0.1.48 增加装饰器

This commit is contained in:
guanjihuan 2023-11-27 16:42:45 +08:00
parent 206fcda152
commit 7a9b86f791
13 changed files with 271 additions and 379 deletions

View File

@ -1,7 +1,7 @@
[metadata] [metadata]
# replace with your username: # replace with your username:
name = guan name = guan
version = 0.1.47 version = 0.1.48
author = guanjihuan author = guanjihuan
author_email = guanjihuan@163.com author_email = guanjihuan@163.com
description = An open source python package description = An open source python package

View File

@ -1,6 +1,6 @@
Metadata-Version: 2.1 Metadata-Version: 2.1
Name: guan Name: guan
Version: 0.1.47 Version: 0.1.48
Summary: An open source python package Summary: An open source python package
Home-page: https://py.guanjihuan.com Home-page: https://py.guanjihuan.com
Author: guanjihuan Author: guanjihuan

View File

@ -1,17 +1,18 @@
# Module: Fourier_transform # Module: Fourier_transform
import guan
# 通过元胞和跃迁项得到一维的哈密顿量需要输入k值 # 通过元胞和跃迁项得到一维的哈密顿量需要输入k值
@guan.function_decorator
def one_dimensional_fourier_transform(k, unit_cell, hopping): def one_dimensional_fourier_transform(k, unit_cell, hopping):
import numpy as np import numpy as np
import cmath import cmath
unit_cell = np.array(unit_cell) unit_cell = np.array(unit_cell)
hopping = np.array(hopping) hopping = np.array(hopping)
hamiltonian = unit_cell+hopping*cmath.exp(1j*k)+hopping.transpose().conj()*cmath.exp(-1j*k) hamiltonian = unit_cell+hopping*cmath.exp(1j*k)+hopping.transpose().conj()*cmath.exp(-1j*k)
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 通过元胞和跃迁项得到二维方格子的哈密顿量需要输入k值 # 通过元胞和跃迁项得到二维方格子的哈密顿量需要输入k值
@guan.function_decorator
def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2): def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2):
import numpy as np import numpy as np
import cmath import cmath
@ -19,11 +20,10 @@ def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopp
hopping_1 = np.array(hopping_1) hopping_1 = np.array(hopping_1)
hopping_2 = np.array(hopping_2) hopping_2 = np.array(hopping_2)
hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2) hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 通过元胞和跃迁项得到三维立方格子的哈密顿量需要输入k值 # 通过元胞和跃迁项得到三维立方格子的哈密顿量需要输入k值
@guan.function_decorator
def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3): def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3):
import numpy as np import numpy as np
import cmath import cmath
@ -32,43 +32,41 @@ def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell,
hopping_2 = np.array(hopping_2) hopping_2 = np.array(hopping_2)
hopping_3 = np.array(hopping_3) hopping_3 = np.array(hopping_3)
hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)+hopping_3*cmath.exp(1j*k3)+hopping_3.transpose().conj()*cmath.exp(-1j*k3) hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)+hopping_3*cmath.exp(1j*k3)+hopping_3.transpose().conj()*cmath.exp(-1j*k3)
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 通过元胞和跃迁项得到一维的哈密顿量返回的哈密顿量为携带k的函数 # 通过元胞和跃迁项得到一维的哈密顿量返回的哈密顿量为携带k的函数
@guan.function_decorator
def one_dimensional_fourier_transform_with_k(unit_cell, hopping): def one_dimensional_fourier_transform_with_k(unit_cell, hopping):
import functools import functools
import guan import guan
hamiltonian_function = functools.partial(guan.one_dimensional_fourier_transform, unit_cell=unit_cell, hopping=hopping) hamiltonian_function = functools.partial(guan.one_dimensional_fourier_transform, unit_cell=unit_cell, hopping=hopping)
guan.statistics_of_guan_package()
return hamiltonian_function return hamiltonian_function
# 通过元胞和跃迁项得到二维方格子的哈密顿量返回的哈密顿量为携带k的函数 # 通过元胞和跃迁项得到二维方格子的哈密顿量返回的哈密顿量为携带k的函数
@guan.function_decorator
def two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, hopping_1, hopping_2): def two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, hopping_1, hopping_2):
import functools import functools
import guan import guan
hamiltonian_function = functools.partial(guan.two_dimensional_fourier_transform_for_square_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2) hamiltonian_function = functools.partial(guan.two_dimensional_fourier_transform_for_square_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2)
guan.statistics_of_guan_package()
return hamiltonian_function return hamiltonian_function
# 通过元胞和跃迁项得到三维立方格子的哈密顿量返回的哈密顿量为携带k的函数 # 通过元胞和跃迁项得到三维立方格子的哈密顿量返回的哈密顿量为携带k的函数
@guan.function_decorator
def three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cell, hopping_1, hopping_2, hopping_3): def three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cell, hopping_1, hopping_2, hopping_3):
import functools import functools
import guan import guan
hamiltonian_function = functools.partial(guan.three_dimensional_fourier_transform_for_cubic_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2, hopping_3=hopping_3) hamiltonian_function = functools.partial(guan.three_dimensional_fourier_transform_for_cubic_lattice, unit_cell=unit_cell, hopping_1=hopping_1, hopping_2=hopping_2, hopping_3=hopping_3)
guan.statistics_of_guan_package()
return hamiltonian_function return hamiltonian_function
# 由实空间格矢得到倒空间格矢(一维) # 由实空间格矢得到倒空间格矢(一维)
@guan.function_decorator
def calculate_one_dimensional_reciprocal_lattice_vector(a1): def calculate_one_dimensional_reciprocal_lattice_vector(a1):
import numpy as np import numpy as np
b1 = 2*np.pi/a1 b1 = 2*np.pi/a1
import guan
guan.statistics_of_guan_package()
return b1 return b1
# 由实空间格矢得到倒空间格矢(二维) # 由实空间格矢得到倒空间格矢(二维)
@guan.function_decorator
def calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2): def calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2):
import numpy as np import numpy as np
a1 = np.array(a1) a1 = np.array(a1)
@ -80,11 +78,10 @@ def calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2):
b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3)) b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3))
b1 = np.delete(b1, 2) b1 = np.delete(b1, 2)
b2 = np.delete(b2, 2) b2 = np.delete(b2, 2)
import guan
guan.statistics_of_guan_package()
return b1, b2 return b1, b2
# 由实空间格矢得到倒空间格矢(三维) # 由实空间格矢得到倒空间格矢(三维)
@guan.function_decorator
def calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3): def calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3):
import numpy as np import numpy as np
a1 = np.array(a1) a1 = np.array(a1)
@ -93,19 +90,17 @@ def calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3):
b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3)) b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3))
b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3)) b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3))
b3 = 2*np.pi*np.cross(a1, a2)/np.dot(a1, np.cross(a2, a3)) b3 = 2*np.pi*np.cross(a1, a2)/np.dot(a1, np.cross(a2, a3))
import guan
guan.statistics_of_guan_package()
return b1, b2, b3 return b1, b2, b3
# 由实空间格矢得到倒空间格矢(一维),这里为符号运算 # 由实空间格矢得到倒空间格矢(一维),这里为符号运算
@guan.function_decorator
def calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1): def calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1):
import sympy import sympy
b1 = 2*sympy.pi/a1 b1 = 2*sympy.pi/a1
import guan
guan.statistics_of_guan_package()
return b1 return b1
# 由实空间格矢得到倒空间格矢(二维),这里为符号运算 # 由实空间格矢得到倒空间格矢(二维),这里为符号运算
@guan.function_decorator
def calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2): def calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2):
import sympy import sympy
a1 = sympy.Matrix(1, 3, [a1[0], a1[1], 0]) a1 = sympy.Matrix(1, 3, [a1[0], a1[1], 0])
@ -117,11 +112,10 @@ def calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2):
b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3) b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3)
b1 = sympy.Matrix(1, 2, [b1[0], b1[1]]) b1 = sympy.Matrix(1, 2, [b1[0], b1[1]])
b2 = sympy.Matrix(1, 2, [b2[0], b2[1]]) b2 = sympy.Matrix(1, 2, [b2[0], b2[1]])
import guan
guan.statistics_of_guan_package()
return b1, b2 return b1, b2
# 由实空间格矢得到倒空间格矢(三维),这里为符号运算 # 由实空间格矢得到倒空间格矢(三维),这里为符号运算
@guan.function_decorator
def calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3): def calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3):
import sympy import sympy
cross_a2_a3 = a2.cross(a3) cross_a2_a3 = a2.cross(a3)
@ -130,6 +124,4 @@ def calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3
b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3) b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3)
b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3) b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3)
b3 = 2*sympy.pi*cross_a1_a2/a1.dot(cross_a2_a3) b3 = 2*sympy.pi*cross_a1_a2/a1.dot(cross_a2_a3)
import guan
guan.statistics_of_guan_package()
return b1, b2, b3 return b1, b2, b3

