1 = os.listdir(directory)
+ u0 = 0
+ for filename1 in filenames1[::reverse_positive_or_negative]:
+ filename1_with_path = os.path.join(directory,filename1)
+ if os.path.isfile(filename1_with_path):
+ if os.path.splitext(filename1)[1] not in banned_file_format:
+ if hide_file_format == None:
+ f.write('+ '+str(filename1)+'\n\n')
+ else:
+ f.write('+ '+str(os.path.splitext(filename1)[0])+'\n\n')
+ else:
+ u0 += 1
+ if divided_line != None and u0 != 1:
+ f.write('--------\n\n')
+ if starting_from_h1 == None:
+ f.write('#')
+ f.write('# '+str(filename1)+'\n\n')
+
+ filenames2 = os.listdir(filename1_with_path)
+ i0 = 0
+ for filename2 in filenames2[::reverse_positive_or_negative]:
+ filename2_with_path = os.path.join(directory, filename1, filename2)
+ if os.path.isfile(filename2_with_path):
+ if os.path.splitext(filename2)[1] not in banned_file_format:
+ if hide_file_format == None:
+ f.write('+ '+str(filename2)+'\n\n')
+ else:
+ f.write('+ '+str(os.path.splitext(filename2)[0])+'\n\n')
+ else:
+ i0 += 1
+ if starting_from_h1 == None:
+ f.write('#')
+ if show_second_number != None:
+ f.write('## '+str(i0)+'. '+str(filename2)+'\n\n')
+ else:
+ f.write('## '+str(filename2)+'\n\n')
+
+ j0 = 0
+ filenames3 = os.listdir(filename2_with_path)
+ for filename3 in filenames3[::reverse_positive_or_negative]:
+ filename3_with_path = os.path.join(directory, filename1, filename2, filename3)
+ if os.path.isfile(filename3_with_path):
+ if os.path.splitext(filename3)[1] not in banned_file_format:
+ if hide_file_format == None:
+ f.write('+ '+str(filename3)+'\n\n')
+ else:
+ f.write('+ '+str(os.path.splitext(filename3)[0])+'\n\n')
+ else:
+ j0 += 1
+ if starting_from_h1 == None:
+ f.write('#')
+ if show_third_number != None:
+ f.write('### ('+str(j0)+') '+str(filename3)+'\n\n')
+ else:
+ f.write('### '+str(filename3)+'\n\n')
+
+ filenames4 = os.listdir(filename3_with_path)
+ for filename4 in filenames4[::reverse_positive_or_negative]:
+ filename4_with_path = os.path.join(directory, filename1, filename2, filename3, filename4)
+ if os.path.isfile(filename4_with_path):
+ if os.path.splitext(filename4)[1] not in banned_file_format:
+ if hide_file_format == None:
+ f.write('+ '+str(filename4)+'\n\n')
+ else:
+ f.write('+ '+str(os.path.splitext(filename4)[0])+'\n\n')
+ else:
+ if starting_from_h1 == None:
+ f.write('#')
+ f.write('#### '+str(filename4)+'\n\n')
+
+ filenames5 = os.listdir(filename4_with_path)
+ for filename5 in filenames5[::reverse_positive_or_negative]:
+ filename5_with_path = os.path.join(directory, filename1, filename2, filename3, filename4, filename5)
+ if os.path.isfile(filename5_with_path):
+ if os.path.splitext(filename5)[1] not in banned_file_format:
+ if hide_file_format == None:
+ f.write('+ '+str(filename5)+'\n\n')
+ else:
+ f.write('+ '+str(os.path.splitext(filename5)[0])+'\n\n')
+ else:
+ if starting_from_h1 == None:
+ f.write('#')
+ f.write('##### '+str(filename5)+'\n\n')
+
+ filenames6 = os.listdir(filename5_with_path)
+ for filename6 in filenames6[::reverse_positive_or_negative]:
+ filename6_with_path = os.path.join(directory, filename1, filename2, filename3, filename4, filename5, filename6)
+ if os.path.isfile(filename6_with_path):
+ if os.path.splitext(filename6)[1] not in banned_file_format:
+ if hide_file_format == None:
+ f.write('+ '+str(filename6)+'\n\n')
+ else:
+ f.write('+ '+str(os.path.splitext(filename6)[0])+'\n\n')
+ else:
+ if starting_from_h1 == None:
+ f.write('#')
+ f.write('###### '+str(filename6)+'\n\n')
+ f.close()
+ import guan
+ guan.statistics_of_guan_package()
+
+# 查找文件名相同的文件
+def find_repeated_file_with_same_filename(directory='./', ignored_directory_with_words=[], ignored_file_with_words=[], num=1000):
+ import os
+ from collections import Counter
+ file_list = []
+ for root, dirs, files in os.walk(directory):
+ for i0 in range(len(files)):
+ file_list.append(files[i0])
+ for word in ignored_directory_with_words:
+ if word in root:
+ file_list.remove(files[i0])
+ for word in ignored_file_with_words:
+ if word in files[i0]:
+ try:
+ file_list.remove(files[i0])
+ except:
+ pass
+ count_file = Counter(file_list).most_common(num)
+ repeated_file = []
+ for item in count_file:
+ if item[1]>1:
+ repeated_file.append(item)
+ import guan
+ guan.statistics_of_guan_package()
+ return repeated_file
+
+# 统计各个子文件夹中的文件数量
+def count_file_in_sub_directory(directory='./', smaller_than_num=None):
+ import os
+ from collections import Counter
+ dirs_list = []
+ for root, dirs, files in os.walk(directory):
+ if dirs != []:
+ for i0 in range(len(dirs)):
+ dirs_list.append(root+'/'+dirs[i0])
+ for sub_dir in dirs_list:
+ file_list = []
+ for root, dirs, files in os.walk(sub_dir):
+ for i0 in range(len(files)):
+ file_list.append(files[i0])
+ count_file = len(file_list)
+ if smaller_than_num == None:
+ print(sub_dir)
+ print(count_file)
+ print()
+ else:
+ if count_file 1.001:
+ print('Error Alert: scattering matrix is not normalized!')
