0.0.154
This commit is contained in:
parent
8658bd2053
commit
61c91480ab
@ -1,7 +1,7 @@
|
||||
[metadata]
|
||||
# replace with your username:
|
||||
name = guan
|
||||
version = 0.0.153
|
||||
version = 0.0.154
|
||||
author = guanjihuan
|
||||
author_email = guanjihuan@163.com
|
||||
description = An open source python package
|
||||
|
@ -1,6 +1,6 @@
|
||||
Metadata-Version: 2.1
|
||||
Name: guan
|
||||
Version: 0.0.153
|
||||
Version: 0.0.154
|
||||
Summary: An open source python package
|
||||
Home-page: https://py.guanjihuan.com
|
||||
Author: guanjihuan
|
||||
|
@ -2,7 +2,7 @@
|
||||
|
||||
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
|
||||
|
||||
# The current version is guan-0.0.153, updated on November 17, 2022.
|
||||
# The current version is guan-0.0.154, updated on November 24, 2022.
|
||||
|
||||
# Installation: pip install --upgrade guan
|
||||
|
||||
@ -1178,16 +1178,16 @@ def calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barri
|
||||
def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100):
|
||||
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
||||
dim = np.array(h00).shape[0]
|
||||
for ix in range(length):
|
||||
for ix in range(length+2):
|
||||
disorder = np.zeros((dim, dim))
|
||||
for dim0 in range(dim):
|
||||
if np.random.uniform(0, 1)<=disorder_concentration:
|
||||
disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity)
|
||||
if ix == 0:
|
||||
green_nn_n = guan.green_function(fermi_energy, h00+disorder, broadening=0, self_energy=left_self_energy)
|
||||
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
|
||||
green_0n_n = copy.deepcopy(green_nn_n)
|
||||
elif ix != length-1:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0)
|
||||
elif ix != length+1:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)
|
||||
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
||||
else:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
||||
@ -1198,15 +1198,15 @@ def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensi
|
||||
def calculate_conductance_with_slice_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100):
|
||||
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
||||
dim = np.array(h00).shape[0]
|
||||
for ix in range(length):
|
||||
for ix in range(length+2):
|
||||
disorder = np.zeros((dim, dim))
|
||||
if np.random.uniform(0, 1)<=disorder_concentration:
|
||||
disorder = np.random.uniform(-disorder_intensity, disorder_intensity)*np.eye(dim)
|
||||
if ix == 0:
|
||||
green_nn_n = guan.green_function(fermi_energy, h00+disorder, broadening=0, self_energy=left_self_energy)
|
||||
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
|
||||
green_0n_n = copy.deepcopy(green_nn_n)
|
||||
elif ix != length-1:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0)
|
||||
elif ix != length+1:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)
|
||||
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
||||
else:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
||||
@ -1221,12 +1221,12 @@ def calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translation
|
||||
for dim0 in range(dim):
|
||||
if np.random.uniform(0, 1)<=disorder_concentration:
|
||||
disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity)
|
||||
for ix in range(length):
|
||||
for ix in range(length+2):
|
||||
if ix == 0:
|
||||
green_nn_n = guan.green_function(fermi_energy, h00+disorder, broadening=0, self_energy=left_self_energy)
|
||||
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
|
||||
green_0n_n = copy.deepcopy(green_nn_n)
|
||||
elif ix != length-1:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0)
|
||||
elif ix != length+1:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)
|
||||
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
||||
else:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
||||
@ -1237,16 +1237,16 @@ def calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translation
|
||||
def calculate_conductance_with_random_vacancy(fermi_energy, h00, h01, vacancy_concentration=0.5, vacancy_potential=1e9, length=100):
|
||||
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
||||
dim = np.array(h00).shape[0]
|
||||
for ix in range(length):
|
||||
for ix in range(length+2):
|
||||
random_vacancy = np.zeros((dim, dim))
|
||||
for dim0 in range(dim):
|
||||
if np.random.uniform(0, 1)<=vacancy_concentration:
|
||||
random_vacancy[dim0, dim0] = vacancy_potential
|
||||
if ix == 0:
|
||||
green_nn_n = guan.green_function(fermi_energy, h00+random_vacancy, broadening=0, self_energy=left_self_energy)
|
||||
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
|
||||
green_0n_n = copy.deepcopy(green_nn_n)
|
||||
elif ix != length-1:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+random_vacancy, h01, green_nn_n, broadening=0)
|
||||
elif ix != length+1:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)
|
||||
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
||||
else:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+random_vacancy, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
||||
|
Loading…
x
Reference in New Issue
Block a user