View File

@ -1,6 +1,8 @@
# Module: Green_functions # Module: Green_functions
import guan
# 输入哈密顿量,得到格林函数 # 输入哈密顿量,得到格林函数
@guan.function_decorator
def green_function(fermi_energy, hamiltonian, broadening, self_energy=0): def green_function(fermi_energy, hamiltonian, broadening, self_energy=0):
import numpy as np import numpy as np
if np.array(hamiltonian).shape==(): if np.array(hamiltonian).shape==():
@ -8,11 +10,10 @@ def green_function(fermi_energy, hamiltonian, broadening, self_energy=0):
else: else:
dim = np.array(hamiltonian).shape[0] dim = np.array(hamiltonian).shape[0]
green = np.linalg.inv((fermi_energy+broadening*1j)*np.eye(dim)-hamiltonian-self_energy) green = np.linalg.inv((fermi_energy+broadening*1j)*np.eye(dim)-hamiltonian-self_energy)
import guan
guan.statistics_of_guan_package()
return green return green
# 在Dyson方程中的一个中间格林函数G_{nn}^{n} # 在Dyson方程中的一个中间格林函数G_{nn}^{n}
@guan.function_decorator
def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0): def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0):
import numpy as np import numpy as np
h01 = np.array(h01) h01 = np.array(h01)
@ -21,36 +22,32 @@ def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, se
else: else:
dim = np.array(h00).shape[0] dim = np.array(h00).shape[0]
green_nn_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n_minus), h01)-self_energy) green_nn_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n_minus), h01)-self_energy)
import guan
guan.statistics_of_guan_package()
return green_nn_n return green_nn_n
# 在Dyson方程中的一个中间格林函数G_{in}^{n} # 在Dyson方程中的一个中间格林函数G_{in}^{n}
@guan.function_decorator
def green_function_in_n(green_in_n_minus, h01, green_nn_n): def green_function_in_n(green_in_n_minus, h01, green_nn_n):
import numpy as np import numpy as np
green_in_n = np.dot(np.dot(green_in_n_minus, h01), green_nn_n) green_in_n = np.dot(np.dot(green_in_n_minus, h01), green_nn_n)
import guan
guan.statistics_of_guan_package()
return green_in_n return green_in_n
# 在Dyson方程中的一个中间格林函数G_{ni}^{n} # 在Dyson方程中的一个中间格林函数G_{ni}^{n}
@guan.function_decorator
def green_function_ni_n(green_nn_n, h01, green_ni_n_minus): def green_function_ni_n(green_nn_n, h01, green_ni_n_minus):
import numpy as np import numpy as np
h01 = np.array(h01) h01 = np.array(h01)
green_ni_n = np.dot(np.dot(green_nn_n, h01.transpose().conj()), green_ni_n_minus) green_ni_n = np.dot(np.dot(green_nn_n, h01.transpose().conj()), green_ni_n_minus)
import guan
guan.statistics_of_guan_package()
return green_ni_n return green_ni_n
# 在Dyson方程中的一个中间格林函数G_{ii}^{n} # 在Dyson方程中的一个中间格林函数G_{ii}^{n}
@guan.function_decorator
def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus): def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus):
import numpy as np import numpy as np
green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus) green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus)
import guan
guan.statistics_of_guan_package()
return green_ii_n return green_ii_n
# 计算转移矩阵(该矩阵可以用来计算表面格林函数) # 计算转移矩阵(该矩阵可以用来计算表面格林函数)
@guan.function_decorator
def transfer_matrix(fermi_energy, h00, h01): def transfer_matrix(fermi_energy, h00, h01):
import numpy as np import numpy as np
h01 = np.array(h01) h01 = np.array(h01)
@ -63,11 +60,10 @@ def transfer_matrix(fermi_energy, h00, h01):
transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj()) transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj())
transfer[dim:2*dim, 0:dim] = np.identity(dim) transfer[dim:2*dim, 0:dim] = np.identity(dim)
transfer[dim:2*dim, dim:2*dim] = 0 transfer[dim:2*dim, dim:2*dim] = 0
import guan
guan.statistics_of_guan_package()
return transfer return transfer
# 计算电极的表面格林函数 # 计算电极的表面格林函数
@guan.function_decorator
def surface_green_function_of_lead(fermi_energy, h00, h01): def surface_green_function_of_lead(fermi_energy, h00, h01):
import numpy as np import numpy as np
h01 = np.array(h01) h01 = np.array(h01)
@ -90,11 +86,10 @@ def surface_green_function_of_lead(fermi_energy, h00, h01):
s4 = temp[0:dim, dim:2*dim] s4 = temp[0:dim, dim:2*dim]
right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1))) right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1)))
left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4))) left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4)))
import guan
guan.statistics_of_guan_package()
return right_lead_surface, left_lead_surface return right_lead_surface, left_lead_surface
# 计算电极的自能基于Dyson方程的小矩阵形式 # 计算电极的自能基于Dyson方程的小矩阵形式
@guan.function_decorator
def self_energy_of_lead(fermi_energy, h00, h01): def self_energy_of_lead(fermi_energy, h00, h01):
import numpy as np import numpy as np
import guan import guan
@ -104,10 +99,10 @@ def self_energy_of_lead(fermi_energy, h00, h01):
left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01) left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01)
gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j
gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j
guan.statistics_of_guan_package()
return right_self_energy, left_self_energy, gamma_right, gamma_left return right_self_energy, left_self_energy, gamma_right, gamma_left
# 计算电极的自能(基于中心区整体的大矩阵形式) # 计算电极的自能(基于中心区整体的大矩阵形式)
@guan.function_decorator
def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR): def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR):
import numpy as np import numpy as np
import guan import guan
@ -118,10 +113,10 @@ def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR):
left_self_energy = np.dot(np.dot(h_LC.transpose().conj(), left_lead_surface), h_LC) left_self_energy = np.dot(np.dot(h_LC.transpose().conj(), left_lead_surface), h_LC)
gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j
gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j
guan.statistics_of_guan_package()
return right_self_energy, left_self_energy, gamma_right, gamma_left return right_self_energy, left_self_energy, gamma_right, gamma_left
# 计算电极的自能(基于中心区整体的大矩阵形式,可适用于多端电导的计算) # 计算电极的自能(基于中心区整体的大矩阵形式,可适用于多端电导的计算)
@guan.function_decorator
def self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center): def self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center):
import numpy as np import numpy as np
import guan import guan
@ -129,25 +124,24 @@ def self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_
right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01)
self_energy = np.dot(np.dot(h_lead_to_center.transpose().conj(), right_lead_surface), h_lead_to_center) self_energy = np.dot(np.dot(h_lead_to_center.transpose().conj(), right_lead_surface), h_lead_to_center)
gamma = (self_energy - self_energy.transpose().conj())*1j gamma = (self_energy - self_energy.transpose().conj())*1j
guan.statistics_of_guan_package()
return self_energy, gamma return self_energy, gamma
# 计算考虑电极自能后的中心区的格林函数 # 计算考虑电极自能后的中心区的格林函数
@guan.function_decorator
def green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian): def green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian):
import numpy as np import numpy as np
import guan import guan
dim = np.array(center_hamiltonian).shape[0] dim = np.array(center_hamiltonian).shape[0]
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR)
green = np.linalg.inv(fermi_energy*np.identity(dim)-center_hamiltonian-left_self_energy-right_self_energy) green = np.linalg.inv(fermi_energy*np.identity(dim)-center_hamiltonian-left_self_energy-right_self_energy)
guan.statistics_of_guan_package()
return green, gamma_right, gamma_left return green, gamma_right, gamma_left
# 计算用于计算局域电流的格林函数G_n # 计算用于计算局域电流的格林函数G_n
@guan.function_decorator
def electron_correlation_function_green_n_for_local_current(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian): def electron_correlation_function_green_n_for_local_current(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian):
import numpy as np import numpy as np
import guan import guan
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR)
green = guan.green_function(fermi_energy, center_hamiltonian, broadening=0, self_energy=left_self_energy+right_self_energy) green = guan.green_function(fermi_energy, center_hamiltonian, broadening=0, self_energy=left_self_energy+right_self_energy)
G_n = np.imag(np.dot(np.dot(green, gamma_left), green.transpose().conj())) G_n = np.imag(np.dot(np.dot(green, gamma_left), green.transpose().conj()))
guan.statistics_of_guan_package()
return G_n return G_n

