guan-0.0.85
This commit is contained in:
		| @@ -1,286 +0,0 @@ | ||||
| import guan | ||||
| import math | ||||
|  | ||||
| # basic functions | ||||
|  | ||||
| guan.test() | ||||
|  | ||||
| sigma_0 = guan.sigma_0() | ||||
|  | ||||
| sigma_x = guan.sigma_x() | ||||
|  | ||||
| sigma_y = guan.sigma_y() | ||||
|  | ||||
| sigma_z = guan.sigma_z() | ||||
|  | ||||
| sigma_00 = guan.sigma_00() | ||||
|  | ||||
| sigma_0x = guan.sigma_0x() | ||||
|  | ||||
| sigma_0y = guan.sigma_0y() | ||||
|  | ||||
| sigma_0z = guan.sigma_0z() | ||||
|  | ||||
| sigma_x0 = guan.sigma_x0() | ||||
|  | ||||
| sigma_xx = guan.sigma_xx() | ||||
|  | ||||
| sigma_xy = guan.sigma_xy() | ||||
|  | ||||
| sigma_xz = guan.sigma_xz() | ||||
|  | ||||
| sigma_y0 = guan.sigma_y0() | ||||
|  | ||||
| sigma_yx = guan.sigma_yx() | ||||
|  | ||||
| sigma_yy = guan.sigma_yy() | ||||
|  | ||||
| sigma_yz = guan.sigma_yz() | ||||
|  | ||||
| sigma_z0 = guan.sigma_z0() | ||||
|  | ||||
| sigma_zx = guan.sigma_zx() | ||||
|  | ||||
| sigma_zy = guan.sigma_zy() | ||||
|  | ||||
| sigma_zz = guan.sigma_zz() | ||||
|  | ||||
|  | ||||
|  | ||||
| # Fourier transform | ||||
|  | ||||
| hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell, hopping) | ||||
|  | ||||
| hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2) | ||||
|  | ||||
| hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3) | ||||
|  | ||||
| hamiltonian_function = guan.one_dimensional_fourier_transform_with_k(unit_cell, hopping) | ||||
|  | ||||
| hamiltonian_function = guan.two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, hopping_1, hopping_2) | ||||
|  | ||||
| hamiltonian_function = guan.three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cell, hopping_1, hopping_2, hopping_3) | ||||
|  | ||||
| b1 = guan.calculate_one_dimensional_reciprocal_lattice_vector(a1) | ||||
|  | ||||
| b1, b2 = guan.calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2) | ||||
|  | ||||
| b1, b2, b3 = guan.calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3) | ||||
|  | ||||
| b1 = guan.calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1) | ||||
|  | ||||
| b1, b2 = guan.calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2) | ||||
|  | ||||
| b1, b2, b3 = guan.calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3) | ||||
|  | ||||
|  | ||||
|  | ||||
| # Hamiltonian of finite size systems | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0) | ||||
|  | ||||
| hopping = guan.hopping_matrix_along_zigzag_direction_for_graphene_ribbon(N) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0) | ||||
|  | ||||
|  | ||||
|  | ||||
| # Hamiltonian of models in the reciprocal space | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_simple_chain(k) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_square_lattice(k1, k2) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_cubic_lattice(k1, k2, k3) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_ssh_model(k, v=0.6, w=1) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_graphene(k1, k2, M=0, t=1, a=1/math.sqrt(3)) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi=math.pi/4, a=1/math.sqrt(3)) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi=math.pi/4) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_BBH_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1) | ||||
|  | ||||
|  | ||||
|  | ||||
| # band structures and wave functions | ||||
|  | ||||
| eigenvalue = guan.calculate_eigenvalue(hamiltonian) | ||||
|  | ||||
| eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0) | ||||
|  | ||||
| eigenvalue_array = guan.calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0) | ||||
|  | ||||
| eigenvector = guan.calculate_eigenvector(hamiltonian) | ||||
|  | ||||
| vector_target = guan.find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=1000, precision=1e-6) | ||||
|  | ||||
| vector = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None) | ||||
|  | ||||
| vector_array = guan.find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array, precision=0.005) | ||||
|  | ||||
| vector1, vector2 = guan.rotation_of_degenerate_vectors(vector1, vector2, index1, index2, precision=0.01, criterion=0.01, show_theta=0) | ||||
|  | ||||
| vector1_array, vector2_array = guan.rotation_of_degenerate_vectors_array(vector1_array, vector2_array, precision=0.01, criterion=0.01, show_theta=0) | ||||
|  | ||||
|  | ||||
|  | ||||
| # Green functions | ||||
|  | ||||
| green = guan.green_function(fermi_energy, hamiltonian, broadening, self_energy=0) | ||||
|  | ||||
| green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0) | ||||
|  | ||||
| green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n) | ||||
|  | ||||
| green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus) | ||||
|  | ||||