+ guan.statistics_of_guan_package()
+ return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active
+
+# 从散射矩阵中,获取散射矩阵的信息
+def information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active):
+ import numpy as np
+ if np.array(transmission_matrix).shape==():
+ dim = 1
+ else:
+ dim = np.array(transmission_matrix).shape[0]
+ number_of_active_channels = ind_right_active
+ number_of_evanescent_channels = dim-ind_right_active
+ k_of_right_moving_active_channels = np.real(k_right[0:ind_right_active])
+ k_of_left_moving_active_channels = np.real(k_left[0:ind_right_active])
+ velocity_of_right_moving_active_channels = np.real(velocity_right[0:ind_right_active])
+ velocity_of_left_moving_active_channels = np.real(velocity_left[0:ind_right_active])
+ transmission_matrix_for_active_channels = np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))
+ reflection_matrix_for_active_channels = np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active]))
+ total_transmission_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
+ total_conductance = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])))
+ total_reflection_of_channels = np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
+ sum_of_transmission_and_reflection_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
+ import guan
+ guan.statistics_of_guan_package()
+ return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels
+
+# 已知h00和h01,计算散射矩阵并获得散射矩阵的信息
+def calculate_scattering_matrix_and_get_information(fermi_energy, h00, h01, length=100):
+ import guan
+ transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length)
+
+ number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active)
+
+ guan.statistics_of_guan_package()
+
+ return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels
+
+# 从散射矩阵中,打印出散射矩阵的信息
+def print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=1, write_file=0, filename='a', file_format='.txt'):
+ if print_show == 1:
+ print('\nActive channel (left or right) = ', number_of_active_channels)
+ print('Evanescent channel (left or right) = ', number_of_evanescent_channels, '\n')
+ print('K of right-moving active channels:\n', k_of_right_moving_active_channels)
+ print('K of left-moving active channels:\n', k_of_left_moving_active_channels, '\n')
+ print('Velocity of right-moving active channels:\n', velocity_of_right_moving_active_channels)
+ print('Velocity of left-moving active channels:\n', velocity_of_left_moving_active_channels, '\n')
+ print('Transmission matrix:\n', transmission_matrix_for_active_channels)
+ print('Reflection matrix:\n', reflection_matrix_for_active_channels, '\n')
+ print('Total transmission of channels:\n', total_transmission_of_channels)
+ print('Total conductance = ', total_conductance, '\n')
+ print('Total reflection of channels:\n', total_reflection_of_channels)
+ print('Sum of transmission and reflection of channels:\n', sum_of_transmission_and_reflection_of_channels, '\n')
+ if write_file == 1:
+ with open(filename+file_format, 'w') as f:
+ f.write('Active channel (left or right) = ' + str(number_of_active_channels) + '\n')
+ f.write('Evanescent channel (left or right) = ' + str(number_of_evanescent_channels) + '\n\n')
+ f.write('Channel K Velocity\n')
+ for ind0 in range(number_of_active_channels):
+ f.write(' '+str(ind0 + 1) + ' | '+str(k_of_right_moving_active_channels[ind0])+' ' + str(velocity_of_right_moving_active_channels[ind0])+'\n')
+ f.write('\n')
+ for ind0 in range(number_of_active_channels):
+ f.write(' -' + str(ind0 + 1) + ' | ' + str(k_of_left_moving_active_channels[ind0]) + ' ' + str(velocity_of_left_moving_active_channels[ind0]) + '\n')
+ f.write('\nScattering matrix:\n ')
+ for ind0 in range(number_of_active_channels):
+ f.write(str(ind0+1)+' ')
+ f.write('\n')
+ for ind1 in range(number_of_active_channels):
+ f.write(' '+str(ind1+1)+' ')
+ for ind2 in range(number_of_active_channels):
+ f.write('%f' % transmission_matrix_for_active_channels[ind1, ind2]+' ')
+ f.write('\n')
+ f.write('\n')
+ for ind1 in range(number_of_active_channels):
+ f.write(' -'+str(ind1+1)+' ')
+ for ind2 in range(number_of_active_channels):
+ f.write('%f' % reflection_matrix_for_active_channels[ind1, ind2]+' ')
+ f.write('\n')
+ f.write('\n')
+ f.write('Total transmission of channels:\n'+str(total_transmission_of_channels)+'\n')
+ f.write('Total conductance = '+str(total_conductance)+'\n')
+ import guan
+ guan.statistics_of_guan_package()
+
+# 已知h00和h01,计算散射矩阵并打印出散射矩阵的信息
+def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', file_format='.txt'):
+ import guan
+ transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length)
+
+ number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active)
+
+ guan.print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=print_show, write_file=write_file, filename=filename, file_format=file_format)
+
+ guan.statistics_of_guan_package()
+
+# 在无序下,计算散射矩阵
+def calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0):
+ import numpy as np
+ import math
+ import copy
+ import guan
+ h01 = np.array(h01)
+ if np.array(h00).shape==():
+ dim = 1
+ else:
+ dim = np.array(h00).shape[0]