View File

@ -1,6 +1,8 @@
# Module: Hamiltonian_of_examples # Module: Hamiltonian_of_examples
import guan
# 构建一维的有限尺寸体系哈密顿量(可设置是否为周期边界条件) # 构建一维的有限尺寸体系哈密顿量(可设置是否为周期边界条件)
@guan.function_decorator
def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0): def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0):
import numpy as np import numpy as np
on_site = np.array(on_site) on_site = np.array(on_site)
@ -18,11 +20,10 @@ def hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=
if period == 1: if period == 1:
hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping
hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj() hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj()
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 构建二维的方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件) # 构建二维的方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件)
@guan.function_decorator
def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0): def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0):
import numpy as np import numpy as np
on_site = np.array(on_site) on_site = np.array(on_site)
@ -52,11 +53,10 @@ def hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1
for i1 in range(N1): for i1 in range(N1):
hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2 hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2
hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj() hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj()
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 构建三维的立方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件) # 构建三维的立方格子有限尺寸体系哈密顿量(可设置是否为周期边界条件)
@guan.function_decorator
def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0): def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0):
import numpy as np import numpy as np
on_site = np.array(on_site) on_site = np.array(on_site)
@ -102,11 +102,10 @@ def hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N
for i2 in range(N2): for i2 in range(N2):
hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3
hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj() hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj()
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 构建有限尺寸的SSH模型哈密顿量 # 构建有限尺寸的SSH模型哈密顿量
@guan.function_decorator
def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1): def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0, period=1):
import numpy as np import numpy as np
hamiltonian = np.zeros((2*N, 2*N)) hamiltonian = np.zeros((2*N, 2*N))
@ -121,11 +120,10 @@ def hamiltonian_of_finite_size_ssh_model(N, v=0.6, w=1, onsite_1=0, onsite_2=0,
if period==1: if period==1:
hamiltonian[0, 2*N-1] = w hamiltonian[0, 2*N-1] = w
hamiltonian[2*N-1, 0] = w hamiltonian[2*N-1, 0] = w
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 获取Zigzag边的石墨烯条带的元胞间跃迁 # 获取Zigzag边的石墨烯条带的元胞间跃迁
@guan.function_decorator
def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0): def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0):
import numpy as np import numpy as np
hopping = np.zeros((4*N, 4*N), dtype=complex) hopping = np.zeros((4*N, 4*N), dtype=complex)
@ -136,11 +134,10 @@ def get_hopping_term_of_graphene_ribbon_along_zigzag_direction(N, eta=0):
hopping[4*i0+3, 4*i0+3] = eta hopping[4*i0+3, 4*i0+3] = eta
hopping[4*i0+1, 4*i0+0] = 1 hopping[4*i0+1, 4*i0+0] = 1
hopping[4*i0+2, 4*i0+3] = 1 hopping[4*i0+2, 4*i0+3] = 1
import guan
guan.statistics_of_guan_package()
return hopping return hopping
# 构建有限尺寸的石墨烯哈密顿量(可设置是否为周期边界条件) # 构建有限尺寸的石墨烯哈密顿量(可设置是否为周期边界条件)
@guan.function_decorator
def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0): def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0):
import numpy as np import numpy as np
import guan import guan
@ -149,10 +146,10 @@ def hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2,
hopping_2 = np.zeros((4, 4), dtype=complex) hopping_2 = np.zeros((4, 4), dtype=complex)
hopping_2[3, 0] = 1 hopping_2[3, 0] = 1
hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2) hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2)
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 获取石墨烯有效模型沿着x方向的在位能和跃迁项其中动量qy为参数 # 获取石墨烯有效模型沿着x方向的在位能和跃迁项其中动量qy为参数
@guan.function_decorator
def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0): def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy, t=1, staggered_potential=0, eta=0, valley_index=0):
import numpy as np import numpy as np
constant = -np.sqrt(3)/2 constant = -np.sqrt(3)/2
@ -170,11 +167,10 @@ def get_onsite_and_hopping_terms_of_2d_effective_graphene_along_one_direction(qy
else: else:
h01[0, 1] = constant*t*(1j/2) h01[0, 1] = constant*t*(1j/2)
h01[1, 0] = constant*t*(1j/2) h01[1, 0] = constant*t*(1j/2)
import guan
guan.statistics_of_guan_package()
return h00, h01 return h00, h01
# 获取BHZ模型的在位能和跃迁项 # 获取BHZ模型的在位能和跃迁项
@guan.function_decorator
def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
import numpy as np import numpy as np
E_s = C+M-4*(D+B)/(a**2) E_s = C+M-4*(D+B)/(a**2)
@ -205,11 +201,10 @@ def get_onsite_and_hopping_terms_of_bhz_model(A=0.3645/5, B=-0.686/25, C=0, D=-0
H2[1, 0] = 1j*np.conj(V_sp) H2[1, 0] = 1j*np.conj(V_sp)
H2[2, 3] = -1j*np.conj(V_sp) H2[2, 3] = -1j*np.conj(V_sp)
H2[3, 2] = -1j*V_sp H2[3, 2] = -1j*V_sp
import guan
guan.statistics_of_guan_package()
return H0, H1, H2 return H0, H1, H2
# 获取半个BHZ模型的在位能和跃迁项自旋向上 # 获取半个BHZ模型的在位能和跃迁项自旋向上
@guan.function_decorator
def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
import numpy as np import numpy as np
E_s = C+M-4*(D+B)/(a**2) E_s = C+M-4*(D+B)/(a**2)
@ -230,11 +225,10 @@ def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_up(A=0.3645/5, B=-0.
H2[1, 1] = V_pp H2[1, 1] = V_pp
H2[0, 1] = 1j*V_sp H2[0, 1] = 1j*V_sp
H2[1, 0] = 1j*np.conj(V_sp) H2[1, 0] = 1j*np.conj(V_sp)
import guan
guan.statistics_of_guan_package()
return H0, H1, H2 return H0, H1, H2
# 获取半个BHZ模型的在位能和跃迁项自旋向下 # 获取半个BHZ模型的在位能和跃迁项自旋向下
@guan.function_decorator
def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1): def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01, a=1):
import numpy as np import numpy as np
E_s = C+M-4*(D+B)/(a**2) E_s = C+M-4*(D+B)/(a**2)
@ -255,25 +249,24 @@ def get_onsite_and_hopping_terms_of_half_bhz_model_for_spin_down(A=0.3645/5, B=-
H2[1, 1] = V_pp H2[1, 1] = V_pp
H2[0, 1] = -1j*np.conj(V_sp) H2[0, 1] = -1j*np.conj(V_sp)
H2[1, 0] = -1j*V_sp H2[1, 0] = -1j*V_sp
import guan
guan.statistics_of_guan_package()
return H0, H1, H2 return H0, H1, H2
# 一维链的哈密顿量(倒空间) # 一维链的哈密顿量(倒空间)
@guan.function_decorator
def hamiltonian_of_simple_chain(k): def hamiltonian_of_simple_chain(k):
import guan import guan
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1) hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1)
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 二维方格子的哈密顿量(倒空间) # 二维方格子的哈密顿量(倒空间)
@guan.function_decorator
def hamiltonian_of_square_lattice(k1, k2): def hamiltonian_of_square_lattice(k1, k2):
import guan import guan
hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1) hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1)
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 准一维方格子条带的哈密顿量(倒空间) # 准一维方格子条带的哈密顿量(倒空间)
@guan.function_decorator
def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0): def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0):
import numpy as np import numpy as np
import guan import guan
@ -288,28 +281,27 @@ def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0):
for i in range(N): for i in range(N):
h01[i, i] = 1 h01[i, i] = 1
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01) hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 三维立方格子的哈密顿量(倒空间) # 三维立方格子的哈密顿量(倒空间)
@guan.function_decorator
def hamiltonian_of_cubic_lattice(k1, k2, k3): def hamiltonian_of_cubic_lattice(k1, k2, k3):
import guan import guan
hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1) hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1)
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# SSH模型的哈密顿量倒空间 # SSH模型的哈密顿量倒空间
@guan.function_decorator
def hamiltonian_of_ssh_model(k, v=0.6, w=1): def hamiltonian_of_ssh_model(k, v=0.6, w=1):
import numpy as np import numpy as np
import cmath import cmath
hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian = np.zeros((2, 2), dtype=complex)
hamiltonian[0,1] = v+w*cmath.exp(-1j*k) hamiltonian[0,1] = v+w*cmath.exp(-1j*k)
hamiltonian[1,0] = v+w*cmath.exp(1j*k) hamiltonian[1,0] = v+w*cmath.exp(1j*k)
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 石墨烯的哈密顿量(倒空间) # 石墨烯的哈密顿量(倒空间)
@guan.function_decorator
def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default'): def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default'):
import numpy as np import numpy as np
import cmath import cmath
@ -323,11 +315,10 @@ def hamiltonian_of_graphene(k1, k2, staggered_potential=0, t=1, a='default'):
h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)) h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*math.sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j/2*k2*a))
h1[0, 1] = h1[1, 0].conj() h1[0, 1] = h1[1, 0].conj()
hamiltonian = h0 + h1 hamiltonian = h0 + h1
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 石墨烯有效模型的哈密顿量(倒空间) # 石墨烯有效模型的哈密顿量(倒空间)
@guan.function_decorator
def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0): def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley_index=0):
import numpy as np import numpy as np
hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian = np.zeros((2, 2), dtype=complex)
@ -340,11 +331,10 @@ def effective_hamiltonian_of_graphene(qx, qy, t=1, staggered_potential=0, valley
else: else:
hamiltonian[0, 1] = constant*t*(-qx-1j*qy) hamiltonian[0, 1] = constant*t*(-qx-1j*qy)
hamiltonian[1, 0] = constant*t*(-qx+1j*qy) hamiltonian[1, 0] = constant*t*(-qx+1j*qy)
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 石墨烯有效模型离散化后的哈密顿量(倒空间) # 石墨烯有效模型离散化后的哈密顿量(倒空间)
@guan.function_decorator
def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggered_potential=0, valley_index=0): def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggered_potential=0, valley_index=0):
import numpy as np import numpy as np
hamiltonian = np.zeros((2, 2), dtype=complex) hamiltonian = np.zeros((2, 2), dtype=complex)
@ -357,11 +347,10 @@ def effective_hamiltonian_of_graphene_after_discretization(qx, qy, t=1, staggere
else: else:
hamiltonian[0, 1] = constant*t*(-np.sin(qx)-1j*np.sin(qy)) hamiltonian[0, 1] = constant*t*(-np.sin(qx)-1j*np.sin(qy))
hamiltonian[1, 0] = constant*t*(-np.sin(qx)+1j*np.sin(qy)) hamiltonian[1, 0] = constant*t*(-np.sin(qx)+1j*np.sin(qy))
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 准一维Zigzag边石墨烯条带的哈密顿量倒空间 # 准一维Zigzag边石墨烯条带的哈密顿量倒空间
@guan.function_decorator
def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0): def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0):
import numpy as np import numpy as np
import guan import guan
@ -388,10 +377,10 @@ def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1
h01[i*4+1, i*4+0] = t h01[i*4+1, i*4+0] = t
h01[i*4+2, i*4+3] = t h01[i*4+2, i*4+3] = t
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01) hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# Haldane模型的哈密顿量倒空间 # Haldane模型的哈密顿量倒空间
@guan.function_decorator
def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a='default'): def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a='default'):
import numpy as np import numpy as np
import cmath import cmath
@ -410,11 +399,10 @@ def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi='default', a='
h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a)) h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a))
h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a)) h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*math.sqrt(3)*k1*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*math.sqrt(3)/2*k1*a-1j*3/2*k2*a))
hamiltonian = h0 + h1 + h2 + h2.transpose().conj() hamiltonian = h0 + h1 + h2 + h2.transpose().conj()
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 准一维Haldane模型条带的哈密顿量倒空间 # 准一维Haldane模型条带的哈密顿量倒空间
@guan.function_decorator
def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi='default', period=0): def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi='default', period=0):
import numpy as np import numpy as np
import cmath import cmath
@ -466,11 +454,10 @@ def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2
for i in range(N-1): for i in range(N-1):
h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi) h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi)
hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k) hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k)
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 一个量子反常霍尔效应的哈密顿量(倒空间) # 一个量子反常霍尔效应的哈密顿量(倒空间)
@guan.function_decorator
def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1): def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1):
import numpy as np import numpy as np
import math import math
@ -479,11 +466,10 @@ def hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1):
hamiltonian[1, 0] = 2*t1*math.cos(k1)+1j*2*t1*math.cos(k2) hamiltonian[1, 0] = 2*t1*math.cos(k1)+1j*2*t1*math.cos(k2)
hamiltonian[0, 0] = m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2) hamiltonian[0, 0] = m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2)
hamiltonian[1, 1] = -(m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2)) hamiltonian[1, 1] = -(m+2*t3*math.sin(k1)+2*t3*math.sin(k2)+2*t2*math.cos(k1+k2))
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# BHZ模型的哈密顿量倒空间 # BHZ模型的哈密顿量倒空间
@guan.function_decorator
def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
import numpy as np import numpy as np
import math import math
@ -499,11 +485,10 @@ def hamiltonian_of_bhz_model(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25,
hamiltonian[3, 3] = varepsilon-d3 hamiltonian[3, 3] = varepsilon-d3
hamiltonian[2, 3] = -d1_d2 hamiltonian[2, 3] = -d1_d2
hamiltonian[3, 2] = -np.conj(d1_d2) hamiltonian[3, 2] = -np.conj(d1_d2)
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 半BHZ模型的哈密顿量自旋向上倒空间 # 半BHZ模型的哈密顿量自旋向上倒空间
@guan.function_decorator
def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
import numpy as np import numpy as np
import math import math
@ -515,11 +500,10 @@ def hamiltonian_of_half_bhz_model_for_spin_up(kx, ky, A=0.3645/5, B=-0.686/25, C
hamiltonian[1, 1] = varepsilon-d3 hamiltonian[1, 1] = varepsilon-d3
hamiltonian[0, 1] = np.conj(d1_d2) hamiltonian[0, 1] = np.conj(d1_d2)
hamiltonian[1, 0] = d1_d2 hamiltonian[1, 0] = d1_d2
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# 半BHZ模型的哈密顿量自旋向下倒空间 # 半BHZ模型的哈密顿量自旋向下倒空间
@guan.function_decorator
def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01): def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25, C=0, D=-0.512/25, M=-0.01):
import numpy as np import numpy as np
import math import math
@ -531,11 +515,10 @@ def hamiltonian_of_half_bhz_model_for_spin_down(kx, ky, A=0.3645/5, B=-0.686/25,
hamiltonian[1, 1] = varepsilon-d3 hamiltonian[1, 1] = varepsilon-d3
hamiltonian[0, 1] = -d1_d2 hamiltonian[0, 1] = -d1_d2
hamiltonian[1, 0] = -np.conj(d1_d2) hamiltonian[1, 0] = -np.conj(d1_d2)
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# BBH模型的哈密顿量倒空间 # BBH模型的哈密顿量倒空间
@guan.function_decorator
def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1): def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambda_y=1):
import numpy as np import numpy as np
import cmath import cmath
@ -552,11 +535,10 @@ def hamiltonian_of_bbh_model(kx, ky, gamma_x=0.5, gamma_y=0.5, lambda_x=1, lambd
hamiltonian[3, 1] = np.conj(hamiltonian[1, 3]) hamiltonian[3, 1] = np.conj(hamiltonian[1, 3])
hamiltonian[3, 0] = np.conj(hamiltonian[0, 3]) hamiltonian[3, 0] = np.conj(hamiltonian[0, 3])
hamiltonian[2, 1] = np.conj(hamiltonian[1, 2]) hamiltonian[2, 1] = np.conj(hamiltonian[1, 2])
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian
# Kagome模型的哈密顿量倒空间 # Kagome模型的哈密顿量倒空间
@guan.function_decorator
def hamiltonian_of_kagome_lattice(kx, ky, t=1): def hamiltonian_of_kagome_lattice(kx, ky, t=1):
import numpy as np import numpy as np
import math import math
@ -569,6 +551,4 @@ def hamiltonian_of_kagome_lattice(kx, ky, t=1):
hamiltonian[1, 2] = 2*math.cos(k3_dot_a3) hamiltonian[1, 2] = 2*math.cos(k3_dot_a3)
hamiltonian = hamiltonian + hamiltonian.transpose().conj() hamiltonian = hamiltonian + hamiltonian.transpose().conj()
hamiltonian = -t*hamiltonian hamiltonian = -t*hamiltonian
import guan
guan.statistics_of_guan_package()
return hamiltonian return hamiltonian

View File

@ -1,5 +1,13 @@
# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com. The GitHub location of this package is on https://github.com/guanjihuan/py.guanjihuan.com. # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com. The GitHub location of this package is on https://github.com/guanjihuan/py.guanjihuan.com.
# 函数的装饰器,用于软件包的统计
def function_decorator(func):
def wrapper():
func()
import guan
guan.statistics_of_guan_package(func.__name__)
return wrapper
from .basic_functions import * from .basic_functions import *
from .Fourier_transform import * from .Fourier_transform import *
from .Hamiltonian_of_examples import * from .Hamiltonian_of_examples import *

