0.1.48 增加装饰器
This commit is contained in:
		| @@ -1,7 +1,7 @@ | ||||
| [metadata] | ||||
| # replace with your username: | ||||
| name = guan | ||||
| version = 0.1.47 | ||||
| version = 0.1.48 | ||||
| author = guanjihuan | ||||
| author_email = guanjihuan@163.com | ||||
| description = An open source python package | ||||
|   | ||||
| @@ -1,6 +1,6 @@ | ||||
| Metadata-Version: 2.1 | ||||
| Name: guan | ||||
| Version: 0.1.47 | ||||
| Version: 0.1.48 | ||||
| Summary: An open source python package | ||||
| Home-page: https://py.guanjihuan.com | ||||
| Author: guanjihuan | ||||
|   | ||||
| @@ -1,17 +1,18 @@ | ||||
| # Module: Fourier_transform | ||||
| import guan | ||||
|  | ||||
| # 通过元胞和跃迁项得到一维的哈密顿量(需要输入k值) | ||||
| @guan.function_decorator | ||||
| def one_dimensional_fourier_transform(k, unit_cell, hopping): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
|     unit_cell = np.array(unit_cell) | ||||
|     hopping = np.array(hopping) | ||||
|     hamiltonian = unit_cell+hopping*cmath.exp(1j*k)+hopping.transpose().conj()*cmath.exp(-1j*k) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 通过元胞和跃迁项得到二维方格子的哈密顿量(需要输入k值) | ||||
| @guan.function_decorator | ||||
| def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -19,11 +20,10 @@ def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopp | ||||
|     hopping_1 = np.array(hopping_1) | ||||
|     hopping_2 = np.array(hopping_2) | ||||
|     hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 通过元胞和跃迁项得到三维立方格子的哈密顿量(需要输入k值) | ||||
| @guan.function_decorator | ||||
| def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -32,43 +32,41 @@ def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, | ||||
|     hopping_2 = np.array(hopping_2) | ||||
|     hopping_3 = np.array(hopping_3) | ||||
|     hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)+hopping_3*cmath.exp(1j*k3)+hopping_3.transpose().conj()*cmath.exp(-1j*k3) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 通过元胞和跃迁项得到一维的哈密顿量(返回的哈密顿量为携带k的函数) | ||||
| @guan.function_decorator | ||||
| def one_dimensional_fourier_transform_with_k(unit_cell, hopping): | ||||
|     import functools | ||||
|     import guan | ||||
|     hamiltonian_function = functools.partial(guan.one_dimensional_fourier_transform, unit_cell=unit_cell, hopping=hopping) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian_function | ||||
|  | ||||
| # 通过元胞和跃迁项得到二维方格子的哈密顿量(返回的哈密顿量为携带k的函数) | ||||
| @guan.function_decorator | ||||
| def two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, hopping_1, hopping_2): | ||||
|     import functools | ||||
|     import guan | ||||
|     hamiltonian_function = functools.partial(guan.two_dimensional_fourier_transform_for_square_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian_function | ||||
|  | ||||
| # 通过元胞和跃迁项得到三维立方格子的哈密顿量(返回的哈密顿量为携带k的函数) | ||||
| @guan.function_decorator | ||||
| def three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cell, hopping_1, hopping_2, hopping_3): | ||||
|     import functools | ||||
|     import guan | ||||
|     hamiltonian_function = functools.partial(guan.three_dimensional_fourier_transform_for_cubic_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2, hopping_3=hopping_3) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian_function | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(一维) | ||||
| @guan.function_decorator | ||||
| def calculate_one_dimensional_reciprocal_lattice_vector(a1): | ||||
|     import numpy as np | ||||
|     b1 = 2*np.pi/a1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return b1 | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(二维) | ||||
| @guan.function_decorator | ||||
| def calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2): | ||||
|     import numpy as np | ||||
|     a1 = np.array(a1) | ||||
| @@ -80,11 +78,10 @@ def calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2): | ||||
|     b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3)) | ||||
|     b1 = np.delete(b1, 2) | ||||
|     b2 = np.delete(b2, 2) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return b1, b2 | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(三维) | ||||
| @guan.function_decorator | ||||
| def calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3): | ||||
|     import numpy as np | ||||
|     a1 = np.array(a1) | ||||
| @@ -93,19 +90,17 @@ def calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3): | ||||
|     b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3)) | ||||
|     b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3)) | ||||
|     b3 = 2*np.pi*np.cross(a1, a2)/np.dot(a1, np.cross(a2, a3)) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return b1, b2, b3 | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(一维),这里为符号运算 | ||||
| @guan.function_decorator | ||||
| def calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1): | ||||
|     import sympy | ||||
|     b1 = 2*sympy.pi/a1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return b1 | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(二维),这里为符号运算 | ||||
| @guan.function_decorator | ||||
| def calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2): | ||||
|     import sympy | ||||
|     a1 = sympy.Matrix(1, 3, [a1[0], a1[1], 0]) | ||||
| @@ -117,11 +112,10 @@ def calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2): | ||||
|     b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3) | ||||
|     b1 = sympy.Matrix(1, 2, [b1[0], b1[1]]) | ||||
|     b2 = sympy.Matrix(1, 2, [b2[0], b2[1]]) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return b1, b2 | ||||
|  | ||||
| # 由实空间格矢得到倒空间格矢(三维),这里为符号运算 | ||||
| @guan.function_decorator | ||||
| def calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3): | ||||
|     import sympy | ||||
|     cross_a2_a3 = a2.cross(a3) | ||||
| @@ -130,6 +124,4 @@ def calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3 | ||||
|     b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3) | ||||
|     b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3) | ||||
|     b3 = 2*sympy.pi*cross_a1_a2/a1.dot(cross_a2_a3) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return b1, b2, b3 | ||||
|   | ||||
| @@ -1,6 +1,8 @@ | ||||
| # Module: Green_functions | ||||
| import guan | ||||
|  | ||||
| # 输入哈密顿量,得到格林函数 | ||||
| @guan.function_decorator | ||||
| def green_function(fermi_energy, hamiltonian, broadening, self_energy=0): | ||||
|     import numpy as np | ||||
|     if np.array(hamiltonian).shape==(): | ||||
| @@ -8,11 +10,10 @@ def green_function(fermi_energy, hamiltonian, broadening, self_energy=0): | ||||
|     else: | ||||
|         dim = np.array(hamiltonian).shape[0] | ||||
|     green = np.linalg.inv((fermi_energy+broadening*1j)*np.eye(dim)-hamiltonian-self_energy) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return green | ||||
|  | ||||
| # 在Dyson方程中的一个中间格林函数G_{nn}^{n} | ||||
| @guan.function_decorator | ||||
| def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0): | ||||
|     import numpy as np | ||||
|     h01 = np.array(h01) | ||||
| @@ -21,36 +22,32 @@ def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, se | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0]    | ||||
|     green_nn_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n_minus), h01)-self_energy) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return green_nn_n | ||||
|  | ||||
| # 在Dyson方程中的一个中间格林函数G_{in}^{n} | ||||
| @guan.function_decorator | ||||
| def green_function_in_n(green_in_n_minus, h01, green_nn_n): | ||||
|     import numpy as np | ||||
|     green_in_n = np.dot(np.dot(green_in_n_minus, h01), green_nn_n) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return green_in_n | ||||
|  | ||||
| # 在Dyson方程中的一个中间格林函数G_{ni}^{n} | ||||
| @guan.function_decorator | ||||
| def green_function_ni_n(green_nn_n, h01, green_ni_n_minus): | ||||
|     import numpy as np | ||||
|     h01 = np.array(h01) | ||||
|     green_ni_n = np.dot(np.dot(green_nn_n, h01.transpose().conj()), green_ni_n_minus) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return green_ni_n | ||||
|  | ||||
| # 在Dyson方程中的一个中间格林函数G_{ii}^{n} | ||||
| @guan.function_decorator | ||||
| def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus): | ||||
|     import numpy as np | ||||
|     green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return green_ii_n | ||||
|  | ||||
| # 计算转移矩阵(该矩阵可以用来计算表面格林函数) | ||||
| @guan.function_decorator | ||||
| def transfer_matrix(fermi_energy, h00, h01): | ||||
|     import numpy as np | ||||
|     h01 = np.array(h01) | ||||
| @@ -63,11 +60,10 @@ def transfer_matrix(fermi_energy, h00, h01): | ||||
|     transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj()) | ||||
|     transfer[dim:2*dim, 0:dim] = np.identity(dim) | ||||
|     transfer[dim:2*dim, dim:2*dim] = 0 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return transfer | ||||
|  | ||||
| # 计算电极的表面格林函数 | ||||
| @guan.function_decorator | ||||
| def surface_green_function_of_lead(fermi_energy, h00, h01): | ||||
|     import numpy as np | ||||
|     h01 = np.array(h01) | ||||
| @@ -90,11 +86,10 @@ def surface_green_function_of_lead(fermi_energy, h00, h01): | ||||
|     s4 = temp[0:dim, dim:2*dim] | ||||
|     right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1))) | ||||
|     left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4))) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return right_lead_surface, left_lead_surface | ||||
|  | ||||
| # 计算电极的自能(基于Dyson方程的小矩阵形式) | ||||
| @guan.function_decorator | ||||
| def self_energy_of_lead(fermi_energy, h00, h01): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -104,10 +99,10 @@ def self_energy_of_lead(fermi_energy, h00, h01): | ||||
|     left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01) | ||||
|     gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j | ||||
|     gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j | ||||
|     guan.statistics_of_guan_package() | ||||
|     return right_self_energy, left_self_energy, gamma_right, gamma_left | ||||
|  | ||||
| # 计算电极的自能(基于中心区整体的大矩阵形式) | ||||
| @guan.function_decorator | ||||
| def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -118,10 +113,10 @@ def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR): | ||||
|     left_self_energy = np.dot(np.dot(h_LC.transpose().conj(), left_lead_surface), h_LC) | ||||
|     gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j | ||||
|     gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j | ||||
|     guan.statistics_of_guan_package() | ||||
|     return right_self_energy, left_self_energy, gamma_right, gamma_left | ||||
|  | ||||
| # 计算电极的自能(基于中心区整体的大矩阵形式,可适用于多端电导的计算) | ||||
| @guan.function_decorator | ||||
| def self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -129,25 +124,24 @@ def self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_ | ||||
|     right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
|     self_energy = np.dot(np.dot(h_lead_to_center.transpose().conj(), right_lead_surface), h_lead_to_center) | ||||
|     gamma = (self_energy - self_energy.transpose().conj())*1j | ||||
|     guan.statistics_of_guan_package() | ||||
|     return self_energy, gamma | ||||
|  | ||||
| # 计算考虑电极自能后的中心区的格林函数 | ||||
| @guan.function_decorator | ||||
| def green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     dim = np.array(center_hamiltonian).shape[0] | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) | ||||
|     green = np.linalg.inv(fermi_energy*np.identity(dim)-center_hamiltonian-left_self_energy-right_self_energy) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return green, gamma_right, gamma_left | ||||
|  | ||||
| # 计算用于计算局域电流的格林函数G_n | ||||
| @guan.function_decorator | ||||
| def electron_correlation_function_green_n_for_local_current(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) | ||||
|     green = guan.green_function(fermi_energy, center_hamiltonian, broadening=0, self_energy=left_self_energy+right_self_energy) | ||||
|     G_n = np.imag(np.dot(np.dot(green, gamma_left), green.transpose().conj())) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return G_n | ||||
| @@ -1,6 +1,8 @@ | ||||
| # Module: Hamiltonian_of_examples | ||||
| import guan | ||||
|  | ||||