| green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) | ||||
|  | ||||
| transfer = guan.transfer_matrix(fermi_energy, h00, h01) | ||||
|  | ||||
| right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
|  | ||||
| right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
|  | ||||
| right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) | ||||
|  | ||||
| self_energy, gamma = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center) | ||||
|  | ||||
| green, gamma_right, gamma_left = guan.green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian) | ||||
|  | ||||
| G_n = guan.electron_correlation_function_green_n_for_local_current(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian) | ||||
|  | ||||
|  | ||||
|  | ||||
| # density of states | ||||
|  | ||||
| total_dos = guan.total_density_of_states(fermi_energy, hamiltonian, broadening=0.01) | ||||
|  | ||||
| total_dos_array = guan.total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01, print_show=0) | ||||
|  | ||||
| local_dos = guan.local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01) | ||||
|  | ||||
| local_dos = guan.local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01) | ||||
|  | ||||
| local_dos = guan.local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01) | ||||
|  | ||||
| local_dos = guan.local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01) | ||||
|  | ||||
| local_dos = guan.local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01) | ||||
|  | ||||
|  | ||||
|  | ||||
| # quantum transport | ||||
|  | ||||
| conductance = guan.calculate_conductance(fermi_energy, h00, h01, length=100) | ||||
|  | ||||
| conductance_array = guan.calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100, print_show=0) | ||||
|  | ||||
| conductance = guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100) | ||||
|  | ||||
| conductance_array = guan.calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1, print_show=0) | ||||
|  | ||||
| conductance_array = guan.calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h01, disorder_concentration_array, disorder_intensity=2.0, length=100, calculation_times=1, print_show=0) | ||||
|  | ||||
| conductance_array = guan.calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, length_array, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1, print_show=0) | ||||
|  | ||||
| gamma_array, green = guan.get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10) | ||||
|  | ||||
| transmission_matrix = guan.calculate_six_terminal_transmission_matrix(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10) | ||||
|  | ||||
| transmission_12, transmission_13, transmission_14, transmission_15, transmission_16 = guan.calculate_six_terminal_transmissions_from_lead_1(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10) | ||||
|  | ||||
| if_active = guan.if_active_channel(k_of_channel) | ||||
|  | ||||
| k_of_channel, velocity_of_channel, eigenvalue, eigenvector = guan.get_k_and_velocity_of_channel(fermi_energy, h00, h01) | ||||
|  | ||||
| k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = guan.get_classified_k_velocity_u_and_f(fermi_energy, h00, h01) | ||||
|  | ||||
| transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=100) | ||||
|  | ||||
| guan.print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', format='txt') | ||||
|  | ||||
|  | ||||
|  | ||||
| # topological invariant | ||||
|  | ||||
| chern_number = guan.calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100, print_show=0) | ||||
|  | ||||
| chern_number = guan.calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=10, precision_of_Wilson_loop=100, print_show=0) | ||||
|  | ||||
| chern_number = guan.calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0) | ||||
|  | ||||
| wilson_loop_array = guan.calculate_wilson_loop(hamiltonian_function, k_min=-math.pi, k_max=math.pi, precision=100, print_show=0) | ||||
|  | ||||
|  | ||||
|  | ||||
| # read and write | ||||
|  | ||||
| x_array, y_array = guan.read_one_dimensional_data(filename='a', format='txt') | ||||
|  | ||||
| x_array, y_array, matrix = guan.read_two_dimensional_data(filename='a', format='txt') | ||||
|  | ||||
| guan.write_one_dimensional_data(x_array, y_array, filename='a', format='txt') | ||||
|  | ||||
| guan.write_two_dimensional_data(x_array, y_array, matrix, filename='a', format='txt') | ||||
|  | ||||
|  | ||||
|  | ||||
| # plot figures | ||||
|  | ||||
| guan.plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', format='jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2) | ||||
|  | ||||
| guan.plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', format='jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100) | ||||
|  | ||||
| guan.plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', format='jpg', dpi=300) | ||||
|  | ||||