+ k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = guan.get_classified_k_velocity_u_and_f(fermi_energy, h00, h01)
+ right_self_energy = np.dot(h01, f_right)
+ left_self_energy = np.dot(h01.transpose().conj(), np.linalg.inv(f_left))
+ for i0 in range(length):
+ disorder = np.zeros((dim, dim))
+ for dim0 in range(dim):
+ if np.random.uniform(0, 1)<=disorder_concentration:
+ disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity)
+ if i0 == 0:
+ green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
+ green_00_n = copy.deepcopy(green_nn_n)
+ green_0n_n = copy.deepcopy(green_nn_n)
+ green_n0_n = copy.deepcopy(green_nn_n)
+ elif i0 != length-1:
+ green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0)
+ else:
+ green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
+ green_00_n = guan.green_function_ii_n(green_00_n, green_0n_n, h01, green_nn_n, green_n0_n)
+ green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
+ green_n0_n = guan.green_function_ni_n(green_nn_n, h01, green_n0_n)
+ temp = np.dot(h01.transpose().conj(), np.linalg.inv(f_right)-np.linalg.inv(f_left))
+ transmission_matrix = np.dot(np.dot(np.linalg.inv(u_right), np.dot(green_n0_n, temp)), u_right)
+ reflection_matrix = np.dot(np.dot(np.linalg.inv(u_left), np.dot(green_00_n, temp)-np.identity(dim)), u_right)
+ for dim0 in range(dim):
+ for dim1 in range(dim):
+ if_active = guan.if_active_channel(k_right[dim0])*guan.if_active_channel(k_right[dim1])
+ if if_active == 1:
+ transmission_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_right[dim0]/velocity_right[dim1])) * transmission_matrix[dim0, dim1]
+ reflection_matrix[dim0, dim1] = math.sqrt(np.abs(velocity_left[dim0]/velocity_right[dim1]))*reflection_matrix[dim0, dim1]
+ else:
+ transmission_matrix[dim0, dim1] = 0
+ reflection_matrix[dim0, dim1] = 0
+ sum_of_tran_refl_array = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)+np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
+ for sum_of_tran_refl in sum_of_tran_refl_array:
+ if sum_of_tran_refl > 1.001:
+ print('Error Alert: scattering matrix is not normalized!')
+ guan.statistics_of_guan_package()
+ return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active
+
+# 在无序下,计算散射矩阵,并获取散射矩阵多次计算的平均信息
+def calculate_scattering_matrix_with_disorder_and_get_averaged_information(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1):
+ import guan
+ transmission_matrix_for_active_channels_averaged = 0
+ reflection_matrix_for_active_channels_averaged = 0
+ for i0 in range(calculation_times):
+ transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length, disorder_intensity, disorder_concentration)
+
+ number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active)
+
+ transmission_matrix_for_active_channels_averaged += transmission_matrix_for_active_channels
+ reflection_matrix_for_active_channels_averaged += reflection_matrix_for_active_channels
+ transmission_matrix_for_active_channels_averaged = transmission_matrix_for_active_channels_averaged/calculation_times
+ reflection_matrix_for_active_channels_averaged = reflection_matrix_for_active_channels_averaged/calculation_times
+ guan.statistics_of_guan_package()
+ return transmission_matrix_for_active_channels_averaged, reflection_matrix_for_active_channels_averaged
\ No newline at end of file
diff --git a/PyPI/src/guan/read_and_write.py b/PyPI/src/guan/read_and_write.py
new file mode 100644
index 0000000..cd1e308
--- /dev/null
+++ b/PyPI/src/guan/read_and_write.py
@@ -0,0 +1,235 @@
+# Module: read_and_write
+
+# 将数据存到文件
+def dump_data(data, filename, file_format='.txt'):
+ import pickle
+ with open(filename+file_format, 'wb') as f:
+ pickle.dump(data, f)
+ import guan
+ guan.statistics_of_guan_package()
+
+# 从文件中恢复数据到变量
+def load_data(filename, file_format='.txt'):
+ import pickle
+ with open(filename+file_format, 'rb') as f:
+ data = pickle.load(f)
+ import guan
+ guan.statistics_of_guan_package()
+ return data
+
+# 读取文件中的一维数据(每一行一组x和y)
+def read_one_dimensional_data(filename='a', file_format='.txt'):
+ import numpy as np
+ f = open(filename+file_format, 'r')
+ text = f.read()
+ f.close()
+ row_list = np.array(text.split('\n'))
+ dim_column = np.array(row_list[0].split()).shape[0]
+ x_array = np.array([])
+ y_array = np.array([])
+ for row in row_list:
+ column = np.array(row.split())
+ if column.shape[0] != 0:
+ x_array = np.append(x_array, [float(column[0])], axis=0)
+ y_row = np.zeros(dim_column-1)
+ for dim0 in range(dim_column-1):
+ y_row[dim0] = float(column[dim0+1])
+ if np.array(y_array).shape[0] == 0:
+ y_array = [y_row]
+ else:
+ y_array = np.append(y_array, [y_row], axis=0)
+ import guan
+ guan.statistics_of_guan_package()
+ return x_array, y_array
+
+# 读取文件中的一维数据(每一行一组x和y)(支持复数形式)
+def read_one_dimensional_complex_data(filename='a', file_format='.txt'):
+ import numpy as np
+ f = open(filename+file_format, 'r')
+ text = f.read()
+ f.close()
+ row_list = np.array(text.split('\n'))
+ dim_column = np.array(row_list[0].split()).shape[0]
+ x_array = np.array([])
+ y_array = np.array([])
+ for row in row_list:
+ column = np.array(row.split())
+ if column.shape[0] != 0:
+ x_array = np.append(x_array, [complex(column[0])], axis=0)
+ y_row = np.zeros(dim_column-1, dtype=complex)
+ for dim0 in range(dim_column-1):
+ y_row[dim0] = complex(column[dim0+1])
+ if np.array(y_array).shape[0] == 0:
+ y_array = [y_row]
+ else:
+ y_array = np.append(y_array, [y_row], axis=0)
+ import guan
+ guan.statistics_of_guan_package()
+ return x_array, y_array
+
+# 读取文件中的二维数据(第一行和列分别为横纵坐标)
+def read_two_dimensional_data(filename='a', file_format='.txt'):
+ import numpy as np
+ f = open(filename+file_format, 'r')
+ text = f.read()
+ f.close()
+ row_list = np.array(text.split('\n'))
+ dim_column = np.array(row_list[0].split()).shape[0]
+ x_array = np.array([])
+ y_array = np.array([])
+ matrix = np.array([])
+ for i0 in range(row_list.shape[0]):
+ column = np.array(row_list[i0].split())
+ if i0 == 0:
+ x_str = column[1::]
+ x_array = np.zeros(x_str.shape[0])
+ for i00 in range(x_str.shape[0]):
+ x_array[i00] = float(x_str[i00])
+ elif column.shape[0] != 0:
+ y_array = np.append(y_array, [float(column[0])], axis=0)
+ matrix_row = np.zeros(dim_column-1)
+ for dim0 in range(dim_column-1):
+ matrix_row[dim0] = float(column[dim0+1])
+ if np.array(matrix).shape[0] == 0:
+ matrix = [matrix_row]
+ else:
+ matrix = np.append(matrix, [matrix_row], axis=0)
+ import guan
+ guan.statistics_of_guan_package()
+ return x_array, y_array, matrix
+
+# 读取文件中的二维数据(第一行和列分别为横纵坐标)(支持复数形式)
+def read_two_dimensional_complex_data(filename='a', file_format='.txt'):
+ import numpy as np
+ f = open(filename+file_format, 'r')
+ text = f.read()
+ f.close()
+ row_list = np.array(text.split('\n'))
+ dim_column = np.array(row_list[0].split()).shape[0]
+ x_array = np.array([])
+ y_array = np.array([])
+ matrix = np.array([])
+ for i0 in range(row_list.shape[0]):
+ column = np.array(row_list[i0].split())
+ if i0 == 0:
+ x_str = column[1::]
+ x_array = np.zeros(x_str.shape[0], dtype=complex)
+ for i00 in range(x_str.shape[0]):
+ x_array[i00] = complex(x_str[i00])
+ elif column.shape[0] != 0:
+ y_array = np.append(y_array, [complex(column[0])], axis=0)
+ matrix_row = np.zeros(dim_column-1, dtype=complex)
+ for dim0 in range(dim_column-1):
+ matrix_row[dim0] = complex(column[dim0+1])
+ if np.array(matrix).shape[0] == 0:
+ matrix = [matrix_row]
+ else:
+ matrix = np.append(matrix, [matrix_row], axis=0)
+ import guan
+ guan.statistics_of_guan_package()
+ return x_array, y_array, matrix
+
+# 读取文件中的二维数据(不包括x和y)
+def read_two_dimensional_data_without_xy_array(filename='a', file_format='.txt'):
+ import numpy as np
+ matrix = np.loadtxt(filename+file_format)
+ import guan
+ guan.statistics_of_guan_package()
+ return matrix
+
+# 打开文件用于新增内容
+def open_file(filename='a', file_format='.txt'):
+ f = open(filename+file_format, 'a', encoding='UTF-8')
+ import guan
+ guan.statistics_of_guan_package()
+ return f
+
+# 在文件中写入一维数据(每一行一组x和y)
+def write_one_dimensional_data(x_array, y_array, filename='a', file_format='.txt'):
+ import guan
+ with open(filename+file_format, 'w', encoding='UTF-8') as f:
+ guan.write_one_dimensional_data_without_opening_file(x_array, y_array, f)
+ import guan
+ guan.statistics_of_guan_package()
+
+# 在文件中写入一维数据(每一行一组x和y)(需要输入文件)
+def write_one_dimensional_data_without_opening_file(x_array, y_array, f):
+ import numpy as np
+ x_array = np.array(x_array)
+ y_array = np.array(y_array)
+ i0 = 0
+ for x0 in x_array:
+ f.write(str(x0)+' ')
+ if len(y_array.shape) == 1:
+ f.write(str(y_array[i0])+'\n')
+ elif len(y_array.shape) == 2:
+ for j0 in range(y_array.shape[1]):
+ f.write(str(y_array[i0, j0])+' ')
+ f.write('\n')
+ i0 += 1
+ import guan
+ guan.statistics_of_guan_package()
+
+# 在文件中写入二维数据(第一行和列分别为横纵坐标)
+def write_two_dimensional_data(x_array, y_array, matrix, filename='a', file_format='.txt'):
+ import guan
+ with open(filename+file_format, 'w', encoding='UTF-8') as f:
+ guan.write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f)
+ guan.statistics_of_guan_package()
+
+# 在文件中写入二维数据(第一行和列分别为横纵坐标)(需要输入文件)
+def write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f):
+ import numpy as np
+ x_array = np.array(x_array)
+ y_array = np.array(y_array)
+ matrix = np.array(matrix)
+ f.write('0 ')
+ for x0 in x_array:
+ f.write(str(x0)+' ')
+ f.write('\n')
+ i0 = 0
+ for y0 in y_array:
+ f.write(str(y0))
+ j0 = 0
+ for x0 in x_array:
+ f.write(' '+str(matrix[i0, j0])+' ')
+ j0 += 1
+ f.write('\n')
+ i0 += 1
+ import guan
+ guan.statistics_of_guan_package()
+
+# 在文件中写入二维数据(不包括x和y)
+def write_two_dimensional_data_without_xy_array(matrix, filename='a', file_format='.txt'):
+ import guan
+ with open(filename+file_format, 'w', encoding='UTF-8') as f:
+ guan.write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f)
+ guan.statistics_of_guan_package()
+
+# 在文件中写入二维数据(不包括x和y)(需要输入文件)
+def write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f):
+ for row in matrix:
+ for element in row:
+ f.write(str(element)+' ')
+ f.write('\n')
+ import guan
+ guan.statistics_of_guan_package()
+
+# 以显示编号的样式,打印数组
+def print_array_with_index(array, show_index=1, index_type=0):
+ if show_index==0:
+ for i0 in array:
+ print(i0)
+ else:
+ if index_type==0:
+ index = 0
+ for i0 in array:
+ print(index, i0)