| # 构建一维的有限尺寸体系哈密顿量(可设置是否为周期边界条件) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0): | ||||
|     import numpy as np | ||||
|     on_site = np.array(on_site) | ||||
| @@ -18,11 +20,10 @@ def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping= | ||||
|     if period == 1: | ||||
|         hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping | ||||
|         hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 构建二维的方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0): | ||||
|     import numpy as np | ||||
|     on_site = np.array(on_site) | ||||
| @@ -52,11 +53,10 @@ def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1 | ||||
|         for i1 in range(N1): | ||||
|             hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2 | ||||
|             hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 构建三维的立方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0): | ||||
|     import numpy as np | ||||
|     on_site = np.array(on_site) | ||||
| @@ -102,11 +102,10 @@ def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N | ||||
|             for i2 in range(N2): | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3 | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 构建有限尺寸的SSH模型哈密顿量 | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1): | ||||
|     import numpy as np | ||||
|     hamiltonian = np.zeros((2*N, 2*N)) | ||||
| @@ -121,11 +120,10 @@ def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, | ||||
|     if period==1: | ||||
|         hamiltonian[0, 2*N-1] = w | ||||
|         hamiltonian[2*N-1, 0] = w | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 获取Zigzag边的石墨烯条带的元胞间跃迁 | ||||
| @guan.function_decorator | ||||
| def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0): | ||||
|     import numpy as np | ||||
|     hopping = np.zeros((4*N, 4*N), dtype=complex) | ||||
| @@ -136,11 +134,10 @@ def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0): | ||||
|         hopping[4*i0+3, 4*i0+3] = eta | ||||
|         hopping[4*i0+1, 4*i0+0] = 1 | ||||
|         hopping[4*i0+2, 4*i0+3] = 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hopping | ||||
|  | ||||
| # 构建有限尺寸的石墨烯哈密顿量(可设置是否为周期边界条件) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -149,10 +146,10 @@ def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, | ||||
|     hopping_2 = np.zeros((4, 4), dtype=complex) | ||||
|     hopping_2[3, 0] = 1 | ||||
|     hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 获取石墨烯有效模型沿着x方向的在位能和跃迁项(其中,动量qy为参数) | ||||
| @guan.function_decorator | ||||
| def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0): | ||||
|     import numpy as np | ||||
|     constant = -np.sqrt(3)/2 | ||||
| @@ -170,11 +167,10 @@ def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy | ||||
|     else: | ||||
|         h01[0, 1] = constant*t*(1j/2) | ||||
|         h01[1, 0] = constant*t*(1j/2) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return h00, h01 | ||||
|  | ||||
| # 获取BHZ模型的在位能和跃迁项 | ||||
| @guan.function_decorator | ||||
| def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
|     import numpy as np | ||||
|     E_s = C+M-4*(D+B)/(a**2) | ||||
| @@ -205,11 +201,10 @@ def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0 | ||||
|     H2[1, 0] = 1j*np.conj(V_sp) | ||||
|     H2[2, 3] = -1j*np.conj(V_sp) | ||||
|     H2[3, 2] = -1j*V_sp | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return H0, H1, H2 | ||||
|  | ||||
| # 获取半个BHZ模型的在位能和跃迁项(自旋向上) | ||||
| @guan.function_decorator | ||||
| def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
|     import numpy as np | ||||
|     E_s = C+M-4*(D+B)/(a**2) | ||||
| @@ -230,11 +225,10 @@ def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0. | ||||
|     H2[1, 1] = V_pp | ||||
|     H2[0, 1] = 1j*V_sp | ||||
|     H2[1, 0] = 1j*np.conj(V_sp) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return H0, H1, H2 | ||||
|  | ||||
| # 获取半个BHZ模型的在位能和跃迁项(自旋向下) | ||||
| @guan.function_decorator | ||||
| def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): | ||||
|     import numpy as np | ||||
|     E_s = C+M-4*(D+B)/(a**2) | ||||
| @@ -255,25 +249,24 @@ def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=- | ||||
|     H2[1, 1] = V_pp | ||||
|     H2[0, 1] = -1j*np.conj(V_sp) | ||||
|     H2[1, 0] = -1j*V_sp | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return H0, H1, H2 | ||||
|  | ||||
| # 一维链的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_simple_chain(k): | ||||
|     import guan | ||||
|     hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 二维方格子的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_square_lattice(k1, k2): | ||||
|     import guan | ||||
|     hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 准一维方格子条带的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -288,28 +281,27 @@ def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0): | ||||
|     for i in range(N):    | ||||
|         h01[i, i] = 1 | ||||
|     hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 三维立方格子的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_cubic_lattice(k1, k2, k3): | ||||
|     import guan | ||||
|     hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # SSH模型的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_ssh_model(k, v=0.6, w=1): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
|     hamiltonian[0,1] = v+w*cmath.exp(-1j*k) | ||||
|     hamiltonian[1,0] = v+w*cmath.exp(1j*k) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 石墨烯的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default'): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -323,11 +315,10 @@ def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default'): | ||||
|     h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))    | ||||
|     h1[0, 1] = h1[1, 0].conj() | ||||
|     hamiltonian = h0 + h1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 石墨烯有效模型的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0): | ||||
|     import numpy as np | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
| @@ -340,11 +331,10 @@ def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley | ||||
|     else: | ||||
|         hamiltonian[0, 1] = constant*t*(-qx-1j*qy) | ||||
|         hamiltonian[1, 0] = constant*t*(-qx+1j*qy) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 石墨烯有效模型离散化后的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggered_potential=0, valley_index=0): | ||||
|     import numpy as np | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
| @@ -357,11 +347,10 @@ def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggere | ||||
|     else: | ||||
|         hamiltonian[0, 1] = constant*t*(-np.sin(qx)-1j*np.sin(qy)) | ||||
|         hamiltonian[1, 0] = constant*t*(-np.sin(qx)+1j*np.sin(qy)) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 准一维Zigzag边石墨烯条带的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -388,10 +377,10 @@ def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1 | ||||
|         h01[i*4+1, i*4+0] = t | ||||
|         h01[i*4+2, i*4+3] = t | ||||
|     hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # Haldane模型的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a='default'): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -410,11 +399,10 @@ def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a=' | ||||
|     h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a)) | ||||
|     h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a)) | ||||
|     hamiltonian = h0 + h1 + h2 + h2.transpose().conj() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 准一维Haldane模型条带的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi='default', period=0): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -466,11 +454,10 @@ def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2 | ||||
|     for i in range(N-1): | ||||
|         h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi) | ||||
|     hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 一个量子反常霍尔效应的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -479,11 +466,10 @@ def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1): | ||||
|     hamiltonian[1, 0] = 2*t1*math.cos(k1)+1j*2*t1*math.cos(k2) | ||||
|     hamiltonian[0, 0] = m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2) | ||||
|     hamiltonian[1, 1] = -(m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2)) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # BHZ模型的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -499,11 +485,10 @@ def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, | ||||
|     hamiltonian[3, 3] = varepsilon-d3 | ||||
|     hamiltonian[2, 3] = -d1_d2  | ||||
|     hamiltonian[3, 2] = -np.conj(d1_d2) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 半BHZ模型的哈密顿量(自旋向上)(倒空间) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -515,11 +500,10 @@ def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C | ||||
|     hamiltonian[1, 1] = varepsilon-d3 | ||||
|     hamiltonian[0, 1] = np.conj(d1_d2) | ||||
|     hamiltonian[1, 0] = d1_d2 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # 半BHZ模型的哈密顿量(自旋向下)(倒空间) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -531,11 +515,10 @@ def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, | ||||
|     hamiltonian[1, 1] = varepsilon-d3 | ||||
|     hamiltonian[0, 1] = -d1_d2  | ||||
|     hamiltonian[1, 0] = -np.conj(d1_d2) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # BBH模型的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -552,11 +535,10 @@ def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambd | ||||
|     hamiltonian[3, 1] = np.conj(hamiltonian[1, 3]) | ||||
|     hamiltonian[3, 0] = np.conj(hamiltonian[0, 3]) | ||||
|     hamiltonian[2, 1] = np.conj(hamiltonian[1, 2]) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
|  | ||||
| # Kagome模型的哈密顿量(倒空间) | ||||
| @guan.function_decorator | ||||
| def hamiltonian_of_kagome_lattice(kx, ky, t=1): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -569,6 +551,4 @@ def hamiltonian_of_kagome_lattice(kx, ky, t=1): | ||||
|     hamiltonian[1, 2] = 2*math.cos(k3_dot_a3) | ||||
|     hamiltonian = hamiltonian + hamiltonian.transpose().conj() | ||||
|     hamiltonian = -t*hamiltonian | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hamiltonian | ||||
| @@ -1,5 +1,13 @@ | ||||
| # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com. The GitHub location of this package is on https://github.com/guanjihuan/py.guanjihuan.com. | ||||
|  | ||||
| # 函数的装饰器,用于软件包的统计 | ||||
| def function_decorator(func): | ||||
|     def wrapper(): | ||||
|         func() | ||||
|         import guan | ||||
|         guan.statistics_of_guan_package(func.__name__) | ||||
|     return wrapper | ||||
|  | ||||
| from .basic_functions import * | ||||
| from .Fourier_transform import * | ||||
| from .Hamiltonian_of_examples import * | ||||
|   | ||||
| @@ -1,17 +1,18 @@ | ||||
| # Module: band_structures_and_wave_functions | ||||
| import guan | ||||
|  | ||||
| # 计算哈密顿量的本征值 | ||||
| @guan.function_decorator | ||||
| def calculate_eigenvalue(hamiltonian): | ||||
|     import numpy as np | ||||
|     if np.array(hamiltonian).shape==(): | ||||
|         eigenvalue = np.real(hamiltonian) | ||||
|     else: | ||||
|         eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return eigenvalue | ||||
|  | ||||
| # 输入哈密顿量函数(带一组参数),计算一组参数下的本征值,返回本征值向量组 | ||||
| @guan.function_decorator | ||||
| def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0): | ||||
|     import numpy as np | ||||
|     dim_x = np.array(x_array).shape[0] | ||||
| @@ -32,11 +33,10 @@ def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print | ||||
|             eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) | ||||
|             eigenvalue_array[i0, :] = eigenvalue | ||||
|             i0 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return eigenvalue_array | ||||
|  | ||||
| # 输入哈密顿量函数(带两组参数),计算两组参数下的本征值,返回本征值向量组 | ||||
| @guan.function_decorator | ||||
| def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0):   | ||||
|     import numpy as np | ||||
|     dim_x = np.array(x_array).shape[0] | ||||
| @@ -67,19 +67,17 @@ def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_funct | ||||
|                 eigenvalue_array[i0, j0, :] = eigenvalue | ||||
|                 j0 += 1 | ||||