| guan.draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distance=1.1, line_style='-k', linewidth=1, dot_style='ro', markersize=3, show=1, save=0, filename='a', format='eps', dpi=300) | ||||
|  | ||||
| guan.combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filename='a', format='jpg', dpi=300) | ||||
|  | ||||
| guan.combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filename='a', format='jpg', dpi=300) | ||||
|  | ||||
| guan.combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filename='a', format='jpg', dpi=300) | ||||
|  | ||||
| guan.make_gif(image_path_array, filename='a', duration=0.1) | ||||
|  | ||||
|  | ||||
|  | ||||
| # data processing | ||||
|  | ||||
| parameter_array = guan.preprocess_for_parallel_calculations(parameter_array_all, cpus=1, task_index=0) | ||||
|  | ||||
| guan.change_directory_by_replacement(current_key_word='codes', new_key_word='data') | ||||
|  | ||||
| guan.batch_reading_and_plotting(directory, xlabel='x', ylabel='y') | ||||
|  | ||||
|  | ||||
|  | ||||
| # others | ||||
|  | ||||
| guan.download_with_scihub(address=None, num=1) | ||||
|  | ||||
| guan.str_to_audio(str='hello world', rate=125, voice=1, read=1, save=0, print_text=0) | ||||
|  | ||||
| guan.txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, print_text=0) | ||||
|  | ||||
| content = guan.pdf_to_text(pdf_path) | ||||
|  | ||||
| guan.pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, print_text=0) | ||||
|  | ||||
| guan.play_academic_words(bre_or_ame='ame', random_on=0, show_translation=1, show_link=1, translation_time=2, rest_time=1) | ||||
|  | ||||
| guan.play_element_words(random_on=0, show_translation=1, show_link=1, translation_time=2, rest_time=1) | ||||
| @@ -1,10 +1,10 @@ | ||||
| [metadata] | ||||
| # replace with your username: | ||||
| name = guan | ||||
| version = 0.0.84 | ||||
| version = 0.0.85 | ||||
| author = guanjihuan | ||||
| author_email = guanjihuan@163.com | ||||
| description = An open source python package | ||||
| description = Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. | ||||
| long_description = file: README.md | ||||
| long_description_content_type = text/markdown | ||||
| url = https://py.guanjihuan.com | ||||
|   | ||||
| @@ -1,7 +1,10 @@ | ||||
| # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. | ||||
|  | ||||
| # Modules | ||||
| # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. | ||||
|  | ||||
| # Installation: pip install --upgrade guan | ||||
|  | ||||
| # Modules: | ||||
| # # Module 1: basic functions | ||||
| # # Module 2: Fourier transform | ||||
| # # Module 3: Hamiltonian of finite size systems | ||||
| @@ -16,6 +19,308 @@ | ||||
| # # Module 12: data processing | ||||
| # # Module 13: others | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| ''' | ||||
| API Reference | ||||
|  | ||||
|  | ||||
|  | ||||
| # Module 1: basic functions | ||||
|  | ||||
| guan.test() | ||||
|  | ||||
| sigma_0 = guan.sigma_0() | ||||
|  | ||||
| sigma_x = guan.sigma_x() | ||||
|  | ||||
| sigma_y = guan.sigma_y() | ||||
|  | ||||
| sigma_z = guan.sigma_z() | ||||
|  | ||||
| sigma_00 = guan.sigma_00() | ||||
|  | ||||
| sigma_0x = guan.sigma_0x() | ||||
|  | ||||
| sigma_0y = guan.sigma_0y() | ||||
|  | ||||
| sigma_0z = guan.sigma_0z() | ||||
|  | ||||
| sigma_x0 = guan.sigma_x0() | ||||
|  | ||||
| sigma_xx = guan.sigma_xx() | ||||
|  | ||||
| sigma_xy = guan.sigma_xy() | ||||
|  | ||||
| sigma_xz = guan.sigma_xz() | ||||
|  | ||||
| sigma_y0 = guan.sigma_y0() | ||||
|  | ||||
| sigma_yx = guan.sigma_yx() | ||||
|  | ||||
| sigma_yy = guan.sigma_yy() | ||||
|  | ||||
| sigma_yz = guan.sigma_yz() | ||||
|  | ||||
| sigma_z0 = guan.sigma_z0() | ||||
|  | ||||
| sigma_zx = guan.sigma_zx() | ||||
|  | ||||
| sigma_zy = guan.sigma_zy() | ||||
|  | ||||
| sigma_zz = guan.sigma_zz() | ||||
|  | ||||
|  | ||||
|  | ||||
| # Module 2: Fourier transform | ||||
|  | ||||
| hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell, hopping) | ||||
|  | ||||
| hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2) | ||||
|  | ||||
| hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3) | ||||
|  | ||||
| hamiltonian_function = guan.one_dimensional_fourier_transform_with_k(unit_cell, hopping) | ||||
|  | ||||
| hamiltonian_function = guan.two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, hopping_1, hopping_2) | ||||
|  | ||||
| hamiltonian_function = guan.three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cell, hopping_1, hopping_2, hopping_3) | ||||
|  | ||||
| b1 = guan.calculate_one_dimensional_reciprocal_lattice_vector(a1) | ||||
|  | ||||
| b1, b2 = guan.calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2) | ||||
|  | ||||
| b1, b2, b3 = guan.calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3) | ||||
|  | ||||