+ index += 1
+ else:
+ index = 0
+ for i0 in array:
+ index += 1
+ print(index, i0)
+ import guan
+ guan.statistics_of_guan_package()
diff --git a/PyPI/src/guan/topological_invariant.py b/PyPI/src/guan/topological_invariant.py
new file mode 100644
index 0000000..325c5c6
--- /dev/null
+++ b/PyPI/src/guan/topological_invariant.py
@@ -0,0 +1,552 @@
+# Module: topological_invariant
+
+# 通过高效法计算方格子的陈数
+def calculate_chern_number_for_square_lattice_with_efficient_method(hamiltonian_function, precision=100, print_show=0):
+ import numpy as np
+ import math
+ import cmath
+ import guan
+ if np.array(hamiltonian_function(0, 0)).shape==():
+ dim = 1
+ else:
+ dim = np.array(hamiltonian_function(0, 0)).shape[0]
+ delta = 2*math.pi/precision
+ chern_number = np.zeros(dim, dtype=complex)
+ for kx in np.arange(-math.pi, math.pi, delta):
+ if print_show == 1:
+ print(kx)
+ for ky in np.arange(-math.pi, math.pi, delta):
+ H = hamiltonian_function(kx, ky)
+ vector = guan.calculate_eigenvector(H)
+ H_delta_kx = hamiltonian_function(kx+delta, ky)
+ vector_delta_kx = guan.calculate_eigenvector(H_delta_kx)
+ H_delta_ky = hamiltonian_function(kx, ky+delta)
+ vector_delta_ky = guan.calculate_eigenvector(H_delta_ky)
+ H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta)
+ vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky)
+ for i in range(dim):
+ vector_i = vector[:, i]
+ vector_delta_kx_i = vector_delta_kx[:, i]
+ vector_delta_ky_i = vector_delta_ky[:, i]
+ vector_delta_kx_ky_i = vector_delta_kx_ky[:, i]
+ Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i))
+ Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i))
+ Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i))
+ Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i))
+ F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))
+ chern_number[i] = chern_number[i] + F
+ chern_number = chern_number/(2*math.pi*1j)
+ guan.statistics_of_guan_package()
+ return chern_number
+
+# 通过高效法计算方格子的陈数(可计算简并的情况)
+def calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision=100, print_show=0):
+ import numpy as np
+ import math
+ import cmath
+ delta = 2*math.pi/precision
+ chern_number = 0
+ for kx in np.arange(-math.pi, math.pi, delta):
+ if print_show == 1:
+ print(kx)
+ for ky in np.arange(-math.pi, math.pi, delta):
+ H = hamiltonian_function(kx, ky)
+ eigenvalue, vector = np.linalg.eigh(H)
+ H_delta_kx = hamiltonian_function(kx+delta, ky)
+ eigenvalue, vector_delta_kx = np.linalg.eigh(H_delta_kx)
+ H_delta_ky = hamiltonian_function(kx, ky+delta)
+ eigenvalue, vector_delta_ky = np.linalg.eigh(H_delta_ky)
+ H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta)
+ eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky)
+ dim = len(index_of_bands)
+ det_value = 1
+ # first dot product
+ dot_matrix = np.zeros((dim , dim), dtype=complex)
+ i0 = 0
+ for dim1 in index_of_bands:
+ j0 = 0
+ for dim2 in index_of_bands:
+ dot_matrix[i0, j0] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2])
+ j0 += 1
+ i0 += 1
+ dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
+ det_value = det_value*dot_matrix
+ # second dot product
+ dot_matrix = np.zeros((dim , dim), dtype=complex)
+ i0 = 0
+ for dim1 in index_of_bands:
+ j0 = 0
+ for dim2 in index_of_bands:
+ dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2])
+ j0 += 1
+ i0 += 1
+ dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
+ det_value = det_value*dot_matrix
+ # third dot product
+ dot_matrix = np.zeros((dim , dim), dtype=complex)
+ i0 = 0
+ for dim1 in index_of_bands:
+ j0 = 0
+ for dim2 in index_of_bands:
+ dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2])
+ j0 += 1
+ i0 += 1
+ dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
+ det_value = det_value*dot_matrix
+ # four dot product
+ dot_matrix = np.zeros((dim , dim), dtype=complex)
+ i0 = 0
+ for dim1 in index_of_bands:
+ j0 = 0
+ for dim2 in index_of_bands:
+ dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2])
+ j0 += 1
+ i0 += 1
+ dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
+ det_value= det_value*dot_matrix
+ chern_number += cmath.log(det_value)
+ chern_number = chern_number/(2*math.pi*1j)
+ import guan
+ guan.statistics_of_guan_package()
+ return chern_number
+
+# 通过Wilson loop方法计算方格子的陈数
+def calculate_chern_number_for_square_lattice_with_wilson_loop(hamiltonian_function, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
+ import numpy as np
+ import math
+ delta = 2*math.pi/precision_of_plaquettes
+ chern_number = 0
+ for kx in np.arange(-math.pi, math.pi, delta):
+ if print_show == 1:
+ print(kx)
+ for ky in np.arange(-math.pi, math.pi, delta):
+ vector_array = []
+ # line_1
+ for i0 in range(precision_of_wilson_loop):
+ H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky)
+ eigenvalue, eigenvector = np.linalg.eig(H_delta)
+ vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
+ vector_array.append(vector_delta)
+ # line_2
+ for i0 in range(precision_of_wilson_loop):
+ H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0)
+ eigenvalue, eigenvector = np.linalg.eig(H_delta)
+ vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