|             i0 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return eigenvalue_array | ||||
|  | ||||
| # 计算哈密顿量的本征矢 | ||||
| @guan.function_decorator | ||||
| def calculate_eigenvector(hamiltonian): | ||||
|     import numpy as np | ||||
|     eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return eigenvector | ||||
|  | ||||
| # 通过二分查找的方法获取和相邻波函数一样规范的波函数 | ||||
| @guan.function_decorator | ||||
| def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=1000, precision=1e-6): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -116,11 +114,10 @@ def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref | ||||
|     vector_target = vector_target*cmath.exp(1j*phase) | ||||
|     if show_phase==1: | ||||
|         print('Phase=', phase) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package()   | ||||
|     return vector_target | ||||
|  | ||||
| # 通过使得波函数的一个非零分量为实数,得到固定规范的波函数 | ||||
| @guan.function_decorator | ||||
| def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -136,11 +133,10 @@ def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision= | ||||
|     vector = vector*cmath.exp(1j*phase) | ||||
|     if np.real(vector[index]) < 0: | ||||
|         vector = -vector | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return vector | ||||
|  | ||||
| # 通过使得波函数的一个非零分量为实数,得到固定规范的波函数(在一组波函数中选取最大的那个分量) | ||||
| @guan.function_decorator | ||||
| def find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array, precision=0.005): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -151,10 +147,10 @@ def find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array | ||||
|     index = np.argmax(np.abs(vector_sum)) | ||||
|     for i0 in range(Num_k): | ||||
|         vector_array[i0] = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector_array[i0], precision=precision, index=index) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return vector_array | ||||
|  | ||||
| # 旋转两个简并的波函数(说明:参数比较多,算法效率不高) | ||||
| @guan.function_decorator | ||||
| def rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, precision=0.01, criterion=0.01, show_theta=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -181,11 +177,10 @@ def rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, p | ||||
|                     break | ||||
|             if np.abs(vector1_test[index2])<criterion and np.abs(vector2_test[index1])<criterion: | ||||
|                 break | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return vector1, vector2 | ||||
|  | ||||
| # 旋转两个简并的波函数向量组(说明:参数比较多,算法效率不高) | ||||
| @guan.function_decorator | ||||
| def rotation_of_degenerate_vectors_array(vector1_array, vector2_array, precision=0.01, criterion=0.01, show_theta=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -200,10 +195,10 @@ def rotation_of_degenerate_vectors_array(vector1_array, vector2_array, precision | ||||
|     index2 = np.argmax(np.abs(vector2_sum)) | ||||
|     for i0 in range(Num_k): | ||||
|         vector1_array[i0], vector2_array[i0] = guan.rotation_of_degenerate_vectors(vector1=vector1_array[i0], vector2=vector2_array[i0], index1=index1, index2=index2, precision=precision, criterion=criterion, show_theta=show_theta) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return vector1_array, vector2_array | ||||
|  | ||||
| # 在一组数据中找到数值相近的数 | ||||
| @guan.function_decorator | ||||
| def find_close_values_in_one_array(array, precision=1e-2): | ||||
|     new_array = [] | ||||
|     i0 = 0 | ||||
| @@ -214,11 +209,10 @@ def find_close_values_in_one_array(array, precision=1e-2): | ||||
|                 new_array.append([a1, a2]) | ||||
|             j0 +=1 | ||||
|         i0 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return new_array | ||||
|  | ||||
| # 寻找能带的简并点 | ||||
| @guan.function_decorator | ||||
| def find_degenerate_points(k_array, eigenvalue_array, precision=1e-2): | ||||
|     import guan | ||||
|     degenerate_k_array = [] | ||||
| @@ -230,6 +224,4 @@ def find_degenerate_points(k_array, eigenvalue_array, precision=1e-2): | ||||
|             degenerate_k_array.append(k) | ||||
|             degenerate_eigenvalue_array.append(degenerate_points) | ||||
|         i0 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return degenerate_k_array, degenerate_eigenvalue_array | ||||
| @@ -1,129 +1,125 @@ | ||||
| # Module: basic_functions | ||||
| import guan | ||||
|  | ||||
| # 测试 | ||||
| @guan.function_decorator | ||||
| def test(): | ||||
|     print('\nSuccess in the installation of Guan package!\n') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 泡利矩阵 | ||||
| @guan.function_decorator | ||||
| def sigma_0(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.eye(2) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_x(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.array([[0, 1],[1, 0]]) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_y(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.array([[0, -1j],[1j, 0]]) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_z(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.array([[1, 0],[0, -1]]) | ||||
|  | ||||
| # 泡利矩阵的张量积 | ||||
| @guan.function_decorator | ||||
| def sigma_00(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_0(), guan.sigma_0()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_0x(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_0(), guan.sigma_x()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_0y(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_0(), guan.sigma_y()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_0z(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_0(), guan.sigma_z()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_x0(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_x(), guan.sigma_0()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_xx(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_x(), guan.sigma_x()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_xy(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_x(), guan.sigma_y()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_xz(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_x(), guan.sigma_z()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_y0(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_y(), guan.sigma_0()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_yx(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_y(), guan.sigma_x()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_yy(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_y(), guan.sigma_y()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_yz(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_y(), guan.sigma_z()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_z0(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_z(), guan.sigma_0()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_zx(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_z(), guan.sigma_x()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_zy(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_z(), guan.sigma_y()) | ||||
|  | ||||
| @guan.function_decorator | ||||
| def sigma_zz(): | ||||
|     import numpy as np | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return np.kron(guan.sigma_z(), guan.sigma_z()) | ||||
| @@ -1,6 +1,8 @@ | ||||
| # Module: data_processing (including figure-plotting and file-reading/writing) | ||||
| import guan | ||||
|  | ||||
| # 导入plt, fig, ax | ||||
| @guan.function_decorator | ||||
| def import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20): | ||||
|     import matplotlib.pyplot as plt | ||||
|     fig, ax = plt.subplots() | ||||
| @@ -9,11 +11,10 @@ def import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20 | ||||
|     ax.tick_params(labelsize=labelsize)  | ||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() | ||||
|     [label.set_fontname('Times New Roman') for label in labels] | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return plt, fig, ax | ||||
|  | ||||
| # 基于plt, fig, ax画图 | ||||
| @guan.function_decorator | ||||
| def plot_without_starting_fig(plt, fig, ax, x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, style='', y_min=None, y_max=None, linewidth=None, markersize=None, color=None):  | ||||
|     if color==None: | ||||
|         ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize) | ||||
| @@ -28,10 +29,9 @@ def plot_without_starting_fig(plt, fig, ax, x_array, y_array, xlabel='x', ylabel | ||||
|         if y_max==None: | ||||
|             y_max=max(y_array) | ||||
|         ax.set_ylim(y_min, y_max) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 画图 | ||||
| @guan.function_decorator | ||||
| def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||
|     import guan | ||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) | ||||
| @@ -50,9 +50,9 @@ def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labels | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 一组横坐标数据,两组纵坐标数据画图 | ||||
| @guan.function_decorator | ||||
| def plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||
|     import guan | ||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  | ||||
| @@ -76,9 +76,9 @@ def plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title='' | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 两组横坐标数据,两组纵坐标数据画图 | ||||
| @guan.function_decorator | ||||
| def plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||
|     import guan | ||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  | ||||
| @@ -102,9 +102,9 @@ def plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_ar | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 一组横坐标数据,三组纵坐标数据画图 | ||||
| @guan.function_decorator | ||||
| def plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||
|     import guan | ||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  | ||||
| @@ -131,9 +131,9 @@ def plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel=' | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 三组横坐标数据,三组纵坐标数据画图 | ||||
| @guan.function_decorator | ||||
| def plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||
|     import guan | ||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  | ||||
| @@ -160,9 +160,9 @@ def plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 画三维图 | ||||
| @guan.function_decorator | ||||
| def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', file_format='.jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100):  | ||||
|     import numpy as np | ||||
|     import matplotlib.pyplot as plt | ||||
| @@ -202,10 +202,9 @@ def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z' | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 画Contour图 | ||||
| @guan.function_decorator | ||||
| def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300): | ||||
|     import numpy as np | ||||
|     import matplotlib.pyplot as plt | ||||
| @@ -229,10 +228,9 @@ def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fon | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 画棋盘图/伪彩色图 | ||||
| @guan.function_decorator | ||||
| def plot_pcolor(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300):   | ||||
|     import numpy as np | ||||
|     import matplotlib.pyplot as plt | ||||
| @@ -256,10 +254,9 @@ def plot_pcolor(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', font | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 通过坐标画点和线 | ||||
| @guan.function_decorator | ||||
| def draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distance=1.1, line_style='-k', linewidth=1, dot_style='ro', markersize=3, show=1, save=0, filename='a', file_format='.eps', dpi=300): | ||||
|     import numpy as np | ||||
|     import matplotlib.pyplot as plt | ||||
| @@ -285,10 +282,9 @@ def draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distanc | ||||
|             plt.savefig(filename+file_format) | ||||
|         else: | ||||
|             plt.savefig(filename+file_format, dpi=dpi) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 合并两个图片 | ||||
| @guan.function_decorator | ||||
| def combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filename='a', file_format='.jpg', dpi=300): | ||||
|     import numpy as np | ||||
|     num = np.array(image_path_array).shape[0] | ||||
| @@ -312,10 +308,9 @@ def combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filenam | ||||