View File

@ -1,17 +1,18 @@
# Module: band_structures_and_wave_functions # Module: band_structures_and_wave_functions
import guan
# 计算哈密顿量的本征值 # 计算哈密顿量的本征值
@guan.function_decorator
def calculate_eigenvalue(hamiltonian): def calculate_eigenvalue(hamiltonian):
import numpy as np import numpy as np
if np.array(hamiltonian).shape==(): if np.array(hamiltonian).shape==():
eigenvalue = np.real(hamiltonian) eigenvalue = np.real(hamiltonian)
else: else:
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
import guan
guan.statistics_of_guan_package()
return eigenvalue return eigenvalue
# 输入哈密顿量函数(带一组参数),计算一组参数下的本征值,返回本征值向量组 # 输入哈密顿量函数(带一组参数),计算一组参数下的本征值,返回本征值向量组
@guan.function_decorator
def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0): def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0):
import numpy as np import numpy as np
dim_x = np.array(x_array).shape[0] dim_x = np.array(x_array).shape[0]
@ -32,11 +33,10 @@ def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
eigenvalue_array[i0, :] = eigenvalue eigenvalue_array[i0, :] = eigenvalue
i0 += 1 i0 += 1
import guan
guan.statistics_of_guan_package()
return eigenvalue_array return eigenvalue_array
# 输入哈密顿量函数(带两组参数),计算两组参数下的本征值,返回本征值向量组 # 输入哈密顿量函数(带两组参数),计算两组参数下的本征值,返回本征值向量组
@guan.function_decorator
def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0): def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0):
import numpy as np import numpy as np
dim_x = np.array(x_array).shape[0] dim_x = np.array(x_array).shape[0]
@ -67,19 +67,17 @@ def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_funct
eigenvalue_array[i0, j0, :] = eigenvalue eigenvalue_array[i0, j0, :] = eigenvalue
j0 += 1 j0 += 1
i0 += 1 i0 += 1
import guan
guan.statistics_of_guan_package()
return eigenvalue_array return eigenvalue_array
# 计算哈密顿量的本征矢 # 计算哈密顿量的本征矢
@guan.function_decorator
def calculate_eigenvector(hamiltonian): def calculate_eigenvector(hamiltonian):
import numpy as np import numpy as np
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
import guan
guan.statistics_of_guan_package()
return eigenvector return eigenvector
# 通过二分查找的方法获取和相邻波函数一样规范的波函数 # 通过二分查找的方法获取和相邻波函数一样规范的波函数
@guan.function_decorator
def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=1000, precision=1e-6): def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=1000, precision=1e-6):
import numpy as np import numpy as np
import cmath import cmath
@ -116,11 +114,10 @@ def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref
vector_target = vector_target*cmath.exp(1j*phase) vector_target = vector_target*cmath.exp(1j*phase)
if show_phase==1: if show_phase==1:
print('Phase=', phase) print('Phase=', phase)
import guan
guan.statistics_of_guan_package()
return vector_target return vector_target
# 通过使得波函数的一个非零分量为实数,得到固定规范的波函数 # 通过使得波函数的一个非零分量为实数,得到固定规范的波函数
@guan.function_decorator
def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None): def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None):
import numpy as np import numpy as np
import cmath import cmath
@ -136,11 +133,10 @@ def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=
vector = vector*cmath.exp(1j*phase) vector = vector*cmath.exp(1j*phase)
if np.real(vector[index]) < 0: if np.real(vector[index]) < 0:
vector = -vector vector = -vector
import guan
guan.statistics_of_guan_package()
return vector return vector
# 通过使得波函数的一个非零分量为实数,得到固定规范的波函数(在一组波函数中选取最大的那个分量) # 通过使得波函数的一个非零分量为实数,得到固定规范的波函数(在一组波函数中选取最大的那个分量)
@guan.function_decorator
def find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array, precision=0.005): def find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array, precision=0.005):
import numpy as np import numpy as np
import guan import guan
@ -151,10 +147,10 @@ def find_vector_array_with_fixed_gauge_by_making_one_component_real(vector_array
index = np.argmax(np.abs(vector_sum)) index = np.argmax(np.abs(vector_sum))
for i0 in range(Num_k): for i0 in range(Num_k):
vector_array[i0] = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector_array[i0], precision=precision, index=index) vector_array[i0] = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector_array[i0], precision=precision, index=index)
guan.statistics_of_guan_package()
return vector_array return vector_array
# 旋转两个简并的波函数(说明:参数比较多,算法效率不高) # 旋转两个简并的波函数(说明:参数比较多,算法效率不高)
@guan.function_decorator
def rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, precision=0.01, criterion=0.01, show_theta=0): def rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, precision=0.01, criterion=0.01, show_theta=0):
import numpy as np import numpy as np
import math import math
@ -181,11 +177,10 @@ def rotation_of_degenerate_vectors(vector1, vector2, index1=None, index2=None, p
break break
if np.abs(vector1_test[index2])<criterion and np.abs(vector2_test[index1])<criterion: if np.abs(vector1_test[index2])<criterion and np.abs(vector2_test[index1])<criterion:
break break
import guan
guan.statistics_of_guan_package()
return vector1, vector2 return vector1, vector2
# 旋转两个简并的波函数向量组(说明:参数比较多,算法效率不高) # 旋转两个简并的波函数向量组(说明:参数比较多,算法效率不高)
@guan.function_decorator
def rotation_of_degenerate_vectors_array(vector1_array, vector2_array, precision=0.01, criterion=0.01, show_theta=0): def rotation_of_degenerate_vectors_array(vector1_array, vector2_array, precision=0.01, criterion=0.01, show_theta=0):
import numpy as np import numpy as np
import guan import guan
@ -200,10 +195,10 @@ def rotation_of_degenerate_vectors_array(vector1_array, vector2_array, precision
index2 = np.argmax(np.abs(vector2_sum)) index2 = np.argmax(np.abs(vector2_sum))
for i0 in range(Num_k): for i0 in range(Num_k):
vector1_array[i0], vector2_array[i0] = guan.rotation_of_degenerate_vectors(vector1=vector1_array[i0], vector2=vector2_array[i0], index1=index1, index2=index2, precision=precision, criterion=criterion, show_theta=show_theta) vector1_array[i0], vector2_array[i0] = guan.rotation_of_degenerate_vectors(vector1=vector1_array[i0], vector2=vector2_array[i0], index1=index1, index2=index2, precision=precision, criterion=criterion, show_theta=show_theta)
guan.statistics_of_guan_package()
return vector1_array, vector2_array return vector1_array, vector2_array
# 在一组数据中找到数值相近的数 # 在一组数据中找到数值相近的数
@guan.function_decorator
def find_close_values_in_one_array(array, precision=1e-2): def find_close_values_in_one_array(array, precision=1e-2):
new_array = [] new_array = []
i0 = 0 i0 = 0
@ -214,11 +209,10 @@ def find_close_values_in_one_array(array, precision=1e-2):
new_array.append([a1, a2]) new_array.append([a1, a2])
j0 +=1 j0 +=1
i0 += 1 i0 += 1
import guan
guan.statistics_of_guan_package()
return new_array return new_array
# 寻找能带的简并点 # 寻找能带的简并点
@guan.function_decorator
def find_degenerate_points(k_array, eigenvalue_array, precision=1e-2): def find_degenerate_points(k_array, eigenvalue_array, precision=1e-2):
import guan import guan
degenerate_k_array = [] degenerate_k_array = []
@ -230,6 +224,4 @@ def find_degenerate_points(k_array, eigenvalue_array, precision=1e-2):
degenerate_k_array.append(k) degenerate_k_array.append(k)
degenerate_eigenvalue_array.append(degenerate_points) degenerate_eigenvalue_array.append(degenerate_points)
i0 += 1 i0 += 1
import guan
guan.statistics_of_guan_package()
return degenerate_k_array, degenerate_eigenvalue_array return degenerate_k_array, degenerate_eigenvalue_array

View File

@ -1,129 +1,125 @@
# Module: basic_functions # Module: basic_functions
import guan
# 测试 # 测试
@guan.function_decorator
def test(): def test():
print('\nSuccess in the installation of Guan package!\n') print('\nSuccess in the installation of Guan package!\n')
import guan
guan.statistics_of_guan_package()
# 泡利矩阵 # 泡利矩阵
@guan.function_decorator
def sigma_0(): def sigma_0():
import numpy as np import numpy as np
import guan
guan.statistics_of_guan_package()
return np.eye(2) return np.eye(2)
@guan.function_decorator
def sigma_x(): def sigma_x():
import numpy as np import numpy as np
import guan
guan.statistics_of_guan_package()
return np.array([[0, 1],[1, 0]]) return np.array([[0, 1],[1, 0]])
@guan.function_decorator
def sigma_y(): def sigma_y():
import numpy as np import numpy as np
import guan
guan.statistics_of_guan_package()
return np.array([[0, -1j],[1j, 0]]) return np.array([[0, -1j],[1j, 0]])
@guan.function_decorator
def sigma_z(): def sigma_z():
import numpy as np import numpy as np
import guan
guan.statistics_of_guan_package()
return np.array([[1, 0],[0, -1]]) return np.array([[1, 0],[0, -1]])
# 泡利矩阵的张量积 # 泡利矩阵的张量积
@guan.function_decorator
def sigma_00(): def sigma_00():
import numpy as np import numpy as np
import guan import guan
guan.statistics_of_guan_package()
return np.kron(guan.sigma_0(), guan.sigma_0()) return np.kron(guan.sigma_0(), guan.sigma_0())
@guan.function_decorator
def sigma_0x(): def sigma_0x():
import numpy as np import numpy as np
import guan import guan
guan.statistics_of_guan_package()
return np.kron(guan.sigma_0(), guan.sigma_x()) return np.kron(guan.sigma_0(), guan.sigma_x())
@guan.function_decorator
def sigma_0y(): def sigma_0y():
import numpy as np import numpy as np
import guan import guan
guan.statistics_of_guan_package()
return np.kron(guan.sigma_0(), guan.sigma_y()) return np.kron(guan.sigma_0(), guan.sigma_y())
@guan.function_decorator
def sigma_0z(): def sigma_0z():
import numpy as np import numpy as np
import guan import guan
guan.statistics_of_guan_package()
return np.kron(guan.sigma_0(), guan.sigma_z()) return np.kron(guan.sigma_0(), guan.sigma_z())
@guan.function_decorator
def sigma_x0(): def sigma_x0():
import numpy as np import numpy as np
import guan import guan
guan.statistics_of_guan_package()
return np.kron(guan.sigma_x(), guan.sigma_0()) return np.kron(guan.sigma_x(), guan.sigma_0())
@guan.function_decorator
def sigma_xx(): def sigma_xx():
import numpy as np import numpy as np
import guan import guan
guan.statistics_of_guan_package()
return np.kron(guan.sigma_x(), guan.sigma_x()) return np.kron(guan.sigma_x(), guan.sigma_x())
@guan.function_decorator
def sigma_xy(): def sigma_xy():
import numpy as np import numpy as np
import guan import guan
guan.statistics_of_guan_package()
return np.kron(guan.sigma_x(), guan.sigma_y()) return np.kron(guan.sigma_x(), guan.sigma_y())
@guan.function_decorator
def sigma_xz(): def sigma_xz():
import numpy as np import numpy as np
import guan import guan
guan.statistics_of_guan_package()
return np.kron(guan.sigma_x(), guan.sigma_z()) return np.kron(guan.sigma_x(), guan.sigma_z())
@guan.function_decorator
def sigma_y0(): def sigma_y0():
import numpy as np import numpy as np
import guan import guan
guan.statistics_of_guan_package()
return np.kron(guan.sigma_y(), guan.sigma_0()) return np.kron(guan.sigma_y(), guan.sigma_0())
@guan.function_decorator
def sigma_yx(): def sigma_yx():
import numpy as np import numpy as np
import guan import guan
guan.statistics_of_guan_package()
return np.kron(guan.sigma_y(), guan.sigma_x()) return np.kron(guan.sigma_y(), guan.sigma_x())
@guan.function_decorator
def sigma_yy(): def sigma_yy():
import numpy as np import numpy as np
import guan import guan
guan.statistics_of_guan_package()
return np.kron(guan.sigma_y(), guan.sigma_y()) return np.kron(guan.sigma_y(), guan.sigma_y())
@guan.function_decorator
def sigma_yz(): def sigma_yz():
import numpy as np import numpy as np
import guan import guan
guan.statistics_of_guan_package()
return np.kron(guan.sigma_y(), guan.sigma_z()) return np.kron(guan.sigma_y(), guan.sigma_z())
@guan.function_decorator
def sigma_z0(): def sigma_z0():
import numpy as np import numpy as np
import guan import guan
guan.statistics_of_guan_package()
return np.kron(guan.sigma_z(), guan.sigma_0()) return np.kron(guan.sigma_z(), guan.sigma_0())
@guan.function_decorator
def sigma_zx(): def sigma_zx():
import numpy as np import numpy as np
import guan import guan
guan.statistics_of_guan_package()
return np.kron(guan.sigma_z(), guan.sigma_x()) return np.kron(guan.sigma_z(), guan.sigma_x())
@guan.function_decorator
def sigma_zy(): def sigma_zy():
import numpy as np import numpy as np
import guan import guan
guan.statistics_of_guan_package()
return np.kron(guan.sigma_z(), guan.sigma_y()) return np.kron(guan.sigma_z(), guan.sigma_y())
@guan.function_decorator
def sigma_zz(): def sigma_zz():
import numpy as np import numpy as np
import guan import guan
guan.statistics_of_guan_package()
return np.kron(guan.sigma_z(), guan.sigma_z()) return np.kron(guan.sigma_z(), guan.sigma_z())