+ vector_array.append(vector_delta)
+ # line_3
+ for i0 in range(precision_of_wilson_loop):
+ H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta)
+ eigenvalue, eigenvector = np.linalg.eig(H_delta)
+ vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
+ vector_array.append(vector_delta)
+ # line_4
+ for i0 in range(precision_of_wilson_loop):
+ H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0)
+ eigenvalue, eigenvector = np.linalg.eig(H_delta)
+ vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
+ vector_array.append(vector_delta)
+ wilson_loop = 1
+ for i0 in range(len(vector_array)-1):
+ wilson_loop = wilson_loop*np.dot(vector_array[i0].transpose().conj(), vector_array[i0+1])
+ wilson_loop = wilson_loop*np.dot(vector_array[len(vector_array)-1].transpose().conj(), vector_array[0])
+ arg = np.log(np.diagonal(wilson_loop))/1j
+ chern_number = chern_number + arg
+ chern_number = chern_number/(2*math.pi)
+ import guan
+ guan.statistics_of_guan_package()
+ return chern_number
+
+# 通过Wilson loop方法计算方格子的陈数(可计算简并的情况)
+def calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
+ import numpy as np
+ import math
+ delta = 2*math.pi/precision_of_plaquettes
+ chern_number = 0
+ for kx in np.arange(-math.pi, math.pi, delta):
+ if print_show == 1:
+ print(kx)
+ for ky in np.arange(-math.pi, math.pi, delta):
+ vector_array = []
+ # line_1
+ for i0 in range(precision_of_wilson_loop):
+ H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky)
+ eigenvalue, eigenvector = np.linalg.eig(H_delta)
+ vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
+ vector_array.append(vector_delta)
+ # line_2
+ for i0 in range(precision_of_wilson_loop):
+ H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0)
+ eigenvalue, eigenvector = np.linalg.eig(H_delta)
+ vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
+ vector_array.append(vector_delta)
+ # line_3
+ for i0 in range(precision_of_wilson_loop):
+ H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta)
+ eigenvalue, eigenvector = np.linalg.eig(H_delta)
+ vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
+ vector_array.append(vector_delta)
+ # line_4
+ for i0 in range(precision_of_wilson_loop):
+ H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0)
+ eigenvalue, eigenvector = np.linalg.eig(H_delta)
+ vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
+ vector_array.append(vector_delta)
+ wilson_loop = 1
+ dim = len(index_of_bands)
+ for i0 in range(len(vector_array)-1):
+ dot_matrix = np.zeros((dim , dim), dtype=complex)
+ i01 = 0
+ for dim1 in index_of_bands:
+ i02 = 0
+ for dim2 in index_of_bands:
+ dot_matrix[i01, i02] = np.dot(vector_array[i0][:, dim1].transpose().conj(), vector_array[i0+1][:, dim2])
+ i02 += 1
+ i01 += 1
+ det_value = np.linalg.det(dot_matrix)
+ wilson_loop = wilson_loop*det_value
+ dot_matrix_plus = np.zeros((dim , dim), dtype=complex)
+ i01 = 0
+ for dim1 in index_of_bands:
+ i02 = 0
+ for dim2 in index_of_bands:
+ dot_matrix_plus[i01, i02] = np.dot(vector_array[len(vector_array)-1][:, dim1].transpose().conj(), vector_array[0][:, dim2])
+ i02 += 1
+ i01 += 1
+ det_value = np.linalg.det(dot_matrix_plus)
+ wilson_loop = wilson_loop*det_value
+ arg = np.log(wilson_loop)/1j
+ chern_number = chern_number + arg
+ chern_number = chern_number/(2*math.pi)
+ import guan
+ guan.statistics_of_guan_package()
+ return chern_number
+
+# 通过高效法计算贝利曲率
+def calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0):
+ import numpy as np
+ import cmath
+ import guan
+ import math
+ if k_min == 'default':
+ k_min = -math.pi
+ if k_max == 'default':
+ k_max=math.pi
+ if np.array(hamiltonian_function(0, 0)).shape==():
+ dim = 1
+ else:
+ dim = np.array(hamiltonian_function(0, 0)).shape[0]
+ delta = (k_max-k_min)/precision
+ k_array = np.arange(k_min, k_max, delta)
+ berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0], dim), dtype=complex)
+ i0 = 0
+ for kx in k_array:
+ if print_show == 1:
+ print(kx)
+ j0 = 0
+ for ky in k_array:
+ H = hamiltonian_function(kx, ky)
+ vector = guan.calculate_eigenvector(H)
+ H_delta_kx = hamiltonian_function(kx+delta, ky)
+ vector_delta_kx = guan.calculate_eigenvector(H_delta_kx)
+ H_delta_ky = hamiltonian_function(kx, ky+delta)
+ vector_delta_ky = guan.calculate_eigenvector(H_delta_ky)
+ H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta)
+ vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky)
+ for i in range(dim):
+ vector_i = vector[:, i]
+ vector_delta_kx_i = vector_delta_kx[:, i]
+ vector_delta_ky_i = vector_delta_ky[:, i]
+ vector_delta_kx_ky_i = vector_delta_kx_ky[:, i]
+ Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i))
+ Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i))
+ Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i))
+ Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i))
+ berry_curvature = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))/delta/delta*1j
+ berry_curvature_array[j0, i0, i] = berry_curvature
+ j0 += 1
+ i0 += 1
+ guan.statistics_of_guan_package()
+ return k_array, berry_curvature_array
+
+# 通过高效法计算贝利曲率(可计算简并的情况)
+def calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision=100, print_show=0):