|         if save == 1: | ||||
|             plt.savefig(filename+file_format, dpi=dpi) | ||||
|         plt.close('all') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 合并三个图片 | ||||
| @guan.function_decorator | ||||
| def combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filename='a', file_format='.jpg', dpi=300): | ||||
|     import numpy as np | ||||
|     num = np.array(image_path_array).shape[0] | ||||
| @@ -343,10 +338,9 @@ def combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filen | ||||
|         if save == 1: | ||||
|             plt.savefig(filename+file_format, dpi=dpi) | ||||
|         plt.close('all') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 合并四个图片 | ||||
| @guan.function_decorator | ||||
| def combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filename='a', file_format='.jpg', dpi=300): | ||||
|     import numpy as np | ||||
|     num = np.array(image_path_array).shape[0] | ||||
| @@ -378,10 +372,9 @@ def combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filen | ||||
|         if save == 1: | ||||
|             plt.savefig(filename+file_format, dpi=dpi) | ||||
|         plt.close('all') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 对某个目录中的txt文件批量读取和画图 | ||||
| @guan.function_decorator | ||||
| def batch_reading_and_plotting(directory, xlabel='x', ylabel='y'): | ||||
|     import re | ||||
|     import os | ||||
| @@ -392,9 +385,9 @@ def batch_reading_and_plotting(directory, xlabel='x', ylabel='y'): | ||||
|                 filename = file[:-4] | ||||
|                 x_array, y_array = guan.read_one_dimensional_data(filename=filename) | ||||
|                 guan.plot(x_array, y_array, xlabel=xlabel, ylabel=ylabel, title=filename, show=0, save=1, filename=filename) | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 将图片制作GIF动画 | ||||
| @guan.function_decorator | ||||
| def make_gif(image_path_array, filename='a', duration=0.1): | ||||
|     import imageio | ||||
|     images = [] | ||||
| @@ -402,34 +395,30 @@ def make_gif(image_path_array, filename='a', duration=0.1): | ||||
|         im = imageio.imread(image_path) | ||||
|         images.append(im) | ||||
|     imageio.mimsave(filename+'.gif', images, 'GIF', duration=duration) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 选取Matplotlib颜色 | ||||
| @guan.function_decorator | ||||
| def color_matplotlib(): | ||||
|     color_array = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'] | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return color_array | ||||
|  | ||||
| # 将变量存到文件 | ||||
| @guan.function_decorator | ||||
| def dump_data(data, filename, file_format='.txt'): | ||||
|     import pickle | ||||
|     with open(filename+file_format, 'wb') as f: | ||||
|         pickle.dump(data, f) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 从文件中恢复数据到变量 | ||||
| @guan.function_decorator | ||||
| def load_data(filename, file_format='.txt'): | ||||
|     import pickle | ||||
|     with open(filename+file_format, 'rb') as f: | ||||
|         data = pickle.load(f) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return data | ||||
|  | ||||
| # 读取文件中的一维数据(一行一组x和y) | ||||
| @guan.function_decorator | ||||
| def read_one_dimensional_data(filename='a', file_format='.txt'):  | ||||
|     import numpy as np | ||||
|     f = open(filename+file_format, 'r') | ||||
| @@ -450,11 +439,10 @@ def read_one_dimensional_data(filename='a', file_format='.txt'): | ||||
|                 y_array = [y_row] | ||||
|             else: | ||||
|                 y_array = np.append(y_array, [y_row], axis=0) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return x_array, y_array | ||||
|  | ||||
| # 读取文件中的一维数据(一行一组x和y)(支持复数形式) | ||||
| @guan.function_decorator | ||||
| def read_one_dimensional_complex_data(filename='a', file_format='.txt'):  | ||||
|     import numpy as np | ||||
|     f = open(filename+file_format, 'r') | ||||
| @@ -475,11 +463,10 @@ def read_one_dimensional_complex_data(filename='a', file_format='.txt'): | ||||
|                 y_array = [y_row] | ||||
|             else: | ||||
|                 y_array = np.append(y_array, [y_row], axis=0) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return x_array, y_array | ||||
|  | ||||
| # 读取文件中的二维数据(第一行和第一列分别为横纵坐标) | ||||
| @guan.function_decorator | ||||
| def read_two_dimensional_data(filename='a', file_format='.txt'):  | ||||
|     import numpy as np | ||||
|     f = open(filename+file_format, 'r') | ||||
| @@ -506,11 +493,10 @@ def read_two_dimensional_data(filename='a', file_format='.txt'): | ||||
|                 matrix = [matrix_row] | ||||
|             else: | ||||
|                 matrix = np.append(matrix, [matrix_row], axis=0) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return x_array, y_array, matrix | ||||
|  | ||||
| # 读取文件中的二维数据(第一行和第一列分别为横纵坐标)(支持复数形式) | ||||
| @guan.function_decorator | ||||
| def read_two_dimensional_complex_data(filename='a', file_format='.txt'):  | ||||
|     import numpy as np | ||||
|     f = open(filename+file_format, 'r') | ||||
| @@ -537,34 +523,30 @@ def read_two_dimensional_complex_data(filename='a', file_format='.txt'): | ||||
|                 matrix = [matrix_row] | ||||
|             else: | ||||
|                 matrix = np.append(matrix, [matrix_row], axis=0) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return x_array, y_array, matrix | ||||
|  | ||||
| # 读取文件中的二维数据(不包括x和y) | ||||
| @guan.function_decorator | ||||
| def read_two_dimensional_data_without_xy_array(filename='a', file_format='.txt'): | ||||
|     import numpy as np | ||||
|     matrix = np.loadtxt(filename+file_format) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return matrix | ||||
|  | ||||
| # 打开文件用于新增内容 | ||||
| @guan.function_decorator | ||||
| def open_file(filename='a', file_format='.txt'): | ||||
|     f = open(filename+file_format, 'a', encoding='UTF-8') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return f | ||||
|  | ||||
| # 在文件中写入一维数据(一行一组x和y) | ||||
| @guan.function_decorator | ||||
| def write_one_dimensional_data(x_array, y_array, filename='a', file_format='.txt'): | ||||
|     import guan | ||||
|     with open(filename+file_format, 'w', encoding='UTF-8') as f: | ||||
|         guan.write_one_dimensional_data_without_opening_file(x_array, y_array, f) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 在文件中写入一维数据(一行一组x和y)(需要输入已打开的文件) | ||||
| @guan.function_decorator | ||||
| def write_one_dimensional_data_without_opening_file(x_array, y_array, f): | ||||
|     import numpy as np | ||||
|     x_array = np.array(x_array) | ||||
| @@ -579,17 +561,16 @@ def write_one_dimensional_data_without_opening_file(x_array, y_array, f): | ||||
|                 f.write(str(y_array[i0, j0])+'   ') | ||||
|             f.write('\n') | ||||
|         i0 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 在文件中写入二维数据(第一行和第一列分别为横纵坐标) | ||||
| @guan.function_decorator | ||||
| def write_two_dimensional_data(x_array, y_array, matrix, filename='a', file_format='.txt'): | ||||
|     import guan | ||||
|     with open(filename+file_format, 'w', encoding='UTF-8') as f: | ||||
|         guan.write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f) | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 在文件中写入二维数据(第一行和第一列分别为横纵坐标)(需要输入已打开的文件) | ||||
| @guan.function_decorator | ||||
| def write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f): | ||||
|     import numpy as np | ||||
|     x_array = np.array(x_array) | ||||
| @@ -608,26 +589,25 @@ def write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f) | ||||
|             j0 += 1 | ||||
|         f.write('\n') | ||||
|         i0 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 在文件中写入二维数据(不包括x和y) | ||||
| @guan.function_decorator | ||||
| def write_two_dimensional_data_without_xy_array(matrix, filename='a', file_format='.txt'): | ||||
|     import guan | ||||
|     with open(filename+file_format, 'w', encoding='UTF-8') as f: | ||||
|         guan.write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f) | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 在文件中写入二维数据(不包括x和y)(需要输入已打开的文件) | ||||
| @guan.function_decorator | ||||
| def write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f): | ||||
|     for row in matrix: | ||||
|         for element in row: | ||||
|             f.write(str(element)+'   ') | ||||
|         f.write('\n') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 以显示编号的样式,打印数组 | ||||
| @guan.function_decorator | ||||
| def print_array_with_index(array, show_index=1, index_type=0): | ||||
|     if show_index==0: | ||||
|         for i0 in array: | ||||
| @@ -643,10 +623,9 @@ def print_array_with_index(array, show_index=1, index_type=0): | ||||
|             for i0 in array: | ||||
|                 index += 1 | ||||
|                 print(index, i0) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 获取目录中的所有文件名 | ||||
| @guan.function_decorator | ||||
| def get_all_filenames_in_directory(directory='./', file_format=None): | ||||
|     import os | ||||
|     file_list = [] | ||||
| @@ -660,6 +639,7 @@ def get_all_filenames_in_directory(directory='./', file_format=None): | ||||
|     return file_list | ||||
|  | ||||
| # 读取文件夹中某种文本文件类型的文件路径和内容 | ||||
| @guan.function_decorator | ||||
| def read_text_files_in_directory(directory='./', file_format='.md'): | ||||
|     import os | ||||
|     file_list = [] | ||||
| @@ -671,11 +651,10 @@ def read_text_files_in_directory(directory='./', file_format='.md'): | ||||
|     for file in file_list: | ||||
|         with open(file, 'r') as f: | ||||
|             content_array.append(f.read()) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return file_list, content_array | ||||
|  | ||||
| # 在多个文本文件中查找关键词 | ||||
| @guan.function_decorator | ||||
| def find_words_in_multiple_files(words, directory='./', file_format='.md'): | ||||
|     import guan | ||||
|     file_list, content_array = guan.read_text_files_in_directory(directory=directory, file_format=file_format) | ||||
| @@ -684,10 +663,10 @@ def find_words_in_multiple_files(words, directory='./', file_format='.md'): | ||||
|     for i0 in range(num_files): | ||||
|         if words in content_array[i0]: | ||||
|             file_list_with_words.append(file_list[i0]) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return file_list_with_words | ||||
|  | ||||
| # 并行计算前的预处理,把参数分成多份 | ||||
| @guan.function_decorator | ||||
| def preprocess_for_parallel_calculations(parameter_array_all, cpus=1, task_index=0): | ||||
|     import numpy as np | ||||
|     num_all = np.array(parameter_array_all).shape[0] | ||||
| @@ -700,36 +679,32 @@ def preprocess_for_parallel_calculations(parameter_array_all, cpus=1, task_index | ||||
|             parameter_array = parameter_array_all[task_index*num_parameter:(task_index+1)*num_parameter] | ||||
|         else: | ||||
|             parameter_array = parameter_array_all[task_index*num_parameter:num_all] | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return parameter_array | ||||
|  | ||||
| # 随机获得一个整数,左闭右闭 | ||||
| @guan.function_decorator | ||||
| def get_random_number(start=0, end=1): | ||||
|     import random | ||||
|     rand_number = random.randint(start, end)   # 左闭右闭 [start, end] | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return rand_number | ||||
|  | ||||
| # 选取一个种子生成固定的随机整数 | ||||
| @guan.function_decorator | ||||
| def generate_random_int_number_for_a_specific_seed(seed=0, x_min=0, x_max=10): | ||||
|     import numpy as np | ||||
|     np.random.seed(seed) | ||||
|     rand_num = np.random.randint(x_min, x_max) # 左闭右开[x_min, x_max) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return rand_num | ||||
|  | ||||
| # 使用jieba软件包进行分词 | ||||
| @guan.function_decorator | ||||
| def divide_text_into_words(text): | ||||
|     import jieba | ||||
|     words = jieba.lcut(text) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return words | ||||
|  | ||||
| # 判断某个字符是中文还是英文或其他 | ||||
| @guan.function_decorator | ||||
| def check_Chinese_or_English(a):   | ||||
|     if '\u4e00' <= a <= '\u9fff' :   | ||||
|         word_type = 'Chinese'   | ||||
| @@ -740,6 +715,7 @@ def check_Chinese_or_English(a): | ||||
|     return word_type | ||||
|  | ||||
| # 统计中英文文本的字数,默认不包括空格 | ||||
| @guan.function_decorator | ||||