View File

@ -1,6 +1,8 @@
# Module: data_processing (including figure-plotting and file-reading/writing) # Module: data_processing (including figure-plotting and file-reading/writing)
import guan
# 导入plt, fig, ax # 导入plt, fig, ax
@guan.function_decorator
def import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20): def import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20):
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
fig, ax = plt.subplots() fig, ax = plt.subplots()
@ -9,11 +11,10 @@ def import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20
ax.tick_params(labelsize=labelsize) ax.tick_params(labelsize=labelsize)
labels = ax.get_xticklabels() + ax.get_yticklabels() labels = ax.get_xticklabels() + ax.get_yticklabels()
[label.set_fontname('Times New Roman') for label in labels] [label.set_fontname('Times New Roman') for label in labels]
import guan
guan.statistics_of_guan_package()
return plt, fig, ax return plt, fig, ax
# 基于plt, fig, ax画图 # 基于plt, fig, ax画图
@guan.function_decorator
def plot_without_starting_fig(plt, fig, ax, x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, style='', y_min=None, y_max=None, linewidth=None, markersize=None, color=None): def plot_without_starting_fig(plt, fig, ax, x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, style='', y_min=None, y_max=None, linewidth=None, markersize=None, color=None):
if color==None: if color==None:
ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize) ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize)
@ -28,10 +29,9 @@ def plot_without_starting_fig(plt, fig, ax, x_array, y_array, xlabel='x', ylabel
if y_max==None: if y_max==None:
y_max=max(y_array) y_max=max(y_array)
ax.set_ylim(y_min, y_max) ax.set_ylim(y_min, y_max)
import guan
guan.statistics_of_guan_package()
# 画图 # 画图
@guan.function_decorator
def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2): def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2):
import guan import guan
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
@ -50,9 +50,9 @@ def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labels
if show == 1: if show == 1:
plt.show() plt.show()
plt.close('all') plt.close('all')
guan.statistics_of_guan_package()
# 一组横坐标数据,两组纵坐标数据画图 # 一组横坐标数据,两组纵坐标数据画图
@guan.function_decorator
def plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2): def plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):
import guan import guan
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
@ -76,9 +76,9 @@ def plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title=''
if show == 1: if show == 1:
plt.show() plt.show()
plt.close('all') plt.close('all')
guan.statistics_of_guan_package()
# 两组横坐标数据,两组纵坐标数据画图 # 两组横坐标数据,两组纵坐标数据画图
@guan.function_decorator
def plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2): def plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):
import guan import guan
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
@ -102,9 +102,9 @@ def plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_ar
if show == 1: if show == 1:
plt.show() plt.show()
plt.close('all') plt.close('all')
guan.statistics_of_guan_package()
# 一组横坐标数据,三组纵坐标数据画图 # 一组横坐标数据,三组纵坐标数据画图
@guan.function_decorator
def plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2): def plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):
import guan import guan
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
@ -131,9 +131,9 @@ def plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='
if show == 1: if show == 1:
plt.show() plt.show()
plt.close('all') plt.close('all')
guan.statistics_of_guan_package()
# 三组横坐标数据,三组纵坐标数据画图 # 三组横坐标数据,三组纵坐标数据画图
@guan.function_decorator
def plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2): def plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):
import guan import guan
plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)
@ -160,9 +160,9 @@ def plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y
if show == 1: if show == 1:
plt.show() plt.show()
plt.close('all') plt.close('all')
guan.statistics_of_guan_package()
# 画三维图 # 画三维图
@guan.function_decorator
def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', file_format='.jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100): def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', file_format='.jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100):
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
@ -202,10 +202,9 @@ def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z'
if show == 1: if show == 1:
plt.show() plt.show()
plt.close('all') plt.close('all')
import guan
guan.statistics_of_guan_package()
# 画Contour图 # 画Contour图
@guan.function_decorator
def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300): def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300):
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
@ -229,10 +228,9 @@ def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fon
if show == 1: if show == 1:
plt.show() plt.show()
plt.close('all') plt.close('all')
import guan
guan.statistics_of_guan_package()
# 画棋盘图/伪彩色图 # 画棋盘图/伪彩色图
@guan.function_decorator
def plot_pcolor(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300): def plot_pcolor(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300):
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
@ -256,10 +254,9 @@ def plot_pcolor(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', font
if show == 1: if show == 1:
plt.show() plt.show()
plt.close('all') plt.close('all')
import guan
guan.statistics_of_guan_package()
# 通过坐标画点和线 # 通过坐标画点和线
@guan.function_decorator
def draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distance=1.1, line_style='-k', linewidth=1, dot_style='ro', markersize=3, show=1, save=0, filename='a', file_format='.eps', dpi=300): def draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distance=1.1, line_style='-k', linewidth=1, dot_style='ro', markersize=3, show=1, save=0, filename='a', file_format='.eps', dpi=300):
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
@ -285,10 +282,9 @@ def draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distanc
plt.savefig(filename+file_format) plt.savefig(filename+file_format)
else: else:
plt.savefig(filename+file_format, dpi=dpi) plt.savefig(filename+file_format, dpi=dpi)
import guan
guan.statistics_of_guan_package()
# 合并两个图片 # 合并两个图片
@guan.function_decorator
def combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filename='a', file_format='.jpg', dpi=300): def combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filename='a', file_format='.jpg', dpi=300):
import numpy as np import numpy as np
num = np.array(image_path_array).shape[0] num = np.array(image_path_array).shape[0]
@ -312,10 +308,9 @@ def combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filenam
if save == 1: if save == 1:
plt.savefig(filename+file_format, dpi=dpi) plt.savefig(filename+file_format, dpi=dpi)
plt.close('all') plt.close('all')
import guan
guan.statistics_of_guan_package()
# 合并三个图片 # 合并三个图片
@guan.function_decorator
def combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filename='a', file_format='.jpg', dpi=300): def combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filename='a', file_format='.jpg', dpi=300):
import numpy as np import numpy as np
num = np.array(image_path_array).shape[0] num = np.array(image_path_array).shape[0]
@ -343,10 +338,9 @@ def combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filen
if save == 1: if save == 1:
plt.savefig(filename+file_format, dpi=dpi) plt.savefig(filename+file_format, dpi=dpi)
plt.close('all') plt.close('all')
import guan
guan.statistics_of_guan_package()
# 合并四个图片 # 合并四个图片
@guan.function_decorator
def combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filename='a', file_format='.jpg', dpi=300): def combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filename='a', file_format='.jpg', dpi=300):
import numpy as np import numpy as np
num = np.array(image_path_array).shape[0] num = np.array(image_path_array).shape[0]
@ -378,10 +372,9 @@ def combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filen
if save == 1: if save == 1:
plt.savefig(filename+file_format, dpi=dpi) plt.savefig(filename+file_format, dpi=dpi)
plt.close('all') plt.close('all')
import guan
guan.statistics_of_guan_package()
# 对某个目录中的txt文件批量读取和画图 # 对某个目录中的txt文件批量读取和画图
@guan.function_decorator
def batch_reading_and_plotting(directory, xlabel='x', ylabel='y'): def batch_reading_and_plotting(directory, xlabel='x', ylabel='y'):
import re import re
import os import os
@ -392,9 +385,9 @@ def batch_reading_and_plotting(directory, xlabel='x', ylabel='y'):
filename = file[:-4] filename = file[:-4]
x_array, y_array = guan.read_one_dimensional_data(filename=filename) x_array, y_array = guan.read_one_dimensional_data(filename=filename)
guan.plot(x_array, y_array, xlabel=xlabel, ylabel=ylabel, title=filename, show=0, save=1, filename=filename) guan.plot(x_array, y_array, xlabel=xlabel, ylabel=ylabel, title=filename, show=0, save=1, filename=filename)
guan.statistics_of_guan_package()
# 将图片制作GIF动画 # 将图片制作GIF动画
@guan.function_decorator
def make_gif(image_path_array, filename='a', duration=0.1): def make_gif(image_path_array, filename='a', duration=0.1):
import imageio import imageio
images = [] images = []
@ -402,34 +395,30 @@ def make_gif(image_path_array, filename='a', duration=0.1):
im = imageio.imread(image_path) im = imageio.imread(image_path)
images.append(im) images.append(im)
imageio.mimsave(filename+'.gif', images, 'GIF', duration=duration) imageio.mimsave(filename+'.gif', images, 'GIF', duration=duration)
import guan
guan.statistics_of_guan_package()
# 选取Matplotlib颜色 # 选取Matplotlib颜色
@guan.function_decorator
def color_matplotlib(): def color_matplotlib():
color_array = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'] color_array = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan']
import guan
guan.statistics_of_guan_package()
return color_array return color_array
# 将变量存到文件 # 将变量存到文件
@guan.function_decorator
def dump_data(data, filename, file_format='.txt'): def dump_data(data, filename, file_format='.txt'):
import pickle import pickle
with open(filename+file_format, 'wb') as f: with open(filename+file_format, 'wb') as f:
pickle.dump(data, f) pickle.dump(data, f)
import guan
guan.statistics_of_guan_package()
# 从文件中恢复数据到变量 # 从文件中恢复数据到变量
@guan.function_decorator
def load_data(filename, file_format='.txt'): def load_data(filename, file_format='.txt'):
import pickle import pickle
with open(filename+file_format, 'rb') as f: with open(filename+file_format, 'rb') as f:
data = pickle.load(f) data = pickle.load(f)
import guan
guan.statistics_of_guan_package()
return data return data
# 读取文件中的一维数据一行一组x和y # 读取文件中的一维数据一行一组x和y
@guan.function_decorator
def read_one_dimensional_data(filename='a', file_format='.txt'): def read_one_dimensional_data(filename='a', file_format='.txt'):
import numpy as np import numpy as np
f = open(filename+file_format, 'r') f = open(filename+file_format, 'r')
@ -450,11 +439,10 @@ def read_one_dimensional_data(filename='a', file_format='.txt'):
y_array = [y_row] y_array = [y_row]
else: else:
y_array = np.append(y_array, [y_row], axis=0) y_array = np.append(y_array, [y_row], axis=0)
import guan
guan.statistics_of_guan_package()
return x_array, y_array return x_array, y_array
# 读取文件中的一维数据一行一组x和y支持复数形式 # 读取文件中的一维数据一行一组x和y支持复数形式
@guan.function_decorator
def read_one_dimensional_complex_data(filename='a', file_format='.txt'): def read_one_dimensional_complex_data(filename='a', file_format='.txt'):
import numpy as np import numpy as np
f = open(filename+file_format, 'r') f = open(filename+file_format, 'r')
@ -475,11 +463,10 @@ def read_one_dimensional_complex_data(filename='a', file_format='.txt'):
y_array = [y_row] y_array = [y_row]
else: else:
y_array = np.append(y_array, [y_row], axis=0) y_array = np.append(y_array, [y_row], axis=0)
import guan
guan.statistics_of_guan_package()
return x_array, y_array return x_array, y_array
# 读取文件中的二维数据(第一行和第一列分别为横纵坐标) # 读取文件中的二维数据(第一行和第一列分别为横纵坐标)
@guan.function_decorator
def read_two_dimensional_data(filename='a', file_format='.txt'): def read_two_dimensional_data(filename='a', file_format='.txt'):
import numpy as np import numpy as np
f = open(filename+file_format, 'r') f = open(filename+file_format, 'r')
@ -506,11 +493,10 @@ def read_two_dimensional_data(filename='a', file_format='.txt'):
matrix = [matrix_row] matrix = [matrix_row]
else: else:
matrix = np.append(matrix, [matrix_row], axis=0) matrix = np.append(matrix, [matrix_row], axis=0)
import guan
guan.statistics_of_guan_package()
return x_array, y_array, matrix return x_array, y_array, matrix
# 读取文件中的二维数据(第一行和第一列分别为横纵坐标)(支持复数形式) # 读取文件中的二维数据(第一行和第一列分别为横纵坐标)(支持复数形式)
@guan.function_decorator
def read_two_dimensional_complex_data(filename='a', file_format='.txt'): def read_two_dimensional_complex_data(filename='a', file_format='.txt'):
import numpy as np import numpy as np
