0.0.175
This commit is contained in:
parent
9182696bd6
commit
5f32510914
@ -523,6 +523,18 @@ guan.change_directory_by_replacement(current_key_word='code', new_key_word='data
|
|||||||
|
|
||||||
# Module 14: others
|
# Module 14: others
|
||||||
|
|
||||||
|
# 获取所有股票
|
||||||
|
title, stock_data = guan.all_stocks()
|
||||||
|
|
||||||
|
# 获取所有股票的代码
|
||||||
|
stock_symbols = guan.all_stock_symbols()
|
||||||
|
|
||||||
|
# 从股票代码获取股票名称
|
||||||
|
stock_name = guan.find_stock_name_from_symbol(symbol='000002')
|
||||||
|
|
||||||
|
# 获取单个股票的历史数据
|
||||||
|
title, stock_data = guan.history_data_of_one_stock(symbol='000002', period='daily', start_date="19000101", end_date='21000101')
|
||||||
|
|
||||||
# 拼接两个PDF文件
|
# 拼接两个PDF文件
|
||||||
guan.combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_file='combined_file.pdf')
|
guan.combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_file='combined_file.pdf')
|
||||||
|
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
[metadata]
|
[metadata]
|
||||||
# replace with your username:
|
# replace with your username:
|
||||||
name = guan
|
name = guan
|
||||||
version = 0.0.173
|
version = 0.0.175
|
||||||
author = guanjihuan
|
author = guanjihuan
|
||||||
author_email = guanjihuan@163.com
|
author_email = guanjihuan@163.com
|
||||||
description = An open source python package
|
description = An open source python package
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
Metadata-Version: 2.1
|
Metadata-Version: 2.1
|
||||||
Name: guan
|
Name: guan
|
||||||
Version: 0.0.173
|
Version: 0.0.175
|
||||||
Summary: An open source python package
|
Summary: An open source python package
|
||||||
Home-page: https://py.guanjihuan.com
|
Home-page: https://py.guanjihuan.com
|
||||||
Author: guanjihuan
|
Author: guanjihuan
|
||||||
|
@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
|
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
|
||||||
|
|
||||||
# The current version is guan-0.0.173, updated on July 12, 2023.
|
# The current version is guan-0.0.175, updated on September 05, 2023.
|
||||||
|
|
||||||
# Installation: pip install --upgrade guan
|
# Installation: pip install --upgrade guan
|
||||||
|
|
||||||
@ -3096,6 +3096,41 @@ def change_directory_by_replacement(current_key_word='code', new_key_word='data'
|
|||||||
|
|
||||||
# Module 14: others
|
# Module 14: others
|
||||||
|
|
||||||
|
## stocks
|
||||||
|
|
||||||
|
# 获取所有股票
|
||||||
|
def all_stocks():
|
||||||
|
import akshare as ak
|
||||||
|
stocks = ak.stock_zh_a_spot_em()
|
||||||
|
title = np.array(stocks.columns)
|
||||||
|
stock_data = stocks.values
|
||||||
|
return title, stock_data
|
||||||
|
|
||||||
|
# 获取所有股票的代码
|
||||||
|
def all_stock_symbols():
|
||||||
|
title, stock_data = guan.all_stocks()
|
||||||
|
stock_symbols = stock_data[:, 1]
|
||||||
|
return stock_symbols
|
||||||
|
|
||||||
|
# 从股票代码获取股票名称
|
||||||
|
def find_stock_name_from_symbol(symbol='000002'):
|
||||||
|
title, stock_data = guan.all_stocks()
|
||||||
|
for stock in stock_data:
|
||||||
|
if symbol in stock:
|
||||||
|
stock_name = stock[2]
|
||||||
|
return stock_name
|
||||||
|
|
||||||
|
# 获取单个股票的历史数据
|
||||||
|
def history_data_of_one_stock(symbol='000002', period='daily', start_date="19000101", end_date='21000101'):
|
||||||
|
# period = 'daily'
|
||||||
|
# period = 'weekly'
|
||||||
|
# period = 'monthly'
|
||||||
|
import akshare as ak
|
||||||
|
stock = ak.stock_zh_a_hist(symbol=symbol, period=period, start_date=start_date, end_date=end_date)
|
||||||
|
title = np.array(stock.columns)
|
||||||
|
stock_data = stock.values[::-1]
|
||||||
|
return title, stock_data
|
||||||
|
|
||||||
## download
|
## download
|
||||||
|
|
||||||
# 通过Sci-Hub网站下载文献
|
# 通过Sci-Hub网站下载文献
|
||||||
|
Loading…
x
Reference in New Issue
Block a user