| def count_words(text, include_space=0, show_words=0): | ||||
|     import jieba | ||||
|     import guan | ||||
| @@ -764,46 +740,41 @@ def count_words(text, include_space=0, show_words=0): | ||||
|             new_words_2.append(word) | ||||
|     if show_words == 1: | ||||
|         print(new_words_2) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return num_words | ||||
|  | ||||
| # 将RGB转成HEX | ||||
| @guan.function_decorator | ||||
| def rgb_to_hex(rgb, pound=1): | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     if pound==0: | ||||
|         return '%02x%02x%02x' % rgb | ||||
|     else: | ||||
|         return '#%02x%02x%02x' % rgb | ||||
|  | ||||
| # 将HEX转成RGB | ||||
| @guan.function_decorator | ||||
| def hex_to_rgb(hex): | ||||
|     hex = hex.lstrip('#') | ||||
|     length = len(hex) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return tuple(int(hex[i:i+length//3], 16) for i in range(0, length, length//3)) | ||||
|  | ||||
| # 使用MD5进行散列加密 | ||||
| @guan.function_decorator | ||||
| def encryption_MD5(password, salt=''): | ||||
|     import hashlib | ||||
|     password = salt+password | ||||
|     hashed_password = hashlib.md5(password.encode()).hexdigest() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hashed_password | ||||
|  | ||||
| # 使用SHA-256进行散列加密 | ||||
| @guan.function_decorator | ||||
| def encryption_SHA_256(password, salt=''): | ||||
|     import hashlib | ||||
|     password = salt+password | ||||
|     hashed_password = hashlib.sha256(password.encode()).hexdigest() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return hashed_password | ||||
|  | ||||
| # 自动先后运行程序 | ||||
| @guan.function_decorator | ||||
| def run_programs_sequentially(program_files=['./a.py', './b.py'], execute='python ', show_time=0): | ||||
|     import os | ||||
|     import time | ||||
| @@ -821,25 +792,22 @@ def run_programs_sequentially(program_files=['./a.py', './b.py'], execute='pytho | ||||
|     if show_time == 1: | ||||
|         end = time.time() | ||||
|         print('Total running time = '+str((end-start)/60)+' min') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 如果不存在文件夹,则新建文件夹 | ||||
| @guan.function_decorator | ||||
| def make_directory(directory='./test'): | ||||
|     import os | ||||
|     if not os.path.exists(directory): | ||||
|         os.makedirs(directory) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 复制一份文件 | ||||
| @guan.function_decorator | ||||
| def copy_file(file1='./a.txt', file2='./b.txt'): | ||||
|     import shutil | ||||
|     shutil.copy(file1, file2) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 拼接两个PDF文件 | ||||
| @guan.function_decorator | ||||
| def combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_file='combined_file.pdf'): | ||||
|     import PyPDF2 | ||||
|     output_pdf = PyPDF2.PdfWriter() | ||||
| @@ -852,6 +820,4 @@ def combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_fil | ||||
|         for page in range(len(pdf2.pages)): | ||||
|             output_pdf.add_page(pdf2.pages[page]) | ||||
|     with open(output_file, 'wb') as combined_file: | ||||
|         output_pdf.write(combined_file) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|         output_pdf.write(combined_file) | ||||
| @@ -1,16 +1,18 @@ | ||||
| # Module: density_of_states | ||||
| import guan | ||||
|  | ||||
| # 计算体系的总态密度 | ||||
| @guan.function_decorator | ||||
| def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
|     import guan | ||||
|     green = guan.green_function(fermi_energy, hamiltonian, broadening) | ||||
|     total_dos = -np.trace(np.imag(green))/math.pi | ||||
|     guan.statistics_of_guan_package() | ||||
|     return total_dos | ||||
|  | ||||
| # 对于不同费米能,计算体系的总态密度 | ||||
| @guan.function_decorator | ||||
| def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -22,10 +24,10 @@ def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamilton | ||||
|             print(fermi_energy) | ||||
|         total_dos_array[i0] = guan.total_density_of_states(fermi_energy, hamiltonian, broadening) | ||||
|         i0 += 1 | ||||
|     guan.statistics_of_guan_package() | ||||
|     return total_dos_array | ||||
|  | ||||
| # 计算方格子的局域态密度(其中,哈密顿量的维度为:dim_hamiltonian = N1*N2*internal_degree) | ||||
| @guan.function_decorator | ||||
| def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -36,10 +38,10 @@ def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2 | ||||
|         for i2 in range(N2): | ||||
|             for i in range(internal_degree):  | ||||
|                 local_dos[i2, i1] = local_dos[i2, i1]-np.imag(green[i1*N2*internal_degree+i2*internal_degree+i, i1*N2*internal_degree+i2*internal_degree+i])/math.pi | ||||
|     guan.statistics_of_guan_package() | ||||
|     return local_dos | ||||
|  | ||||
| # 计算立方格子的局域态密度(其中,哈密顿量的维度为:dim_hamiltonian = N1*N2*N3*internal_degree) | ||||
| @guan.function_decorator | ||||
| def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -51,10 +53,10 @@ def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, | ||||
|             for i3 in range(N3): | ||||
|                 for i in range(internal_degree):  | ||||
|                     local_dos[i3, i2, i1] = local_dos[i3, i2, i1]-np.imag(green[i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i, i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i])/math.pi | ||||
|     guan.statistics_of_guan_package() | ||||
|     return local_dos | ||||
|  | ||||
| # 利用Dyson方程,计算方格子的局域态密度(其中,h00的维度为:dim_h00 = N2*internal_degree) | ||||
| @guan.function_decorator | ||||
| def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -85,10 +87,10 @@ def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy | ||||
|         for i2 in range(N2): | ||||
|             for i in range(internal_degree): | ||||
|                 local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/math.pi | ||||
|     guan.statistics_of_guan_package() | ||||
|     return local_dos | ||||
|  | ||||
| # 利用Dyson方程,计算立方格子的局域态密度(其中,h00的维度为:dim_h00 = N2*N3*internal_degree) | ||||
| @guan.function_decorator | ||||
| def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -119,11 +121,11 @@ def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3): | ||||
|                 for i in range(internal_degree): | ||||
|                     local_dos[i3, i2, i1] = local_dos[i3, i2, i1] -np.imag(green_ii_n_minus[i2*N3*internal_degree+i3*internal_degree+i, i2*N3*internal_degree+i3*internal_degree+i])/math.pi        | ||||
|     guan.statistics_of_guan_package() | ||||
|                     local_dos[i3, i2, i1] = local_dos[i3, i2, i1] -np.imag(green_ii_n_minus[i2*N3*internal_degree+i3*internal_degree+i, i2*N3*internal_degree+i3*internal_degree+i])/math.pi | ||||
|     return local_dos | ||||
|  | ||||
| # 利用Dyson方程,计算方格子条带(考虑了电极自能)的局域态密度(其中,h00的维度为:dim_h00 = N2*internal_degree) | ||||
| @guan.function_decorator | ||||
| def local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -160,5 +162,4 @@ def local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equa | ||||
|         for i2 in range(N2): | ||||
|             for i in range(internal_degree): | ||||
|                 local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/math.pi | ||||
|     guan.statistics_of_guan_package() | ||||
|     return local_dos | ||||
|   | ||||
| @@ -1,6 +1,8 @@ | ||||
| # Module: others | ||||
| import guan | ||||
|  | ||||
| # 获取运行的日期和时间并写入文件 | ||||
| @guan.function_decorator | ||||
| def statistics_with_day_and_time(content='', filename='a', file_format='.txt'): | ||||
|     import datetime | ||||
|     datetime_today = str(datetime.date.today()) | ||||
| @@ -10,10 +12,9 @@ def statistics_with_day_and_time(content='', filename='a', file_format='.txt'): | ||||
|            f2.write(datetime_today+' '+datetime_time+'\n') | ||||
|        else: | ||||
|            f2.write(datetime_today+' '+datetime_time+' '+content+'\n') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 统计Python文件中import的数量并排序 | ||||
| @guan.function_decorator | ||||
| def count_number_of_import_statements(filename, file_format='.py', num=1000): | ||||
|     with open(filename+file_format, 'r') as file: | ||||
|         lines = file.readlines() | ||||
| @@ -24,27 +25,24 @@ def count_number_of_import_statements(filename, file_format='.py', num=1000): | ||||
|             import_array.append(line) | ||||
|     from collections import Counter | ||||
|     import_statement_counter = Counter(import_array).most_common(num) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return import_statement_counter | ||||
|  | ||||
| # 根据一定的字符长度来分割文本 | ||||
| @guan.function_decorator | ||||
| def split_text(text, wrap_width=3000):   | ||||
|     import textwrap   | ||||
|     split_text_list = textwrap.wrap(text, wrap_width) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return split_text_list | ||||
|  | ||||
| # 获取CPU使用率 | ||||
| @guan.function_decorator | ||||
| def get_cpu_usage(interval=1): | ||||
|     import psutil | ||||
|     cpu_usage = psutil.cpu_percent(interval=interval) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return cpu_usage | ||||
|  | ||||
| # 获取内存信息 | ||||
| @guan.function_decorator | ||||
| def get_memory_info(): | ||||
|     import psutil | ||||
|     memory_info = psutil.virtual_memory() | ||||
| @@ -55,6 +53,7 @@ def get_memory_info(): | ||||
|     return total_memory, used_memory, available_memory, used_memory_percent | ||||
|  | ||||
| # 获取本月的所有日期 | ||||
| @guan.function_decorator | ||||
| def get_days_of_the_current_month(str_or_datetime='str'): | ||||
|     import datetime | ||||
|     today = datetime.date.today() | ||||
| @@ -71,11 +70,10 @@ def get_days_of_the_current_month(str_or_datetime='str'): | ||||
|         elif str_or_datetime=='datetime': | ||||
|             day_array.append(current_date) | ||||
|         current_date += datetime.timedelta(days=1) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return day_array | ||||
|  | ||||
| # 获取上个月份 | ||||
| @guan.function_decorator | ||||
| def get_last_month(): | ||||
|     import datetime | ||||
|     today = datetime.date.today() | ||||
| @@ -85,11 +83,10 @@ def get_last_month(): | ||||
|         year_of_last_month = today.year - 1 | ||||
|     else: | ||||
|         year_of_last_month = today.year | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return year_of_last_month, last_month | ||||
|  | ||||
| # 获取上上个月份 | ||||
| @guan.function_decorator | ||||
| def get_the_month_before_last(): | ||||
|     import datetime | ||||
|     today = datetime.date.today() | ||||
| @@ -104,11 +101,10 @@ def get_the_month_before_last(): | ||||
|         year_of_the_month_before_last = today.year - 1 | ||||
|     else: | ||||
|         year_of_the_month_before_last = today.year | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return year_of_the_month_before_last, the_month_before_last | ||||
|  | ||||
| # 获取上个月的所有日期 | ||||
| @guan.function_decorator | ||||
| def get_days_of_the_last_month(str_or_datetime='str'): | ||||
|     import datetime | ||||
|     import guan | ||||
| @@ -127,10 +123,10 @@ def get_days_of_the_last_month(str_or_datetime='str'): | ||||
|         elif str_or_datetime=='datetime': | ||||
|             day_array.append(current_date) | ||||
|         current_date += datetime.timedelta(days=1) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return day_array | ||||
|  | ||||
| # 获取上上个月的所有日期 | ||||
| @guan.function_decorator | ||||
| def get_days_of_the_month_before_last(str_or_datetime='str'): | ||||
|     import datetime | ||||
|     import guan | ||||
| @@ -149,39 +145,38 @@ def get_days_of_the_month_before_last(str_or_datetime='str'): | ||||
|         elif str_or_datetime=='datetime': | ||||
|             day_array.append(current_date) | ||||
|         current_date += datetime.timedelta(days=1) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return day_array | ||||
|  | ||||
| # 获取所有股票 | ||||
| @guan.function_decorator | ||||
| def all_stocks(): | ||||
|     import numpy as np | ||||
|     import akshare as ak | ||||
|     stocks = ak.stock_zh_a_spot_em() | ||||
|     title = np.array(stocks.columns) | ||||
|     stock_data = stocks.values | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return title, stock_data | ||||
|  | ||||
| # 获取所有股票的代码 | ||||
| @guan.function_decorator | ||||