f = open(filename+file_format, 'r') f = open(filename+file_format, 'r')
@ -537,34 +523,30 @@ def read_two_dimensional_complex_data(filename='a', file_format='.txt'):
matrix = [matrix_row] matrix = [matrix_row]
else: else:
matrix = np.append(matrix, [matrix_row], axis=0) matrix = np.append(matrix, [matrix_row], axis=0)
import guan
guan.statistics_of_guan_package()
return x_array, y_array, matrix return x_array, y_array, matrix
# 读取文件中的二维数据不包括x和y # 读取文件中的二维数据不包括x和y
@guan.function_decorator
def read_two_dimensional_data_without_xy_array(filename='a', file_format='.txt'): def read_two_dimensional_data_without_xy_array(filename='a', file_format='.txt'):
import numpy as np import numpy as np
matrix = np.loadtxt(filename+file_format) matrix = np.loadtxt(filename+file_format)
import guan
guan.statistics_of_guan_package()
return matrix return matrix
# 打开文件用于新增内容 # 打开文件用于新增内容
@guan.function_decorator
def open_file(filename='a', file_format='.txt'): def open_file(filename='a', file_format='.txt'):
f = open(filename+file_format, 'a', encoding='UTF-8') f = open(filename+file_format, 'a', encoding='UTF-8')
import guan
guan.statistics_of_guan_package()
return f return f
# 在文件中写入一维数据一行一组x和y # 在文件中写入一维数据一行一组x和y
@guan.function_decorator
def write_one_dimensional_data(x_array, y_array, filename='a', file_format='.txt'): def write_one_dimensional_data(x_array, y_array, filename='a', file_format='.txt'):
import guan import guan
with open(filename+file_format, 'w', encoding='UTF-8') as f: with open(filename+file_format, 'w', encoding='UTF-8') as f:
guan.write_one_dimensional_data_without_opening_file(x_array, y_array, f) guan.write_one_dimensional_data_without_opening_file(x_array, y_array, f)
import guan
guan.statistics_of_guan_package()
# 在文件中写入一维数据一行一组x和y需要输入已打开的文件 # 在文件中写入一维数据一行一组x和y需要输入已打开的文件
@guan.function_decorator
def write_one_dimensional_data_without_opening_file(x_array, y_array, f): def write_one_dimensional_data_without_opening_file(x_array, y_array, f):
import numpy as np import numpy as np
x_array = np.array(x_array) x_array = np.array(x_array)
@ -579,17 +561,16 @@ def write_one_dimensional_data_without_opening_file(x_array, y_array, f):
f.write(str(y_array[i0, j0])+' ') f.write(str(y_array[i0, j0])+' ')
f.write('\n') f.write('\n')
i0 += 1 i0 += 1
import guan
guan.statistics_of_guan_package()
# 在文件中写入二维数据(第一行和第一列分别为横纵坐标) # 在文件中写入二维数据(第一行和第一列分别为横纵坐标)
@guan.function_decorator
def write_two_dimensional_data(x_array, y_array, matrix, filename='a', file_format='.txt'): def write_two_dimensional_data(x_array, y_array, matrix, filename='a', file_format='.txt'):
import guan import guan
with open(filename+file_format, 'w', encoding='UTF-8') as f: with open(filename+file_format, 'w', encoding='UTF-8') as f:
guan.write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f) guan.write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f)
guan.statistics_of_guan_package()
# 在文件中写入二维数据(第一行和第一列分别为横纵坐标)(需要输入已打开的文件) # 在文件中写入二维数据(第一行和第一列分别为横纵坐标)(需要输入已打开的文件)
@guan.function_decorator
def write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f): def write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f):
import numpy as np import numpy as np
x_array = np.array(x_array) x_array = np.array(x_array)
@ -608,26 +589,25 @@ def write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f)
j0 += 1 j0 += 1
f.write('\n') f.write('\n')
i0 += 1 i0 += 1
import guan
guan.statistics_of_guan_package()
# 在文件中写入二维数据不包括x和y # 在文件中写入二维数据不包括x和y
@guan.function_decorator
def write_two_dimensional_data_without_xy_array(matrix, filename='a', file_format='.txt'): def write_two_dimensional_data_without_xy_array(matrix, filename='a', file_format='.txt'):
import guan import guan
with open(filename+file_format, 'w', encoding='UTF-8') as f: with open(filename+file_format, 'w', encoding='UTF-8') as f:
guan.write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f) guan.write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f)
guan.statistics_of_guan_package()
# 在文件中写入二维数据不包括x和y需要输入已打开的文件 # 在文件中写入二维数据不包括x和y需要输入已打开的文件
@guan.function_decorator
def write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f): def write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f):
for row in matrix: for row in matrix:
for element in row: for element in row:
f.write(str(element)+' ') f.write(str(element)+' ')
f.write('\n') f.write('\n')
import guan import guan
guan.statistics_of_guan_package()
# 以显示编号的样式,打印数组 # 以显示编号的样式,打印数组
@guan.function_decorator
def print_array_with_index(array, show_index=1, index_type=0): def print_array_with_index(array, show_index=1, index_type=0):
if show_index==0: if show_index==0:
for i0 in array: for i0 in array:
@ -643,10 +623,9 @@ def print_array_with_index(array, show_index=1, index_type=0):
for i0 in array: for i0 in array:
index += 1 index += 1
print(index, i0) print(index, i0)
import guan
guan.statistics_of_guan_package()
# 获取目录中的所有文件名 # 获取目录中的所有文件名
@guan.function_decorator
def get_all_filenames_in_directory(directory='./', file_format=None): def get_all_filenames_in_directory(directory='./', file_format=None):
import os import os
file_list = [] file_list = []
@ -660,6 +639,7 @@ def get_all_filenames_in_directory(directory='./', file_format=None):
return file_list return file_list
# 读取文件夹中某种文本文件类型的文件路径和内容 # 读取文件夹中某种文本文件类型的文件路径和内容
@guan.function_decorator
def read_text_files_in_directory(directory='./', file_format='.md'): def read_text_files_in_directory(directory='./', file_format='.md'):
import os import os
file_list = [] file_list = []
@ -671,11 +651,10 @@ def read_text_files_in_directory(directory='./', file_format='.md'):
for file in file_list: for file in file_list:
with open(file, 'r') as f: with open(file, 'r') as f:
content_array.append(f.read()) content_array.append(f.read())
import guan
guan.statistics_of_guan_package()
return file_list, content_array return file_list, content_array
# 在多个文本文件中查找关键词 # 在多个文本文件中查找关键词
@guan.function_decorator
def find_words_in_multiple_files(words, directory='./', file_format='.md'): def find_words_in_multiple_files(words, directory='./', file_format='.md'):
import guan import guan
file_list, content_array = guan.read_text_files_in_directory(directory=directory, file_format=file_format) file_list, content_array = guan.read_text_files_in_directory(directory=directory, file_format=file_format)
@ -684,10 +663,10 @@ def find_words_in_multiple_files(words, directory='./', file_format='.md'):
for i0 in range(num_files): for i0 in range(num_files):
if words in content_array[i0]: if words in content_array[i0]:
file_list_with_words.append(file_list[i0]) file_list_with_words.append(file_list[i0])
guan.statistics_of_guan_package()
return file_list_with_words return file_list_with_words
# 并行计算前的预处理,把参数分成多份 # 并行计算前的预处理,把参数分成多份
@guan.function_decorator
def preprocess_for_parallel_calculations(parameter_array_all, cpus=1, task_index=0): def preprocess_for_parallel_calculations(parameter_array_all, cpus=1, task_index=0):
import numpy as np import numpy as np
num_all = np.array(parameter_array_all).shape[0] num_all = np.array(parameter_array_all).shape[0]
@ -700,36 +679,32 @@ def preprocess_for_parallel_calculations(parameter_array_all, cpus=1, task_index
parameter_array = parameter_array_all[task_index*num_parameter:(task_index+1)*num_parameter] parameter_array = parameter_array_all[task_index*num_parameter:(task_index+1)*num_parameter]
else: else:
parameter_array = parameter_array_all[task_index*num_parameter:num_all] parameter_array = parameter_array_all[task_index*num_parameter:num_all]
import guan
guan.statistics_of_guan_package()
return parameter_array return parameter_array
# 随机获得一个整数,左闭右闭 # 随机获得一个整数,左闭右闭
@guan.function_decorator
def get_random_number(start=0, end=1): def get_random_number(start=0, end=1):
import random import random
rand_number = random.randint(start, end) # 左闭右闭 [start, end] rand_number = random.randint(start, end) # 左闭右闭 [start, end]
import guan
guan.statistics_of_guan_package()
return rand_number return rand_number
# 选取一个种子生成固定的随机整数 # 选取一个种子生成固定的随机整数
@guan.function_decorator
def generate_random_int_number_for_a_specific_seed(seed=0, x_min=0, x_max=10): def generate_random_int_number_for_a_specific_seed(seed=0, x_min=0, x_max=10):
import numpy as np import numpy as np
np.random.seed(seed) np.random.seed(seed)
rand_num = np.random.randint(x_min, x_max) # 左闭右开[x_min, x_max) rand_num = np.random.randint(x_min, x_max) # 左闭右开[x_min, x_max)
import guan
guan.statistics_of_guan_package()
return rand_num return rand_num
# 使用jieba软件包进行分词 # 使用jieba软件包进行分词
@guan.function_decorator
def divide_text_into_words(text): def divide_text_into_words(text):
import jieba import jieba
words = jieba.lcut(text) words = jieba.lcut(text)
import guan
guan.statistics_of_guan_package()
return words return words
# 判断某个字符是中文还是英文或其他 # 判断某个字符是中文还是英文或其他
@guan.function_decorator
def check_Chinese_or_English(a): def check_Chinese_or_English(a):
if '\u4e00' <= a <= '\u9fff' : if '\u4e00' <= a <= '\u9fff' :
word_type = 'Chinese' word_type = 'Chinese'
@ -740,6 +715,7 @@ def check_Chinese_or_English(a):
return word_type return word_type
# 统计中英文文本的字数,默认不包括空格 # 统计中英文文本的字数,默认不包括空格
@guan.function_decorator
def count_words(text, include_space=0, show_words=0): def count_words(text, include_space=0, show_words=0):
import jieba import jieba
import guan import guan
@ -764,46 +740,41 @@ def count_words(text, include_space=0, show_words=0):
new_words_2.append(word) new_words_2.append(word)
if show_words == 1: if show_words == 1:
print(new_words_2) print(new_words_2)
import guan
guan.statistics_of_guan_package()
return num_words return num_words
# 将RGB转成HEX # 将RGB转成HEX
@guan.function_decorator
def rgb_to_hex(rgb, pound=1): def rgb_to_hex(rgb, pound=1):
import guan
guan.statistics_of_guan_package()
if pound==0: if pound==0:
return '%02x%02x%02x' % rgb return '%02x%02x%02x' % rgb
else: else:
return '#%02x%02x%02x' % rgb return '#%02x%02x%02x' % rgb
# 将HEX转成RGB # 将HEX转成RGB
@guan.function_decorator
def hex_to_rgb(hex): def hex_to_rgb(hex):
hex = hex.lstrip('#') hex = hex.lstrip('#')
length = len(hex) length = len(hex)
import guan
guan.statistics_of_guan_package()
return tuple(int(hex[i:i+length//3], 16) for i in range(0, length, length//3)) return tuple(int(hex[i:i+length//3], 16) for i in range(0, length, length//3))
# 使用MD5进行散列加密 # 使用MD5进行散列加密
@guan.function_decorator
def encryption_MD5(password, salt=''): def encryption_MD5(password, salt=''):
import hashlib import hashlib
password = salt+password password = salt+password
hashed_password = hashlib.md5(password.encode()).hexdigest() hashed_password = hashlib.md5(password.encode()).hexdigest()
import guan
guan.statistics_of_guan_package()
return hashed_password return hashed_password
# 使用SHA-256进行散列加密 # 使用SHA-256进行散列加密
@guan.function_decorator
def encryption_SHA_256(password, salt=''): def encryption_SHA_256(password, salt=''):
import hashlib import hashlib
password = salt+password password = salt+password
hashed_password = hashlib.sha256(password.encode()).hexdigest() hashed_password = hashlib.sha256(password.encode()).hexdigest()
import guan
guan.statistics_of_guan_package()
return hashed_password return hashed_password
# 自动先后运行程序 # 自动先后运行程序
@guan.function_decorator
def run_programs_sequentially(program_files=['./a.py', './b.py'], execute='python ', show_time=0): def run_programs_sequentially(program_files=['./a.py', './b.py'], execute='python ', show_time=0):
import os import os
import time import time
@ -821,25 +792,22 @@ def run_programs_sequentially(program_files=['./a.py', './b.py'], execute='pytho
if show_time == 1: if show_time == 1:
end = time.time() end = time.time()
print('Total running time = '+str((end-start)/60)+' min') print('Total running time = '+str((end-start)/60)+' min')
import guan
guan.statistics_of_guan_package()
# 如果不存在文件夹,则新建文件夹 # 如果不存在文件夹,则新建文件夹
@guan.function_decorator
def make_directory(directory='./test'): def make_directory(directory='./test'):
import os import os
if not os.path.exists(directory): if not os.path.exists(directory):
os.makedirs(directory) os.makedirs(directory)
import guan
guan.statistics_of_guan_package()
# 复制一份文件 # 复制一份文件
@guan.function_decorator
def copy_file(file1='./a.txt', file2='./b.txt'): def copy_file(file1='./a.txt', file2='./b.txt'):
import shutil import shutil
shutil.copy(file1, file2) shutil.copy(file1, file2)
import guan
guan.statistics_of_guan_package()
# 拼接两个PDF文件 # 拼接两个PDF文件
@guan.function_decorator
def combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_file='combined_file.pdf'): def combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_file='combined_file.pdf'):
import PyPDF2 import PyPDF2
output_pdf = PyPDF2.PdfWriter() output_pdf = PyPDF2.PdfWriter()
@ -853,5 +821,3 @@ def combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_fil
output_pdf.add_page(pdf2.pages[page]) output_pdf.add_page(pdf2.pages[page])
with open(output_file, 'wb') as combined_file: with open(output_file, 'wb') as combined_file:
output_pdf.write(combined_file) output_pdf.write(combined_file)
import guan
guan.statistics_of_guan_package()