+ import numpy as np
+ import cmath
+ import math
+ if k_min == 'default':
+ k_min = -math.pi
+ if k_max == 'default':
+ k_max=math.pi
+ delta = (k_max-k_min)/precision
+ k_array = np.arange(k_min, k_max, delta)
+ berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0]), dtype=complex)
+ i00 = 0
+ for kx in np.arange(k_min, k_max, delta):
+ if print_show == 1:
+ print(kx)
+ j00 = 0
+ for ky in np.arange(k_min, k_max, delta):
+ H = hamiltonian_function(kx, ky)
+ eigenvalue, vector = np.linalg.eigh(H)
+ H_delta_kx = hamiltonian_function(kx+delta, ky)
+ eigenvalue, vector_delta_kx = np.linalg.eigh(H_delta_kx)
+ H_delta_ky = hamiltonian_function(kx, ky+delta)
+ eigenvalue, vector_delta_ky = np.linalg.eigh(H_delta_ky)
+ H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta)
+ eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky)
+ dim = len(index_of_bands)
+ det_value = 1
+ # first dot product
+ dot_matrix = np.zeros((dim , dim), dtype=complex)
+ i0 = 0
+ for dim1 in index_of_bands:
+ j0 = 0
+ for dim2 in index_of_bands:
+ dot_matrix[i0, j0] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2])
+ j0 += 1
+ i0 += 1
+ dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
+ det_value = det_value*dot_matrix
+ # second dot product
+ dot_matrix = np.zeros((dim , dim), dtype=complex)
+ i0 = 0
+ for dim1 in index_of_bands:
+ j0 = 0
+ for dim2 in index_of_bands:
+ dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2])
+ j0 += 1
+ i0 += 1
+ dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
+ det_value = det_value*dot_matrix
+ # third dot product
+ dot_matrix = np.zeros((dim , dim), dtype=complex)
+ i0 = 0
+ for dim1 in index_of_bands:
+ j0 = 0
+ for dim2 in index_of_bands:
+ dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2])
+ j0 += 1
+ i0 += 1
+ dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
+ det_value = det_value*dot_matrix
+ # four dot product
+ dot_matrix = np.zeros((dim , dim), dtype=complex)
+ i0 = 0
+ for dim1 in index_of_bands:
+ j0 = 0
+ for dim2 in index_of_bands:
+ dot_matrix[i0, j0] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2])
+ j0 += 1
+ i0 += 1
+ dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
+ det_value= det_value*dot_matrix
+ berry_curvature = cmath.log(det_value)/delta/delta*1j
+ berry_curvature_array[j00, i00] = berry_curvature
+ j00 += 1
+ i00 += 1
+ import guan
+ guan.statistics_of_guan_package()
+ return k_array, berry_curvature_array
+
+# 通过Wilson loop方法计算贝里曲率
+def calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
+ import numpy as np
+ import math
+ if k_min == 'default':
+ k_min = -math.pi
+ if k_max == 'default':
+ k_max=math.pi
+ if np.array(hamiltonian_function(0, 0)).shape==():
+ dim = 1
+ else:
+ dim = np.array(hamiltonian_function(0, 0)).shape[0]
+ delta = (k_max-k_min)/precision_of_plaquettes
+ k_array = np.arange(k_min, k_max, delta)
+ berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0], dim), dtype=complex)
+ i00 = 0
+ for kx in k_array:
+ if print_show == 1:
+ print(kx)
+ j00 = 0
+ for ky in k_array:
+ vector_array = []
+ # line_1
+ for i0 in range(precision_of_wilson_loop):
+ H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky)
+ eigenvalue, eigenvector = np.linalg.eig(H_delta)
+ vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
+ vector_array.append(vector_delta)
+ # line_2
+ for i0 in range(precision_of_wilson_loop):
+ H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0)
+ eigenvalue, eigenvector = np.linalg.eig(H_delta)
+ vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
+ vector_array.append(vector_delta)
+ # line_3
+ for i0 in range(precision_of_wilson_loop):
+ H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta)
+ eigenvalue, eigenvector = np.linalg.eig(H_delta)
+ vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
+ vector_array.append(vector_delta)
+ # line_4
+ for i0 in range(precision_of_wilson_loop):
+ H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0)
+ eigenvalue, eigenvector = np.linalg.eig(H_delta)
+ vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
+ vector_array.append(vector_delta)
+ wilson_loop = 1
+ for i0 in range(len(vector_array)-1):
+ wilson_loop = wilson_loop*np.dot(vector_array[i0].transpose().conj(), vector_array[i0+1])
+ wilson_loop = wilson_loop*np.dot(vector_array[len(vector_array)-1].transpose().conj(), vector_array[0])
+ berry_curvature = np.log(np.diagonal(wilson_loop))/delta/delta*1j
+ berry_curvature_array[j00, i00, :]=berry_curvature
+ j00 += 1
+ i00 += 1
+ import guan
+ guan.statistics_of_guan_package()
+ return k_array, berry_curvature_array
+
+# 通过Wilson loop方法计算贝里曲率(可计算简并的情况)
+def calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
+ import numpy as np
+ import math
+ if k_min == 'default':
+ k_min = -math.pi
+ if k_max == 'default':
+ k_max=math.pi
+ delta = (k_max-k_min)/precision_of_plaquettes
+ k_array = np.arange(k_min, k_max, delta)
+ berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0]), dtype=complex)
+ i000 = 0
+ for kx in k_array:
+ if print_show == 1:
+ print(kx)
+ j000 = 0
+ for ky in k_array:
+ vector_array = []
+ # line_1
+ for i0 in range(precision_of_wilson_loop):