| def all_stock_symbols(): | ||||
|     import guan | ||||
|     title, stock_data = guan.all_stocks() | ||||
|     stock_symbols = stock_data[:, 1] | ||||
|     guan.statistics_of_guan_package() | ||||
|     return stock_symbols | ||||
|  | ||||
| # 从股票代码获取股票名称 | ||||
| @guan.function_decorator | ||||
| def find_stock_name_from_symbol(symbol='000002'): | ||||
|     import guan | ||||
|     title, stock_data = guan.all_stocks() | ||||
|     for stock in stock_data: | ||||
|         if symbol in stock: | ||||
|            stock_name = stock[2] | ||||
|     guan.statistics_of_guan_package() | ||||
|     return stock_name | ||||
|  | ||||
| # 获取单个股票的历史数据 | ||||
| @guan.function_decorator | ||||
| def history_data_of_one_stock(symbol='000002', period='daily', start_date="19000101", end_date='21000101'): | ||||
|     # period = 'daily' | ||||
|     # period = 'weekly' | ||||
| @@ -191,20 +186,18 @@ def history_data_of_one_stock(symbol='000002', period='daily', start_date="19000 | ||||
|     stock = ak.stock_zh_a_hist(symbol=symbol, period=period, start_date=start_date, end_date=end_date) | ||||
|     title = np.array(stock.columns) | ||||
|     stock_data = stock.values[::-1] | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return title, stock_data | ||||
|  | ||||
| # 获取软件包中的所有模块名 | ||||
| @guan.function_decorator | ||||
| def get_all_modules_in_one_package(package_name='guan'): | ||||
|     import pkgutil | ||||
|     package = __import__(package_name) | ||||
|     module_names = [name for _, name, _ in pkgutil.iter_modules(package.__path__)] | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return module_names | ||||
|  | ||||
| # 获取软件包中一个模块的所有函数名 | ||||
| @guan.function_decorator | ||||
| def get_all_functions_in_one_module(module_name, package_name='guan'): | ||||
|     import inspect | ||||
|     function_names = [] | ||||
| @@ -212,11 +205,10 @@ def get_all_functions_in_one_module(module_name, package_name='guan'): | ||||
|     for name, obj in inspect.getmembers(module): | ||||
|         if inspect.isfunction(obj): | ||||
|             function_names.append(name) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return function_names | ||||
|  | ||||
| # 获取软件包中的所有函数名 | ||||
| @guan.function_decorator | ||||
| def get_all_functions_in_one_package(package_name='guan', print_show=1): | ||||
|     import guan | ||||
|     module_names = guan.get_all_modules_in_one_package(package_name=package_name) | ||||
| @@ -231,10 +223,10 @@ def get_all_functions_in_one_package(package_name='guan', print_show=1): | ||||
|                 print('function:', name) | ||||
|         if print_show == 1: | ||||
|             print() | ||||
|     guan.statistics_of_guan_package() | ||||
|     return all_function_names | ||||
|  | ||||
| # 获取包含某个字符的进程PID值 | ||||
| @guan.function_decorator | ||||
| def get_PID(name): | ||||
|     import subprocess | ||||
|     command = "ps -ef | grep "+name | ||||
| @@ -244,11 +236,17 @@ def get_PID(name): | ||||
|     import re | ||||
|     ps_ef = re.split(r'\s+', ps_ef) | ||||
|     id_running = ps_ef[1] | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return id_running | ||||
|  | ||||
| # 获取函数的源码 | ||||
| @guan.function_decorator | ||||
| def get_function_source(function_name): | ||||
|     import inspect | ||||
|     function_source = inspect.getsource(function_name) | ||||
|     return function_source | ||||
|  | ||||
| # 在服务器上运行函数(说明:接口服务可能为关闭状态,如果无法使用请联系管理员。目前仅支持长度较短的函数,此外由于服务器只获取一个函数内的代码,因此需要函数是独立的可运行的代码。需要注意的是:返回的值是字符串类型,需要自行转换成数字类型。) | ||||
| @guan.function_decorator | ||||
| def run(function_name, args=(), return_show=0, get_print=1): | ||||
|     import socket | ||||
|     import json | ||||
| @@ -283,10 +281,10 @@ def run(function_name, args=(), return_show=0, get_print=1): | ||||
|             except: | ||||
|                 break | ||||
|         client_socket.close() | ||||
|     guan.statistics_of_guan_package() | ||||
|     return return_data | ||||
|  | ||||
| # 在服务器上运行大语言模型,通过Python函数调用(说明:接口服务可能为关闭状态,如果无法使用请联系管理员) | ||||
| @guan.function_decorator | ||||
| def chat(prompt='你好', stream_show=1, top_p=0.8, temperature=0.8): | ||||
|     import socket | ||||
|     import json | ||||
| @@ -321,11 +319,10 @@ def chat(prompt='你好', stream_show=1, top_p=0.8, temperature=0.8): | ||||
|             except: | ||||
|                 break | ||||
|         client_socket.close() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return response | ||||
|  | ||||
| # 查找文件名相同的文件 | ||||
| @guan.function_decorator | ||||
| def find_repeated_file_with_same_filename(directory='./', ignored_directory_with_words=[], ignored_file_with_words=[], num=1000): | ||||
|     import os | ||||
|     from collections import Counter | ||||
| @@ -347,11 +344,10 @@ def find_repeated_file_with_same_filename(directory='./', ignored_directory_with | ||||
|     for item in count_file: | ||||
|         if item[1]>1: | ||||
|             repeated_file.append(item) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return repeated_file | ||||
|  | ||||
| # 统计各个子文件夹中的文件数量 | ||||
| @guan.function_decorator | ||||
| def count_file_in_sub_directory(directory='./', sort=0, reverse=1, print_show=1, smaller_than_num=None): | ||||
|     import os | ||||
|     import numpy as np | ||||
| @@ -402,12 +398,10 @@ def count_file_in_sub_directory(directory='./', sort=0, reverse=1, print_show=1, | ||||
|                         print(dirs_list[i0]) | ||||
|                         print(count_file_array[i0]) | ||||
|                         print() | ||||
|      | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return sub_directory, num_in_sub_directory | ||||
|  | ||||
| # 改变当前的目录位置 | ||||
| @guan.function_decorator | ||||
| def change_directory_by_replacement(current_key_word='code', new_key_word='data'): | ||||
|     import os | ||||
|     code_path = os.getcwd() | ||||
| @@ -416,10 +410,9 @@ def change_directory_by_replacement(current_key_word='code', new_key_word='data' | ||||
|     if os.path.exists(data_path) == False: | ||||
|         os.makedirs(data_path) | ||||
|     os.chdir(data_path) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 在多个子文件夹中产生必要的文件,例如 readme.md | ||||
| @guan.function_decorator | ||||
| def creat_necessary_file(directory, filename='readme', file_format='.md', content='', overwrite=None, ignored_directory_with_words=[]): | ||||
|     import os | ||||
|     directory_with_file = [] | ||||
| @@ -447,20 +440,18 @@ def creat_necessary_file(directory, filename='readme', file_format='.md', conten | ||||
|         f = open(filename+file_format, 'w', encoding="utf-8") | ||||
|         f.write(content) | ||||
|         f.close() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 删除特定文件名的文件(慎用) | ||||
| @guan.function_decorator | ||||
| def delete_file_with_specific_name(directory, filename='readme', file_format='.md'): | ||||
|     import os | ||||
|     for root, dirs, files in os.walk(directory): | ||||
|         for i0 in range(len(files)): | ||||
|             if files[i0] == filename+file_format: | ||||
|                 os.remove(root+'/'+files[i0]) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 将所有文件移到根目录(慎用) | ||||
| @guan.function_decorator | ||||
| def move_all_files_to_root_directory(directory): | ||||
|     import os | ||||
|     import shutil | ||||
| @@ -473,10 +464,9 @@ def move_all_files_to_root_directory(directory): | ||||
|                 os.rmdir(root)  | ||||
|             except: | ||||
|                 pass | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 将文件目录结构写入Markdown文件 | ||||
| @guan.function_decorator | ||||
| def write_file_list_in_markdown(directory='./', filename='a', reverse_positive_or_negative=1, starting_from_h1=None, banned_file_format=[], hide_file_format=None, divided_line=None, show_second_number=None, show_third_number=None):  | ||||
|     import os | ||||
|     f = open(filename+'.md', 'w', encoding="utf-8") | ||||
| @@ -578,10 +568,9 @@ def write_file_list_in_markdown(directory='./', filename='a', reverse_positive_o | ||||
|                                                         f.write('#') | ||||
|                                                     f.write('###### '+str(filename6)+'\n\n') | ||||
|     f.close() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 从网页的标签中获取内容 | ||||
| @guan.function_decorator | ||||
| def get_html_from_tags(link, tags=['title', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p', 'li', 'a']): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import urllib.request | ||||
| @@ -597,19 +586,17 @@ def get_html_from_tags(link, tags=['title', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', | ||||
|             content = text | ||||
|         else: | ||||
|             content = content + '\n\n' + text | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return content | ||||
|  | ||||
| # 生成二维码 | ||||
| @guan.function_decorator | ||||
| def creat_qrcode(data="https://www.guanjihuan.com", filename='a', file_format='.png'): | ||||
|     import qrcode | ||||
|     img = qrcode.make(data) | ||||
|     img.save(filename+file_format) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 将PDF文件转成文本 | ||||
| @guan.function_decorator | ||||
| def pdf_to_text(pdf_path): | ||||
|     from pdfminer.pdfparser import PDFParser, PDFDocument | ||||
|     from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter | ||||
| @@ -638,21 +625,19 @@ def pdf_to_text(pdf_path): | ||||
|             for x in layout: | ||||
|                 if isinstance(x, LTTextBox): | ||||
|                     content  = content + x.get_text().strip() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return content | ||||
|  | ||||
| # 获取PDF文件页数 | ||||
| @guan.function_decorator | ||||
| def get_pdf_page_number(pdf_path): | ||||
|     import PyPDF2 | ||||
|     pdf_file = open(pdf_path, 'rb') | ||||
|     pdf_reader = PyPDF2.PdfReader(pdf_file) | ||||
|     num_pages = len(pdf_reader.pages) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return num_pages | ||||
|  | ||||
| # 获取PDF文件指定页面的内容 | ||||
| @guan.function_decorator | ||||
| def pdf_to_txt_for_a_specific_page(pdf_path, page_num=1): | ||||
|     import PyPDF2 | ||||
|     pdf_file = open(pdf_path, 'rb') | ||||
| @@ -663,11 +648,10 @@ def pdf_to_txt_for_a_specific_page(pdf_path, page_num=1): | ||||
|             page = pdf_reader.pages[page_num0] | ||||
|             page_text = page.extract_text() | ||||
|     pdf_file.close() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return page_text | ||||
|  | ||||
| # 获取PDF文献中的链接。例如: link_starting_form='https://doi.org' | ||||
| @guan.function_decorator | ||||
| def get_links_from_pdf(pdf_path, link_starting_form=''): | ||||
|     import PyPDF2 | ||||
|     import re | ||||
| @@ -688,12 +672,11 @@ def get_links_from_pdf(pdf_path, link_starting_form=''): | ||||
|                         if u['/A']['/URI'] != old: | ||||
|                             links.append(u['/A']['/URI'])  | ||||
|                             i0 += 1 | ||||
|                             old = u['/A']['/URI']         | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|                             old = u['/A']['/URI'] | ||||
|     return links | ||||
|  | ||||
| # 通过Sci-Hub网站下载文献 | ||||
| @guan.function_decorator | ||||
| def download_with_scihub(address=None, num=1): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import re | ||||
| @@ -729,10 +712,9 @@ def download_with_scihub(address=None, num=1): | ||||
|         print('Completed!\n') | ||||
|     if num != 1: | ||||
|         print('All completed!\n') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 将字符串转成音频 | ||||
| @guan.function_decorator | ||||
| def str_to_audio(str='hello world', filename='str', rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0): | ||||
|     import pyttsx3 | ||||
|     import guan | ||||
| @@ -754,9 +736,9 @@ def str_to_audio(str='hello world', filename='str', rate=125, voice=1, read=1, s | ||||
|     if read==1: | ||||
|         engine.say(str) | ||||
|         engine.runAndWait() | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 将txt文件转成音频 | ||||
| @guan.function_decorator | ||||
| def txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0): | ||||
|     import pyttsx3 | ||||
|     import guan | ||||