| b1 = guan.calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1) | ||||
|  | ||||
| b1, b2 = guan.calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2) | ||||
|  | ||||
| b1, b2, b3 = guan.calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3) | ||||
|  | ||||
|  | ||||
|  | ||||
| # Module 3: Hamiltonian of finite size systems | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0) | ||||
|  | ||||
| hopping = guan.hopping_matrix_along_zigzag_direction_for_graphene_ribbon(N) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0) | ||||
|  | ||||
|  | ||||
|  | ||||
| # Module 4: Hamiltonian of models in the reciprocal space | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_simple_chain(k) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_square_lattice(k1, k2) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_cubic_lattice(k1, k2, k3) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_ssh_model(k, v=0.6, w=1) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_graphene(k1, k2, M=0, t=1, a=1/math.sqrt(3)) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi=math.pi/4, a=1/math.sqrt(3)) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi=math.pi/4) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1) | ||||
|  | ||||
| hamiltonian = guan.hamiltonian_of_BBH_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1) | ||||
|  | ||||
|  | ||||
|  | ||||
| # Module 5: band structures and wave functions | ||||
|  | ||||
| eigenvalue = guan.calculate_eigenvalue(hamiltonian) | ||||
|  | ||||
| eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0) | ||||
|  | ||||
| eigenvalue_array = guan.calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0) | ||||
|  | ||||
| eigenvector = guan.calculate_eigenvector(hamiltonian) | ||||
|  | ||||
| vector_target = guan.find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=1000, precision=1e-6) | ||||
|  | ||||
| vector = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None) | ||||
|  | ||||
| vector_array = guan.find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array, precision=0.005) | ||||
|  | ||||
| vector1, vector2 = guan.rotation_of_degenerate_vectors(vector1, vector2, index1, index2, precision=0.01, criterion=0.01, show_theta=0) | ||||
|  | ||||
| vector1_array, vector2_array = guan.rotation_of_degenerate_vectors_array(vector1_array, vector2_array, precision=0.01, criterion=0.01, show_theta=0) | ||||
|  | ||||
|  | ||||
|  | ||||
| # Module 6: Green functions | ||||
|  | ||||
| green = guan.green_function(fermi_energy, hamiltonian, broadening, self_energy=0) | ||||
|  | ||||
| green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0) | ||||
|  | ||||
| green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n) | ||||
|  | ||||
| green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus) | ||||
|  | ||||
| green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) | ||||
|  | ||||
| transfer = guan.transfer_matrix(fermi_energy, h00, h01) | ||||
|  | ||||
| right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
|  | ||||
| right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
|  | ||||
| right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) | ||||
|  | ||||
| self_energy, gamma = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center) | ||||
|  | ||||
| green, gamma_right, gamma_left = guan.green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian) | ||||
|  | ||||
| G_n = guan.electron_correlation_function_green_n_for_local_current(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian) | ||||
|  | ||||
|  | ||||
|  | ||||
| # Module 7: density of states | ||||
|  | ||||
| total_dos = guan.total_density_of_states(fermi_energy, hamiltonian, broadening=0.01) | ||||
|  | ||||
| total_dos_array = guan.total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01, print_show=0) | ||||
|  | ||||
| local_dos = guan.local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01) | ||||
|  | ||||
| local_dos = guan.local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01) | ||||
|  | ||||
| local_dos = guan.local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01) | ||||
|  | ||||
| local_dos = guan.local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01) | ||||
|  | ||||
| local_dos = guan.local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01) | ||||
|  | ||||
|  | ||||
|  | ||||
| # Module 8: quantum transport | ||||
|  | ||||
| conductance = guan.calculate_conductance(fermi_energy, h00, h01, length=100) | ||||
|  | ||||
| conductance_array = guan.calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100, print_show=0) | ||||
|  | ||||
| conductance = guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100) | ||||
|  | ||||
| conductance_array = guan.calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1, print_show=0) | ||||
|  | ||||