View File

@ -1,16 +1,18 @@
# Module: density_of_states # Module: density_of_states
import guan
# 计算体系的总态密度 # 计算体系的总态密度
@guan.function_decorator
def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01): def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01):
import numpy as np import numpy as np
import math import math
import guan import guan
green = guan.green_function(fermi_energy, hamiltonian, broadening) green = guan.green_function(fermi_energy, hamiltonian, broadening)
total_dos = -np.trace(np.imag(green))/math.pi total_dos = -np.trace(np.imag(green))/math.pi
guan.statistics_of_guan_package()
return total_dos return total_dos
# 对于不同费米能,计算体系的总态密度 # 对于不同费米能,计算体系的总态密度
@guan.function_decorator
def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01, print_show=0): def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01, print_show=0):
import numpy as np import numpy as np
import guan import guan
@ -22,10 +24,10 @@ def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamilton
print(fermi_energy) print(fermi_energy)
total_dos_array[i0] = guan.total_density_of_states(fermi_energy, hamiltonian, broadening) total_dos_array[i0] = guan.total_density_of_states(fermi_energy, hamiltonian, broadening)
i0 += 1 i0 += 1
guan.statistics_of_guan_package()
return total_dos_array return total_dos_array
# 计算方格子的局域态密度其中哈密顿量的维度为dim_hamiltonian = N1*N2*internal_degree # 计算方格子的局域态密度其中哈密顿量的维度为dim_hamiltonian = N1*N2*internal_degree
@guan.function_decorator
def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01): def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01):
import numpy as np import numpy as np
import math import math
@ -36,10 +38,10 @@ def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2
for i2 in range(N2): for i2 in range(N2):
for i in range(internal_degree): for i in range(internal_degree):
local_dos[i2, i1] = local_dos[i2, i1]-np.imag(green[i1*N2*internal_degree+i2*internal_degree+i, i1*N2*internal_degree+i2*internal_degree+i])/math.pi local_dos[i2, i1] = local_dos[i2, i1]-np.imag(green[i1*N2*internal_degree+i2*internal_degree+i, i1*N2*internal_degree+i2*internal_degree+i])/math.pi
guan.statistics_of_guan_package()
return local_dos return local_dos
# 计算立方格子的局域态密度其中哈密顿量的维度为dim_hamiltonian = N1*N2*N3*internal_degree # 计算立方格子的局域态密度其中哈密顿量的维度为dim_hamiltonian = N1*N2*N3*internal_degree
@guan.function_decorator
def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01): def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01):
import numpy as np import numpy as np
import math import math
@ -51,10 +53,10 @@ def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2,
for i3 in range(N3): for i3 in range(N3):
for i in range(internal_degree): for i in range(internal_degree):
local_dos[i3, i2, i1] = local_dos[i3, i2, i1]-np.imag(green[i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i, i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i])/math.pi local_dos[i3, i2, i1] = local_dos[i3, i2, i1]-np.imag(green[i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i, i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i])/math.pi
guan.statistics_of_guan_package()
return local_dos return local_dos
# 利用Dyson方程计算方格子的局域态密度其中h00的维度为dim_h00 = N2*internal_degree # 利用Dyson方程计算方格子的局域态密度其中h00的维度为dim_h00 = N2*internal_degree
@guan.function_decorator
def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01): def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01):
import numpy as np import numpy as np
import math import math
@ -85,10 +87,10 @@ def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy
for i2 in range(N2): for i2 in range(N2):
for i in range(internal_degree): for i in range(internal_degree):
local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/math.pi local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/math.pi
guan.statistics_of_guan_package()
return local_dos return local_dos
# 利用Dyson方程计算立方格子的局域态密度其中h00的维度为dim_h00 = N2*N3*internal_degree # 利用Dyson方程计算立方格子的局域态密度其中h00的维度为dim_h00 = N2*N3*internal_degree
@guan.function_decorator
def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01): def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01):
import numpy as np import numpy as np
import math import math
@ -120,10 +122,10 @@ def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy,
for i3 in range(N3): for i3 in range(N3):
for i in range(internal_degree): for i in range(internal_degree):
local_dos[i3, i2, i1] = local_dos[i3, i2, i1] -np.imag(green_ii_n_minus[i2*N3*internal_degree+i3*internal_degree+i, i2*N3*internal_degree+i3*internal_degree+i])/math.pi local_dos[i3, i2, i1] = local_dos[i3, i2, i1] -np.imag(green_ii_n_minus[i2*N3*internal_degree+i3*internal_degree+i, i2*N3*internal_degree+i3*internal_degree+i])/math.pi
guan.statistics_of_guan_package()
return local_dos return local_dos
# 利用Dyson方程计算方格子条带考虑了电极自能的局域态密度其中h00的维度为dim_h00 = N2*internal_degree # 利用Dyson方程计算方格子条带考虑了电极自能的局域态密度其中h00的维度为dim_h00 = N2*internal_degree
@guan.function_decorator
def local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01): def local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01):
import numpy as np import numpy as np
import math import math
@ -160,5 +162,4 @@ def local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equa
for i2 in range(N2): for i2 in range(N2):
for i in range(internal_degree): for i in range(internal_degree):
local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/math.pi local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/math.pi
guan.statistics_of_guan_package()
return local_dos return local_dos