| @@ -782,9 +764,9 @@ def txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, compress=0, bitrat | ||||
|     if read==1: | ||||
|         engine.say(text) | ||||
|         engine.runAndWait() | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 将PDF文件转成音频 | ||||
| @guan.function_decorator | ||||
| def pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0): | ||||
|     import pyttsx3 | ||||
|     import guan | ||||
| @@ -810,18 +792,17 @@ def pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, compress=0, bitrat | ||||
|     if read==1: | ||||
|         engine.say(text) | ||||
|         engine.runAndWait() | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 将wav音频文件压缩成MP3音频文件 | ||||
| @guan.function_decorator | ||||
| def compress_wav_to_mp3(wav_path, output_filename='a.mp3', bitrate='16k'): | ||||
|     # Note: Beside the installation of pydub, you may also need download FFmpeg on http://www.ffmpeg.org/download.html and add the bin path to the environment variable. | ||||
|     from pydub import AudioSegment | ||||
|     sound = AudioSegment.from_mp3(wav_path) | ||||
|     sound.export(output_filename,format="mp3",bitrate=bitrate) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 播放学术单词 | ||||
| @guan.function_decorator | ||||
| def play_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_translation=1, show_link=1, translation_time=2, rest_time=1): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import re | ||||
| @@ -880,10 +861,9 @@ def play_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_translati | ||||
|                 time.sleep(rest_time) | ||||
|                 pygame.mixer.music.stop() | ||||
|                 print() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 播放挑选过后的学术单词 | ||||
| @guan.function_decorator | ||||
| def play_selected_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_link=1, rest_time=3): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import re | ||||
| @@ -938,10 +918,9 @@ def play_selected_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_ | ||||
|                 time.sleep(rest_time) | ||||
|                 pygame.mixer.music.stop() | ||||
|                 print() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 播放元素周期表上的单词 | ||||
| @guan.function_decorator | ||||
| def play_element_words(random_on=0, show_translation=1, show_link=1, translation_time=2, rest_time=1): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import re | ||||
| @@ -995,42 +974,41 @@ def play_element_words(random_on=0, show_translation=1, show_link=1, translation | ||||
|                 time.sleep(rest_time) | ||||
|                 pygame.mixer.music.stop() | ||||
|                 print() | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # Guan软件包的使用统计(不涉及到用户的个人数据) | ||||
| global_variable_of_first_guan_package_calling = [] | ||||
| def statistics_of_guan_package(): | ||||
| def statistics_of_guan_package(function_name=None): | ||||
|     import guan | ||||
|     function_name = guan.get_calling_function_name(layer=2) | ||||
|     if function_name == None: | ||||
|         function_name = guan.get_calling_function_name(layer=2) | ||||
|     else: | ||||
|         pass | ||||
|     global global_variable_of_first_guan_package_calling | ||||
|     if function_name not in global_variable_of_first_guan_package_calling: | ||||
|         global_variable_of_first_guan_package_calling.append(function_name) | ||||
|         function_calling_name = guan.get_calling_function_name(layer=3) | ||||
|         if function_calling_name == '<module>': | ||||
|             try: | ||||
|                 import socket | ||||
|                 datetime_date = guan.get_date() | ||||
|                 datetime_time = guan.get_time() | ||||
|                 current_version = guan.get_current_version('guan') | ||||
|                 client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) | ||||
|                 client_socket.settimeout(0.5) | ||||
|                 client_socket.connect(('socket.guanjihuan.com', 12345)) | ||||
|                 mac_address = guan.get_mac_address() | ||||
|                 message = { | ||||
|                     'server': 'py.guanjihuan.com', | ||||
|                     'date': datetime_date, | ||||
|                     'time': datetime_time, | ||||
|                     'version': current_version, | ||||
|                     'MAC_address': mac_address, | ||||
|                     'function_name': function_name | ||||
|                 } | ||||
|                 import json | ||||
|                 send_message = json.dumps(message) | ||||
|                 client_socket.send(send_message.encode()) | ||||
|                 client_socket.close() | ||||
|             except: | ||||
|                 pass | ||||
|         try: | ||||
|             import socket | ||||
|             datetime_date = guan.get_date() | ||||
|             datetime_time = guan.get_time() | ||||
|             current_version = guan.get_current_version('guan') | ||||
|             client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) | ||||
|             client_socket.settimeout(0.5) | ||||
|             client_socket.connect(('socket.guanjihuan.com', 12345)) | ||||
|             mac_address = guan.get_mac_address() | ||||
|             message = { | ||||
|                 'server': 'py.guanjihuan.com', | ||||
|                 'date': datetime_date, | ||||
|                 'time': datetime_time, | ||||
|                 'version': current_version, | ||||
|                 'MAC_address': mac_address, | ||||
|                 'function_name': function_name | ||||
|             } | ||||
|             import json | ||||
|             send_message = json.dumps(message) | ||||
|             client_socket.send(send_message.encode()) | ||||
|             client_socket.close() | ||||
|         except: | ||||
|             pass | ||||
|  | ||||
| # 获取当前日期字符串 | ||||
| def get_date(bar=True): | ||||
| @@ -1055,12 +1033,6 @@ def get_mac_address(): | ||||
|     mac_address = '-'.join([mac_address[i:i+2] for i in range(0, 11, 2)]) | ||||
|     return mac_address | ||||
|  | ||||
| # 获取函数的源码 | ||||
| def get_function_source(function_name): | ||||
|     import inspect | ||||
|     function_source = inspect.getsource(function_name) | ||||
|     return function_source | ||||
|  | ||||
| # 获取调用本函数的函数名 | ||||
| def get_calling_function_name(layer=1): | ||||
|     import inspect | ||||
|   | ||||
| @@ -1,6 +1,8 @@ | ||||
| # Module: quantum_transport | ||||
| import guan | ||||
|  | ||||
| # 计算电导 | ||||
| @guan.function_decorator | ||||
| def calculate_conductance(fermi_energy, h00, h01, length=100): | ||||
|     import numpy as np | ||||
|     import copy | ||||
| @@ -17,10 +19,10 @@ def calculate_conductance(fermi_energy, h00, h01, length=100): | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance | ||||
|  | ||||
| # 计算不同费米能下的电导 | ||||
| @guan.function_decorator | ||||
| def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -32,10 +34,10 @@ def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, | ||||
|         if print_show == 1: | ||||
|             print(fermi_energy, conductance_array[i0]) | ||||
|         i0 += 1 | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance_array | ||||
|  | ||||
| # 计算在势垒散射下的电导 | ||||
| @guan.function_decorator | ||||
| def calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barrier_length=20, barrier_potential=1): | ||||
|     import numpy as np | ||||
|     import copy | ||||
| @@ -56,10 +58,10 @@ def calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barri | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance | ||||
|  | ||||
| # 计算在无序散射下的电导 | ||||
| @guan.function_decorator | ||||
| def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100, calculation_times=1): | ||||
|     import numpy as np | ||||
|     import copy | ||||
| @@ -85,10 +87,10 @@ def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensi | ||||
|         conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|         conductance_averaged += conductance | ||||
|     conductance_averaged = conductance_averaged/calculation_times | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance_averaged | ||||
|  | ||||
| # 计算在无序垂直切片的散射下的电导 | ||||
| @guan.function_decorator | ||||
| def calculate_conductance_with_slice_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100): | ||||
|     import numpy as np | ||||
|     import copy | ||||
| @@ -109,10 +111,10 @@ def calculate_conductance_with_slice_disorder(fermi_energy, h00, h01, disorder_i | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance | ||||
|  | ||||
| # 计算在无序水平切片的散射下的电导 | ||||
| @guan.function_decorator | ||||
| def calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translational_symmetry(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100): | ||||
|     import numpy as np | ||||
|     import copy | ||||
| @@ -134,10 +136,10 @@ def calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translation | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance | ||||
|  | ||||
| # 计算在随机空位的散射下的电导 | ||||
| @guan.function_decorator | ||||
| def calculate_conductance_with_random_vacancy(fermi_energy, h00, h01, vacancy_concentration=0.5, vacancy_potential=1e9, length=100): | ||||
|     import numpy as np | ||||
|     import copy | ||||
| @@ -159,10 +161,10 @@ def calculate_conductance_with_random_vacancy(fermi_energy, h00, h01, vacancy_co | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance | ||||
|  | ||||
| # 计算在不同无序散射强度下的电导 | ||||
| @guan.function_decorator | ||||
| def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -176,10 +178,10 @@ def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, | ||||
|             print(disorder_intensity, conductance_array[i0]/calculation_times) | ||||
|         i0 += 1 | ||||
|     conductance_array = conductance_array/calculation_times | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance_array | ||||
|  | ||||
| # 计算在不同无序浓度下的电导 | ||||
| @guan.function_decorator | ||||
| def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h01, disorder_concentration_array, disorder_intensity=2.0, length=100, calculation_times=1, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -193,10 +195,10 @@ def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h | ||||
|             print(disorder_concentration, conductance_array[i0]/calculation_times) | ||||
|         i0 += 1 | ||||
|     conductance_array = conductance_array/calculation_times | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance_array | ||||
|  | ||||
| # 计算在不同无序散射长度下的电导 | ||||
| @guan.function_decorator | ||||
| def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, length_array, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -210,10 +212,10 @@ def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, l | ||||
|             print(length, conductance_array[i0]/calculation_times) | ||||
|         i0 += 1 | ||||
|     conductance_array = conductance_array/calculation_times | ||||
|     guan.statistics_of_guan_package() | ||||
|     return conductance_array | ||||
|  | ||||
| # 计算得到Gamma矩阵和格林函数,用于计算六端口的量子输运 | ||||
| @guan.function_decorator | ||||
| def get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -257,10 +259,10 @@ def get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_fo | ||||
|     self_energy6, gamma6 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_6, h01_for_lead_1, h_lead6_to_center) | ||||
|     gamma_array = [gamma1, gamma2, gamma3, gamma4, gamma5, gamma6] | ||||
|     green = np.linalg.inv(fermi_energy*np.eye(internal_degree*width*length)-center_hamiltonian-self_energy1-self_energy2-self_energy3-self_energy4-self_energy5-self_energy6) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return gamma_array, green | ||||
|  | ||||
| # 计算六端口的透射矩阵 | ||||
| @guan.function_decorator | ||||
| def calculate_six_terminal_transmission_matrix(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -282,10 +284,10 @@ def calculate_six_terminal_transmission_matrix(fermi_energy, h00_for_lead_4, h01 | ||||
|             if j0!=i0: | ||||
|                 transmission_matrix[i0, i0] = transmission_matrix[i0, i0]-transmission_matrix[i0, j0] | ||||
|     transmission_matrix = np.real(transmission_matrix) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return transmission_matrix | ||||
