diff --git a/PyPI/dist/guan-0.0.118-py3-none-any.whl b/PyPI/dist/guan-0.0.118-py3-none-any.whl new file mode 100644 index 0000000..0d32f0a Binary files /dev/null and b/PyPI/dist/guan-0.0.118-py3-none-any.whl differ diff --git a/PyPI/dist/guan-0.0.118.tar.gz b/PyPI/dist/guan-0.0.118.tar.gz new file mode 100644 index 0000000..f314b8e Binary files /dev/null and b/PyPI/dist/guan-0.0.118.tar.gz differ diff --git a/PyPI/setup.cfg b/PyPI/setup.cfg index 191843a..c236179 100644 --- a/PyPI/setup.cfg +++ b/PyPI/setup.cfg @@ -1,7 +1,7 @@ [metadata] # replace with your username: name = guan -version = 0.0.117 +version = 0.0.118 author = guanjihuan author_email = guanjihuan@163.com description = An open source python package diff --git a/PyPI/src/guan.egg-info/PKG-INFO b/PyPI/src/guan.egg-info/PKG-INFO new file mode 100644 index 0000000..af34f6c --- /dev/null +++ b/PyPI/src/guan.egg-info/PKG-INFO @@ -0,0 +1,16 @@ +Metadata-Version: 2.1 +Name: guan +Version: 0.0.118 +Summary: An open source python package +Home-page: https://py.guanjihuan.com +Author: guanjihuan +Author-email: guanjihuan@163.com +Project-URL: Bug Tracker, https://py.guanjihuan.com +Classifier: Programming Language :: Python :: 3 +Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3) +Classifier: Operating System :: OS Independent +Requires-Python: >=3.6 +Description-Content-Type: text/markdown +License-File: LICENSE + +Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. diff --git a/PyPI/src/guan.egg-info/SOURCES.txt b/PyPI/src/guan.egg-info/SOURCES.txt new file mode 100644 index 0000000..d26d474 --- /dev/null +++ b/PyPI/src/guan.egg-info/SOURCES.txt @@ -0,0 +1,9 @@ +LICENSE +README.md +pyproject.toml +setup.cfg +src/guan/__init__.py +src/guan.egg-info/PKG-INFO +src/guan.egg-info/SOURCES.txt +src/guan.egg-info/dependency_links.txt +src/guan.egg-info/top_level.txt \ No newline at end of file diff --git a/PyPI/src/guan.egg-info/dependency_links.txt b/PyPI/src/guan.egg-info/dependency_links.txt new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/PyPI/src/guan.egg-info/dependency_links.txt @@ -0,0 +1 @@ + diff --git a/PyPI/src/guan.egg-info/top_level.txt b/PyPI/src/guan.egg-info/top_level.txt new file mode 100644 index 0000000..ff25243 --- /dev/null +++ b/PyPI/src/guan.egg-info/top_level.txt @@ -0,0 +1 @@ +guan diff --git a/PyPI/src/guan/__init__.py b/PyPI/src/guan/__init__.py index e766e6e..b9913a0 100644 --- a/PyPI/src/guan/__init__.py +++ b/PyPI/src/guan/__init__.py @@ -2,7 +2,7 @@ # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. -# The current version is guan-0.0.117, updated on July 21, 2022. +# The current version is guan-0.0.118, updated on August 10, 2022. # Installation: pip install --upgrade guan @@ -1560,26 +1560,26 @@ def calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_funct for ky in np.arange(-math.pi, math.pi, delta): vector_array = [] # line_1 - for i0 in range(precision_of_Wilson_loop+1): + for i0 in range(precision_of_Wilson_loop): H_delta = hamiltonian_function(kx+delta/precision_of_Wilson_loop*i0, ky) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_2 for i0 in range(precision_of_Wilson_loop): - H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_Wilson_loop*(i0+1)) + H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_Wilson_loop*i0) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_3 for i0 in range(precision_of_Wilson_loop): - H_delta = hamiltonian_function(kx+delta-delta/precision_of_Wilson_loop*(i0+1), ky+delta) + H_delta = hamiltonian_function(kx+delta-delta/precision_of_Wilson_loop*i0, ky+delta) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta) # line_4 - for i0 in range(precision_of_Wilson_loop-1): - H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_Wilson_loop*(i0+1)) + for i0 in range(precision_of_Wilson_loop): + H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_Wilson_loop*i0) eigenvalue, eigenvector = np.linalg.eig(H_delta) vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] vector_array.append(vector_delta)