+ H_delta = hamiltonian_function(kx+delta/precision_of_wilson_loop*i0, ky)
+ eigenvalue, eigenvector = np.linalg.eig(H_delta)
+ vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
+ vector_array.append(vector_delta)
+ # line_2
+ for i0 in range(precision_of_wilson_loop):
+ H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_wilson_loop*i0)
+ eigenvalue, eigenvector = np.linalg.eig(H_delta)
+ vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
+ vector_array.append(vector_delta)
+ # line_3
+ for i0 in range(precision_of_wilson_loop):
+ H_delta = hamiltonian_function(kx+delta-delta/precision_of_wilson_loop*i0, ky+delta)
+ eigenvalue, eigenvector = np.linalg.eig(H_delta)
+ vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
+ vector_array.append(vector_delta)
+ # line_4
+ for i0 in range(precision_of_wilson_loop):
+ H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_wilson_loop*i0)
+ eigenvalue, eigenvector = np.linalg.eig(H_delta)
+ vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
+ vector_array.append(vector_delta)
+ wilson_loop = 1
+ dim = len(index_of_bands)
+ for i0 in range(len(vector_array)-1):
+ dot_matrix = np.zeros((dim , dim), dtype=complex)
+ i01 = 0
+ for dim1 in index_of_bands:
+ i02 = 0
+ for dim2 in index_of_bands:
+ dot_matrix[i01, i02] = np.dot(vector_array[i0][:, dim1].transpose().conj(), vector_array[i0+1][:, dim2])
+ i02 += 1
+ i01 += 1
+ det_value = np.linalg.det(dot_matrix)
+ wilson_loop = wilson_loop*det_value
+ dot_matrix_plus = np.zeros((dim , dim), dtype=complex)
+ i01 = 0
+ for dim1 in index_of_bands:
+ i02 = 0
+ for dim2 in index_of_bands:
+ dot_matrix_plus[i01, i02] = np.dot(vector_array[len(vector_array)-1][:, dim1].transpose().conj(), vector_array[0][:, dim2])
+ i02 += 1
+ i01 += 1
+ det_value = np.linalg.det(dot_matrix_plus)
+ wilson_loop = wilson_loop*det_value
+ berry_curvature = np.log(wilson_loop)/delta/delta*1j
+ berry_curvature_array[j000, i000]=berry_curvature
+ j000 += 1
+ i000 += 1
+ import guan
+ guan.statistics_of_guan_package()
+ return k_array, berry_curvature_array
+
+# 计算蜂窝格子的陈数(高效法)
+def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0):
+ import numpy as np
+ import math
+ import cmath
+ import guan
+ if np.array(hamiltonian_function(0, 0)).shape==():
+ dim = 1
+ else:
+ dim = np.array(hamiltonian_function(0, 0)).shape[0]
+ chern_number = np.zeros(dim, dtype=complex)
+ L1 = 4*math.sqrt(3)*math.pi/9/a
+ L2 = 2*math.sqrt(3)*math.pi/9/a
+ L3 = 2*math.pi/3/a
+ delta1 = 2*L1/precision
+ delta3 = 2*L3/precision
+ for kx in np.arange(-L1, L1, delta1):
+ if print_show == 1:
+ print(kx)
+ for ky in np.arange(-L3, L3, delta3):
+ if (-L2<=kx<=L2) or (kx>L2 and -(L1-kx)*math.tan(math.pi/3)<=ky<=(L1-kx)*math.tan(math.pi/3)) or (kx<-L2 and -(kx-(-L1))*math.tan(math.pi/3)<=ky<=(kx-(-L1))*math.tan(math.pi/3)):
+ H = hamiltonian_function(kx, ky)
+ vector = guan.calculate_eigenvector(H)
+ H_delta_kx = hamiltonian_function(kx+delta1, ky)
+ vector_delta_kx = guan.calculate_eigenvector(H_delta_kx)
+ H_delta_ky = hamiltonian_function(kx, ky+delta3)
+ vector_delta_ky = guan.calculate_eigenvector(H_delta_ky)
+ H_delta_kx_ky = hamiltonian_function(kx+delta1, ky+delta3)
+ vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky)
+ for i in range(dim):
+ vector_i = vector[:, i]
+ vector_delta_kx_i = vector_delta_kx[:, i]
+ vector_delta_ky_i = vector_delta_ky[:, i]
+ vector_delta_kx_ky_i = vector_delta_kx_ky[:, i]
+ Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i))
+ Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i))
+ Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i))
+ Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i))
+ F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))
+ chern_number[i] = chern_number[i] + F
+ chern_number = chern_number/(2*math.pi*1j)
+ guan.statistics_of_guan_package()
+ return chern_number
+
+# 计算Wilson loop
+def calculate_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0):
+ import numpy as np
+ import guan
+ import math
+ if k_min == 'default':
+ k_min = -math.pi
+ if k_max == 'default':
+ k_max=math.pi
+ k_array = np.linspace(k_min, k_max, precision)
+ dim = np.array(hamiltonian_function(0)).shape[0]
+ wilson_loop_array = np.ones(dim, dtype=complex)
+ for i in range(dim):
+ if print_show == 1:
+ print(i)
+ eigenvector_array = []
+ for k in k_array:
+ eigenvector = guan.calculate_eigenvector(hamiltonian_function(k))
+ if k != k_max:
+ eigenvector_array.append(eigenvector[:, i])
+ else:
+ eigenvector_array.append(eigenvector_array[0])
+ for i0 in range(precision-1):
+ F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0])
+ wilson_loop_array[i] = np.dot(F, wilson_loop_array[i])
+ guan.statistics_of_guan_package()
+ return wilson_loop_array
\ No newline at end of file
diff --git a/README.md b/README.md
index 7306f29..9c0ce0a 100755
--- a/README.md
+++ b/README.md
@@ -17,7 +17,7 @@ import guan
+ basic functions
+ Fourier transform
+ Hamiltonian of finite size systems
-+ Hamiltonian of models in the reciprocal space
++ Hamiltonian of models in reciprocal space
+ band structures and wave functions
+ Green functions
+ density of states