|  | ||||
| # 计算从电极1出发的透射系数 | ||||
| @guan.function_decorator | ||||
| def calculate_six_terminal_transmissions_from_lead_1(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -295,21 +297,20 @@ def calculate_six_terminal_transmissions_from_lead_1(fermi_energy, h00_for_lead_ | ||||
|     transmission_14 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[3]), green.transpose().conj()))) | ||||
|     transmission_15 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[4]), green.transpose().conj()))) | ||||
|     transmission_16 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[5]), green.transpose().conj()))) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return transmission_12, transmission_13, transmission_14, transmission_15, transmission_16 | ||||
|  | ||||
| # 通过动量k的虚部,判断通道为传播通道还是衰减通道 | ||||
| @guan.function_decorator | ||||
| def if_active_channel(k_of_channel): | ||||
|     import numpy as np | ||||
|     if np.abs(np.imag(k_of_channel))<1e-6: | ||||
|         if_active = 1 | ||||
|     else: | ||||
|         if_active = 0 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return if_active | ||||
|  | ||||
| # 获取通道的动量和速度,用于计算散射矩阵 | ||||
| @guan.function_decorator | ||||
| def get_k_and_velocity_of_channel(fermi_energy, h00, h01): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -343,10 +344,10 @@ def get_k_and_velocity_of_channel(fermi_energy, h00, h01): | ||||
|         velocity_of_channel[dim0] = eigenvalue[dim0]*np.dot(np.dot(temp[0:dim, :].transpose().conj(), h01),temp[0:dim, :])[dim0, dim0] | ||||
|     velocity_of_channel = -2*np.imag(velocity_of_channel) | ||||
|     eigenvector = copy.deepcopy(temp)  | ||||
|     guan.statistics_of_guan_package() | ||||
|     return k_of_channel, velocity_of_channel, eigenvalue, eigenvector | ||||
|  | ||||
| # 获取分类后的动量和速度,以及U和F,用于计算散射矩阵 | ||||
| @guan.function_decorator | ||||
| def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -396,10 +397,10 @@ def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01): | ||||
|     lambda_matrix_left = np.diag(lambda_left) | ||||
|     f_right = np.dot(np.dot(u_right, lambda_matrix_right), np.linalg.inv(u_right)) | ||||
|     f_left = np.dot(np.dot(u_left, lambda_matrix_left), np.linalg.inv(u_left)) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active | ||||
|  | ||||
| # 计算散射矩阵 | ||||
| @guan.function_decorator | ||||
| def calculate_scattering_matrix(fermi_energy, h00, h01, length=100): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -442,10 +443,10 @@ def calculate_scattering_matrix(fermi_energy, h00, h01, length=100): | ||||
|     for sum_of_tran_refl in sum_of_tran_refl_array: | ||||
|         if sum_of_tran_refl > 1.001: | ||||
|             print('Error Alert: scattering matrix is not normalized!') | ||||
|     guan.statistics_of_guan_package() | ||||
|     return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active | ||||
|  | ||||
| # 从散射矩阵中,获取散射矩阵的信息 | ||||
| @guan.function_decorator | ||||
| def information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active): | ||||
|     import numpy as np | ||||
|     if np.array(transmission_matrix).shape==(): | ||||
| @@ -464,22 +465,20 @@ def information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_r | ||||
|     total_conductance = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))) | ||||
|     total_reflection_of_channels = np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) | ||||
|     sum_of_transmission_and_reflection_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels | ||||
|  | ||||
| # 已知h00和h01,计算散射矩阵并获得散射矩阵的信息 | ||||
| @guan.function_decorator | ||||
| def calculate_scattering_matrix_and_get_information(fermi_energy, h00, h01, length=100): | ||||
|     import guan | ||||
|     transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length) | ||||
|  | ||||
|     number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active) | ||||
|  | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
|     return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels | ||||
|  | ||||
| # 从散射矩阵中打印出散射矩阵的信息 | ||||
| @guan.function_decorator | ||||
| def print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=1, write_file=0, filename='a', file_format='.txt'): | ||||
|     if print_show == 1: | ||||
|         print('\nActive channel (left or right) = ', number_of_active_channels) | ||||
| @@ -522,10 +521,9 @@ def print_or_write_scattering_matrix_with_information_of_scattering_matrix(numbe | ||||
|             f.write('\n') | ||||
|             f.write('Total transmission of channels:\n'+str(total_transmission_of_channels)+'\n') | ||||
|             f.write('Total conductance = '+str(total_conductance)+'\n') | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 已知h00和h01,计算散射矩阵并打印出散射矩阵的信息 | ||||
| @guan.function_decorator | ||||
| def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', file_format='.txt'): | ||||
|     import guan | ||||
|     transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length) | ||||
| @@ -534,9 +532,8 @@ def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_s | ||||
|  | ||||
|     guan.print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=print_show, write_file=write_file, filename=filename, file_format=file_format) | ||||
|  | ||||
|     guan.statistics_of_guan_package() | ||||
|  | ||||
| # 在无序下,计算散射矩阵 | ||||
| @guan.function_decorator | ||||
| def calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -583,10 +580,10 @@ def calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length=100 | ||||
|     for sum_of_tran_refl in sum_of_tran_refl_array: | ||||
|         if sum_of_tran_refl > 1.001: | ||||
|             print('Error Alert: scattering matrix is not normalized!') | ||||
|     guan.statistics_of_guan_package() | ||||
|     return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active | ||||
|  | ||||
| # 在无序下,计算散射矩阵,并获取散射矩阵多次计算的平均信息 | ||||
| @guan.function_decorator | ||||
| def calculate_scattering_matrix_with_disorder_and_get_averaged_information(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1): | ||||
|     import guan | ||||
|     transmission_matrix_for_active_channels_averaged = 0 | ||||
| @@ -600,5 +597,4 @@ def calculate_scattering_matrix_with_disorder_and_get_averaged_information(fermi | ||||
|         reflection_matrix_for_active_channels_averaged += reflection_matrix_for_active_channels | ||||
|     transmission_matrix_for_active_channels_averaged = transmission_matrix_for_active_channels_averaged/calculation_times | ||||
|     reflection_matrix_for_active_channels_averaged = reflection_matrix_for_active_channels_averaged/calculation_times | ||||
|     guan.statistics_of_guan_package() | ||||
|     return transmission_matrix_for_active_channels_averaged, reflection_matrix_for_active_channels_averaged | ||||
| @@ -1,6 +1,8 @@ | ||||
| # Module: topological_invariant | ||||
| import guan | ||||
|  | ||||
| # 通过高效法计算方格子的陈数 | ||||
| @guan.function_decorator | ||||
| def calculate_chern_number_for_square_lattice_with_efficient_method(hamiltonian_function, precision=100, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -36,10 +38,10 @@ def calculate_chern_number_for_square_lattice_with_efficient_method(hamiltonian_ | ||||
|                 F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) | ||||
|                 chern_number[i] = chern_number[i] + F | ||||
|     chern_number = chern_number/(2*math.pi*1j) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return chern_number | ||||
|  | ||||
| # 通过高效法计算方格子的陈数(可计算简并的情况) | ||||
| @guan.function_decorator | ||||
| def calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision=100, print_show=0):  | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -106,11 +108,10 @@ def calculate_chern_number_for_square_lattice_with_efficient_method_for_degenera | ||||
|             det_value= det_value*dot_matrix | ||||
|             chern_number += cmath.log(det_value) | ||||
|     chern_number = chern_number/(2*math.pi*1j) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return chern_number | ||||
|  | ||||
| # 通过Wilson loop方法计算方格子的陈数 | ||||
| @guan.function_decorator | ||||
| def calculate_chern_number_for_square_lattice_with_wilson_loop(hamiltonian_function, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -152,11 +153,10 @@ def calculate_chern_number_for_square_lattice_with_wilson_loop(hamiltonian_funct | ||||
|             arg = np.log(np.diagonal(wilson_loop))/1j | ||||
|             chern_number = chern_number + arg | ||||
|     chern_number = chern_number/(2*math.pi) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return chern_number | ||||
|  | ||||
| # 通过Wilson loop方法计算方格子的陈数(可计算简并的情况) | ||||
| @guan.function_decorator | ||||
| def calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -217,11 +217,10 @@ def calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_ca | ||||
|             arg = np.log(wilson_loop)/1j | ||||
|             chern_number = chern_number + arg | ||||
|     chern_number = chern_number/(2*math.pi) | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return chern_number | ||||
|  | ||||
| # 通过高效法计算贝利曲率 | ||||
| @guan.function_decorator | ||||
| def calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -265,10 +264,10 @@ def calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min= | ||||
|                 berry_curvature_array[j0, i0, i] = berry_curvature | ||||
|             j0 += 1 | ||||
|         i0 += 1 | ||||
|     guan.statistics_of_guan_package() | ||||
|     return k_array, berry_curvature_array | ||||
|  | ||||
| # 通过高效法计算贝利曲率(可计算简并的情况) | ||||
| @guan.function_decorator | ||||
| def calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision=100, print_show=0): | ||||
|     import numpy as np | ||||
|     import cmath | ||||
| @@ -344,11 +343,10 @@ def calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamilton | ||||
|             berry_curvature_array[j00, i00] = berry_curvature | ||||
|             j00 += 1 | ||||
|         i00 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return k_array, berry_curvature_array | ||||
|  | ||||
| # 通过Wilson loop方法计算贝里曲率 | ||||
| @guan.function_decorator | ||||
| def calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -402,11 +400,10 @@ def calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min='defa | ||||
|             berry_curvature_array[j00, i00, :]=berry_curvature | ||||
|             j00 += 1 | ||||
|         i00 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return k_array, berry_curvature_array | ||||
|  | ||||
| # 通过Wilson loop方法计算贝里曲率(可计算简并的情况) | ||||
| @guan.function_decorator | ||||
| def calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -475,11 +472,10 @@ def calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_f | ||||
|             berry_curvature_array[j000, i000]=berry_curvature | ||||
|             j000 += 1 | ||||
|         i000 += 1 | ||||
|     import guan | ||||
|     guan.statistics_of_guan_package() | ||||
|     return k_array, berry_curvature_array | ||||
|  | ||||
| # 计算蜂窝格子的陈数(高效法) | ||||
| @guan.function_decorator | ||||
| def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0): | ||||
|     import numpy as np | ||||
|     import math | ||||
| @@ -520,10 +516,10 @@ def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, prec | ||||
|                     F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) | ||||
|                     chern_number[i] = chern_number[i] + F | ||||
|     chern_number = chern_number/(2*math.pi*1j) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return chern_number | ||||
|  | ||||
| # 计算Wilson loop | ||||
| @guan.function_decorator | ||||
| def calculate_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0): | ||||
|     import numpy as np | ||||
|     import guan | ||||
| @@ -548,5 +544,4 @@ def calculate_wilson_loop(hamiltonian_function, k_min='default', k_max='default' | ||||
|         for i0 in range(precision-1): | ||||
|             F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0]) | ||||
|             wilson_loop_array[i] = np.dot(F, wilson_loop_array[i]) | ||||
|     guan.statistics_of_guan_package() | ||||
|     return wilson_loop_array | ||||
		Reference in New Issue
	
	Block a user