| conductance_array = guan.calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h01, disorder_concentration_array, disorder_intensity=2.0, length=100, calculation_times=1, print_show=0) | ||||
|  | ||||
| conductance_array = guan.calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, length_array, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1, print_show=0) | ||||
|  | ||||
| gamma_array, green = guan.get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10) | ||||
|  | ||||
| transmission_matrix = guan.calculate_six_terminal_transmission_matrix(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10) | ||||
|  | ||||
| transmission_12, transmission_13, transmission_14, transmission_15, transmission_16 = guan.calculate_six_terminal_transmissions_from_lead_1(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10) | ||||
|  | ||||
| if_active = guan.if_active_channel(k_of_channel) | ||||
|  | ||||
| k_of_channel, velocity_of_channel, eigenvalue, eigenvector = guan.get_k_and_velocity_of_channel(fermi_energy, h00, h01) | ||||
|  | ||||
| k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = guan.get_classified_k_velocity_u_and_f(fermi_energy, h00, h01) | ||||
|  | ||||
| transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=100) | ||||
|  | ||||
| guan.print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', format='txt') | ||||
|  | ||||
|  | ||||
|  | ||||
| # Module 9: topological invariant | ||||
|  | ||||
| chern_number = guan.calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100, print_show=0) | ||||
|  | ||||
| chern_number = guan.calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=10, precision_of_Wilson_loop=100, print_show=0) | ||||
|  | ||||
| chern_number = guan.calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0) | ||||
|  | ||||
| wilson_loop_array = guan.calculate_wilson_loop(hamiltonian_function, k_min=-math.pi, k_max=math.pi, precision=100, print_show=0) | ||||
|  | ||||
|  | ||||
|  | ||||
| # Module 10: read and write | ||||
|  | ||||
| x_array, y_array = guan.read_one_dimensional_data(filename='a', format='txt') | ||||
|  | ||||
| x_array, y_array, matrix = guan.read_two_dimensional_data(filename='a', format='txt') | ||||
|  | ||||
| guan.write_one_dimensional_data(x_array, y_array, filename='a', format='txt') | ||||
|  | ||||
| guan.write_two_dimensional_data(x_array, y_array, matrix, filename='a', format='txt') | ||||
|  | ||||
|  | ||||
|  | ||||
| # Module 11: plot figures | ||||
|  | ||||
| guan.plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', format='jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2) | ||||
|  | ||||
| guan.plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', format='jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100) | ||||
|  | ||||
| guan.plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', format='jpg', dpi=300) | ||||
|  | ||||
| guan.draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distance=1.1, line_style='-k', linewidth=1, dot_style='ro', markersize=3, show=1, save=0, filename='a', format='eps', dpi=300) | ||||
|  | ||||
| guan.combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filename='a', format='jpg', dpi=300) | ||||
|  | ||||
| guan.combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filename='a', format='jpg', dpi=300) | ||||
|  | ||||
| guan.combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filename='a', format='jpg', dpi=300) | ||||
|  | ||||
| guan.make_gif(image_path_array, filename='a', duration=0.1) | ||||
|  | ||||
|  | ||||
|  | ||||
| # Module 12: data processing | ||||
|  | ||||
| parameter_array = guan.preprocess_for_parallel_calculations(parameter_array_all, cpus=1, task_index=0) | ||||
|  | ||||
| guan.change_directory_by_replacement(current_key_word='codes', new_key_word='data') | ||||
|  | ||||
| guan.batch_reading_and_plotting(directory, xlabel='x', ylabel='y') | ||||
|  | ||||
|  | ||||
|  | ||||
| # Module 13: others | ||||
|  | ||||
| guan.download_with_scihub(address=None, num=1) | ||||
|  | ||||
| guan.str_to_audio(str='hello world', rate=125, voice=1, read=1, save=0, print_text=0) | ||||
|  | ||||
| guan.txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, print_text=0) | ||||
|  | ||||
| content = guan.pdf_to_text(pdf_path) | ||||
|  | ||||
| guan.pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, print_text=0) | ||||
|  | ||||
| guan.play_academic_words(bre_or_ame='ame', random_on=0, show_translation=1, show_link=1, translation_time=2, rest_time=1) | ||||
|  | ||||
| guan.play_element_words(random_on=0, show_translation=1, show_link=1, translation_time=2, rest_time=1) | ||||
|  | ||||
| ''' | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| # import packages | ||||
|  | ||||
| import numpy as np | ||||
|   | ||||
		Reference in New Issue
	
	Block a user