View File

@ -1,6 +1,8 @@
# Module: others # Module: others
import guan
# 获取运行的日期和时间并写入文件 # 获取运行的日期和时间并写入文件
@guan.function_decorator
def statistics_with_day_and_time(content='', filename='a', file_format='.txt'): def statistics_with_day_and_time(content='', filename='a', file_format='.txt'):
import datetime import datetime
datetime_today = str(datetime.date.today()) datetime_today = str(datetime.date.today())
@ -10,10 +12,9 @@ def statistics_with_day_and_time(content='', filename='a', file_format='.txt'):
f2.write(datetime_today+' '+datetime_time+'\n') f2.write(datetime_today+' '+datetime_time+'\n')
else: else:
f2.write(datetime_today+' '+datetime_time+' '+content+'\n') f2.write(datetime_today+' '+datetime_time+' '+content+'\n')
import guan
guan.statistics_of_guan_package()
# 统计Python文件中import的数量并排序 # 统计Python文件中import的数量并排序
@guan.function_decorator
def count_number_of_import_statements(filename, file_format='.py', num=1000): def count_number_of_import_statements(filename, file_format='.py', num=1000):
with open(filename+file_format, 'r') as file: with open(filename+file_format, 'r') as file:
lines = file.readlines() lines = file.readlines()
@ -24,27 +25,24 @@ def count_number_of_import_statements(filename, file_format='.py', num=1000):
import_array.append(line) import_array.append(line)
from collections import Counter from collections import Counter
import_statement_counter = Counter(import_array).most_common(num) import_statement_counter = Counter(import_array).most_common(num)
import guan
guan.statistics_of_guan_package()
return import_statement_counter return import_statement_counter
# 根据一定的字符长度来分割文本 # 根据一定的字符长度来分割文本
@guan.function_decorator
def split_text(text, wrap_width=3000): def split_text(text, wrap_width=3000):
import textwrap import textwrap
split_text_list = textwrap.wrap(text, wrap_width) split_text_list = textwrap.wrap(text, wrap_width)
import guan
guan.statistics_of_guan_package()
return split_text_list return split_text_list
# 获取CPU使用率 # 获取CPU使用率
@guan.function_decorator
def get_cpu_usage(interval=1): def get_cpu_usage(interval=1):
import psutil import psutil
cpu_usage = psutil.cpu_percent(interval=interval) cpu_usage = psutil.cpu_percent(interval=interval)
import guan
guan.statistics_of_guan_package()
return cpu_usage return cpu_usage
# 获取内存信息 # 获取内存信息
@guan.function_decorator
def get_memory_info(): def get_memory_info():
import psutil import psutil
memory_info = psutil.virtual_memory() memory_info = psutil.virtual_memory()
@ -55,6 +53,7 @@ def get_memory_info():
return total_memory, used_memory, available_memory, used_memory_percent return total_memory, used_memory, available_memory, used_memory_percent
# 获取本月的所有日期 # 获取本月的所有日期
@guan.function_decorator
def get_days_of_the_current_month(str_or_datetime='str'): def get_days_of_the_current_month(str_or_datetime='str'):
import datetime import datetime
today = datetime.date.today() today = datetime.date.today()
@ -71,11 +70,10 @@ def get_days_of_the_current_month(str_or_datetime='str'):
elif str_or_datetime=='datetime': elif str_or_datetime=='datetime':
day_array.append(current_date) day_array.append(current_date)
current_date += datetime.timedelta(days=1) current_date += datetime.timedelta(days=1)
import guan
guan.statistics_of_guan_package()
return day_array return day_array
# 获取上个月份 # 获取上个月份
@guan.function_decorator
def get_last_month(): def get_last_month():
import datetime import datetime
today = datetime.date.today() today = datetime.date.today()
@ -85,11 +83,10 @@ def get_last_month():
year_of_last_month = today.year - 1 year_of_last_month = today.year - 1
else: else:
year_of_last_month = today.year year_of_last_month = today.year
import guan
guan.statistics_of_guan_package()
return year_of_last_month, last_month return year_of_last_month, last_month
# 获取上上个月份 # 获取上上个月份
@guan.function_decorator
def get_the_month_before_last(): def get_the_month_before_last():
import datetime import datetime
today = datetime.date.today() today = datetime.date.today()
@ -104,11 +101,10 @@ def get_the_month_before_last():
year_of_the_month_before_last = today.year - 1 year_of_the_month_before_last = today.year - 1
else: else:
year_of_the_month_before_last = today.year year_of_the_month_before_last = today.year
import guan
guan.statistics_of_guan_package()
return year_of_the_month_before_last, the_month_before_last return year_of_the_month_before_last, the_month_before_last
# 获取上个月的所有日期 # 获取上个月的所有日期
@guan.function_decorator
def get_days_of_the_last_month(str_or_datetime='str'): def get_days_of_the_last_month(str_or_datetime='str'):
import datetime import datetime
import guan import guan
@ -127,10 +123,10 @@ def get_days_of_the_last_month(str_or_datetime='str'):
elif str_or_datetime=='datetime': elif str_or_datetime=='datetime':
day_array.append(current_date) day_array.append(current_date)
current_date += datetime.timedelta(days=1) current_date += datetime.timedelta(days=1)
guan.statistics_of_guan_package()
return day_array return day_array
# 获取上上个月的所有日期 # 获取上上个月的所有日期
@guan.function_decorator
def get_days_of_the_month_before_last(str_or_datetime='str'): def get_days_of_the_month_before_last(str_or_datetime='str'):
import datetime import datetime
import guan import guan
@ -149,39 +145,38 @@ def get_days_of_the_month_before_last(str_or_datetime='str'):
elif str_or_datetime=='datetime': elif str_or_datetime=='datetime':
day_array.append(current_date) day_array.append(current_date)
current_date += datetime.timedelta(days=1) current_date += datetime.timedelta(days=1)
guan.statistics_of_guan_package()
return day_array return day_array
# 获取所有股票 # 获取所有股票
@guan.function_decorator
def all_stocks(): def all_stocks():
import numpy as np import numpy as np
import akshare as ak import akshare as ak
stocks = ak.stock_zh_a_spot_em() stocks = ak.stock_zh_a_spot_em()
title = np.array(stocks.columns) title = np.array(stocks.columns)
stock_data = stocks.values stock_data = stocks.values
import guan
guan.statistics_of_guan_package()
return title, stock_data return title, stock_data
# 获取所有股票的代码 # 获取所有股票的代码
@guan.function_decorator
def all_stock_symbols(): def all_stock_symbols():
import guan import guan
title, stock_data = guan.all_stocks() title, stock_data = guan.all_stocks()
stock_symbols = stock_data[:, 1] stock_symbols = stock_data[:, 1]
guan.statistics_of_guan_package()
return stock_symbols return stock_symbols
# 从股票代码获取股票名称 # 从股票代码获取股票名称
@guan.function_decorator
def find_stock_name_from_symbol(symbol='000002'): def find_stock_name_from_symbol(symbol='000002'):
import guan import guan
title, stock_data = guan.all_stocks() title, stock_data = guan.all_stocks()
for stock in stock_data: for stock in stock_data:
if symbol in stock: if symbol in stock:
stock_name = stock[2] stock_name = stock[2]
guan.statistics_of_guan_package()
return stock_name return stock_name
# 获取单个股票的历史数据 # 获取单个股票的历史数据
@guan.function_decorator
def history_data_of_one_stock(symbol='000002', period='daily', start_date="19000101", end_date='21000101'): def history_data_of_one_stock(symbol='000002', period='daily', start_date="19000101", end_date='21000101'):
# period = 'daily' # period = 'daily'
# period = 'weekly' # period = 'weekly'
@ -191,20 +186,18 @@ def history_data_of_one_stock(symbol='000002', period='daily', start_date="19000
stock = ak.stock_zh_a_hist(symbol=symbol, period=period, start_date=start_date, end_date=end_date) stock = ak.stock_zh_a_hist(symbol=symbol, period=period, start_date=start_date, end_date=end_date)
title = np.array(stock.columns) title = np.array(stock.columns)
stock_data = stock.values[::-1] stock_data = stock.values[::-1]
import guan
guan.statistics_of_guan_package()
return title, stock_data return title, stock_data
# 获取软件包中的所有模块名 # 获取软件包中的所有模块名
@guan.function_decorator
def get_all_modules_in_one_package(package_name='guan'): def get_all_modules_in_one_package(package_name='guan'):
import pkgutil import pkgutil
package = __import__(package_name) package = __import__(package_name)
module_names = [name for _, name, _ in pkgutil.iter_modules(package.__path__)] module_names = [name for _, name, _ in pkgutil.iter_modules(package.__path__)]
import guan
guan.statistics_of_guan_package()
return module_names return module_names
# 获取软件包中一个模块的所有函数名 # 获取软件包中一个模块的所有函数名
@guan.function_decorator
def get_all_functions_in_one_module(module_name, package_name='guan'): def get_all_functions_in_one_module(module_name, package_name='guan'):
import inspect import inspect
function_names = [] function_names = []
@ -212,11 +205,10 @@ def get_all_functions_in_one_module(module_name, package_name='guan'):
for name, obj in inspect.getmembers(module): for name, obj in inspect.getmembers(module):
if inspect.isfunction(obj): if inspect.isfunction(obj):
function_names.append(name) function_names.append(name)
import guan
guan.statistics_of_guan_package()
return function_names return function_names
# 获取软件包中的所有函数名 # 获取软件包中的所有函数名
@guan.function_decorator
def get_all_functions_in_one_package(package_name='guan', print_show=1): def get_all_functions_in_one_package(package_name='guan', print_show=1):
import guan import guan
module_names = guan.get_all_modules_in_one_package(package_name=package_name) module_names = guan.get_all_modules_in_one_package(package_name=package_name)
@ -231,10 +223,10 @@ def get_all_functions_in_one_package(package_name='guan', print_show=1):
print('function:', name) print('function:', name)
if print_show == 1: if print_show == 1:
print() print()
guan.statistics_of_guan_package()
return all_function_names return all_function_names
# 获取包含某个字符的进程PID值 # 获取包含某个字符的进程PID值
@guan.function_decorator
def get_PID(name): def get_PID(name):
import subprocess import subprocess
command = "ps -ef | grep "+name command = "ps -ef | grep "+name
@ -244,11 +236,17 @@ def get_PID(name):
import re import re
ps_ef = re.split(r'\s+', ps_ef) ps_ef = re.split(r'\s+', ps_ef)
id_running = ps_ef[1] id_running = ps_ef[1]
import guan
guan.statistics_of_guan_package()
return id_running return id_running
# 获取函数的源码
@guan.function_decorator
def get_function_source(function_name):
import inspect
function_source = inspect.getsource(function_name)
return function_source
# 在服务器上运行函数(说明:接口服务可能为关闭状态,如果无法使用请联系管理员。目前仅支持长度较短的函数,此外由于服务器只获取一个函数内的代码,因此需要函数是独立的可运行的代码。需要注意的是:返回的值是字符串类型,需要自行转换成数字类型。) # 在服务器上运行函数(说明:接口服务可能为关闭状态,如果无法使用请联系管理员。目前仅支持长度较短的函数,此外由于服务器只获取一个函数内的代码,因此需要函数是独立的可运行的代码。需要注意的是:返回的值是字符串类型,需要自行转换成数字类型。)
@guan.function_decorator
def run(function_name, args=(), return_show=0, get_print=1): def run(function_name, args=(), return_show=0, get_print=1):
import socket import socket
import json import json
@ -283,10 +281,10 @@ def run(function_name, args=(), return_show=0, get_print=1):
except: except:
break break
client_socket.close() client_socket.close()
guan.statistics_of_guan_package()
return return_data return return_data
# 在服务器上运行大语言模型通过Python函数调用说明接口服务可能为关闭状态如果无法使用请联系管理员 # 在服务器上运行大语言模型通过Python函数调用说明接口服务可能为关闭状态如果无法使用请联系管理员
@guan.function_decorator
def chat(prompt='你好', stream_show=1, top_p=0.8, temperature=0.8): def chat(prompt='你好', stream_show=1, top_p=0.8, temperature=0.8):
import socket import socket
import json import json
@ -321,11 +319,10 @@ def chat(prompt='你好', stream_show=1, top_p=0.8, temperature=0.8):
except: except:
break break
client_socket.close() client_socket.close()
import guan
guan.statistics_of_guan_package()
return response return response
# 查找文件名相同的文件 # 查找文件名相同的文件
@guan.function_decorator
def find_repeated_file_with_same_filename(directory='./', ignored_directory_with_words=[], ignored_file_with_words=[], num=1000): def find_repeated_file_with_same_filename(directory='./', ignored_directory_with_words=[], ignored_file_with_words=[], num=1000):
import os import os
from collections import Counter from collections import Counter
@ -347,11 +344,10 @@ def find_repeated_file_with_same_filename(directory='./', ignored_directory_with
for item in count_file: for item in count_file:
if item[1]>1: if item[1]>1:
repeated_file.append(item) repeated_file.append(item)
import guan
guan.statistics_of_guan_package()
return repeated_file return repeated_file
# 统计各个子文件夹中的文件数量 # 统计各个子文件夹中的文件数量
@guan.function_decorator
def count_file_in_sub_directory(directory='./', sort=0, reverse=1, print_show=1, smaller_than_num=None): def count_file_in_sub_directory(directory='./', sort=0, reverse=1, print_show=1, smaller_than_num=None):
import os import os
import numpy as np import numpy as np
@ -402,12 +398,10 @@ def count_file_in_sub_directory(directory='./', sort=0, reverse=1, print_show=1,
print(dirs_list[i0]) print(dirs_list[i0])
print(count_file_array[i0]) print(count_file_array[i0])
print() print()
import guan
guan.statistics_of_guan_package()
return sub_directory, num_in_sub_directory return sub_directory, num_in_sub_directory
# 改变当前的目录位置 # 改变当前的目录位置
@guan.function_decorator
def change_directory_by_replacement(current_key_word='code', new_key_word='data'): def change_directory_by_replacement(current_key_word='code', new_key_word='data'):
import os import os
code_path = os.getcwd() code_path = os.getcwd()
@ -416,10 +410,9 @@ def change_directory_by_replacement(current_key_word='code', new_key_word='data'
if os.path.exists(data_path) == False: if os.path.exists(data_path) == False:
os.makedirs(data_path) os.makedirs(data_path)
os.chdir(data_path) os.chdir(data_path)
import guan
guan.statistics_of_guan_package()
# 在多个子文件夹中产生必要的文件,例如 readme.md # 在多个子文件夹中产生必要的文件,例如 readme.md
@guan.function_decorator
def creat_necessary_file(directory, filename='readme', file_format='.md', content='', overwrite=None, ignored_directory_with_words=[]): def creat_necessary_file(directory, filename='readme', file_format='.md', content='', overwrite=None, ignored_directory_with_words=[]):
import os import os
directory_with_file = [] directory_with_file = []
@ -447,20 +440,18 @@ def creat_necessary_file(directory, filename='readme', file_format='.md', conten
f = open(filename+file_format, 'w', encoding="utf-8") f = open(filename+file_format, 'w', encoding="utf-8")
f.write(content) f.write(content)
f.close() f.close()
import guan
guan.statistics_of_guan_package()
# 删除特定文件名的文件(慎用) # 删除特定文件名的文件(慎用)
@guan.function_decorator
def delete_file_with_specific_name(directory, filename='readme', file_format='.md'): def delete_file_with_specific_name(directory, filename='readme', file_format='.md'):
import os import os
for root, dirs, files in os.walk(directory): for root, dirs, files in os.walk(directory):
for i0 in range(len(files)): for i0 in range(len(files)):
if files[i0] == filename+file_format: if files[i0] == filename+file_format:
os.remove(root+'/'+files[i0]) os.remove(root+'/'+files[i0])
import guan
guan.statistics_of_guan_package()
# 将所有文件移到根目录(慎用) # 将所有文件移到根目录(慎用)
@guan.function_decorator
def move_all_files_to_root_directory(directory): def move_all_files_to_root_directory(directory):
import os import os
import shutil import shutil
@ -473,10 +464,9 @@ def move_all_files_to_root_directory(directory):
os.rmdir(root) os.rmdir(root)
except: except:
pass pass
import guan
guan.statistics_of_guan_package()
# 将文件目录结构写入Markdown文件 # 将文件目录结构写入Markdown文件
@guan.function_decorator
def write_file_list_in_markdown(directory='./', filename='a', reverse_positive_or_negative=1, starting_from_h1=None, banned_file_format=[], hide_file_format=None, divided_line=None, show_second_number=None, show_third_number=None): def write_file_list_in_markdown(directory='./', filename='a', reverse_positive_or_negative=1, starting_from_h1=None, banned_file_format=[], hide_file_format=None, divided_line=None, show_second_number=None, show_third_number=None):
import os import os
f = open(filename+'.md', 'w', encoding="utf-8") f = open(filename+'.md', 'w', encoding="utf-8")
@ -578,10 +568,9 @@ def write_file_list_in_markdown(directory='./', filename='a', reverse_positive_o
f.write('#') f.write('#')
f.write('###### '+str(filename6)+'\n\n') f.write('###### '+str(filename6)+'\n\n')
f.close() f.close()
import guan
guan.statistics_of_guan_package()
# 从网页的标签中获取内容 # 从网页的标签中获取内容
@guan.function_decorator
def get_html_from_tags(link, tags=['title', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p', 'li', 'a']): def get_html_from_tags(link, tags=['title', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'p', 'li', 'a']):
from bs4 import BeautifulSoup from bs4 import BeautifulSoup
import urllib.request import urllib.request
@ -597,19 +586,17 @@ def get_html_from_tags(link, tags=['title', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6',
content = text content = text
else: else:
content = content + '\n\n' + text content = content + '\n\n' + text
import guan
guan.statistics_of_guan_package()
return content return content
# 生成二维码 # 生成二维码
@guan.function_decorator
def creat_qrcode(data="https://www.guanjihuan.com", filename='a', file_format='.png'): def creat_qrcode(data="https://www.guanjihuan.com", filename='a', file_format='.png'):
import qrcode import qrcode
img = qrcode.make(data) img = qrcode.make(data)
img.save(filename+file_format) img.save(filename+file_format)
import guan
guan.statistics_of_guan_package()
# 将PDF文件转成文本 # 将PDF文件转成文本
@guan.function_decorator
def pdf_to_text(pdf_path): def pdf_to_text(pdf_path):
from pdfminer.pdfparser import PDFParser, PDFDocument from pdfminer.pdfparser import PDFParser, PDFDocument
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
@ -638,21 +625,19 @@ def pdf_to_text(pdf_path):
for x in layout: for x in layout:
if isinstance(x, LTTextBox): if isinstance(x, LTTextBox):
content = content + x.get_text().strip() content = content + x.get_text().strip()
import guan
guan.statistics_of_guan_package()
return content return content
# 获取PDF文件页数 # 获取PDF文件页数
@guan.function_decorator
def get_pdf_page_number(pdf_path): def get_pdf_page_number(pdf_path):
import PyPDF2 import PyPDF2
pdf_file = open(pdf_path, 'rb') pdf_file = open(pdf_path, 'rb')
pdf_reader = PyPDF2.PdfReader(pdf_file) pdf_reader = PyPDF2.PdfReader(pdf_file)
num_pages = len(pdf_reader.pages) num_pages = len(pdf_reader.pages)
import guan
guan.statistics_of_guan_package()
return num_pages return num_pages
# 获取PDF文件指定页面的内容 # 获取PDF文件指定页面的内容
@guan.function_decorator
def pdf_to_txt_for_a_specific_page(pdf_path, page_num=1): def pdf_to_txt_for_a_specific_page(pdf_path, page_num=1):
import PyPDF2 import PyPDF2
pdf_file = open(pdf_path, 'rb') pdf_file = open(pdf_path, 'rb')
@ -663,11 +648,10 @@ def pdf_to_txt_for_a_specific_page(pdf_path, page_num=1):
page = pdf_reader.pages[page_num0] page = pdf_reader.pages[page_num0]
page_text = page.extract_text() page_text = page.extract_text()
pdf_file.close() pdf_file.close()
import guan
guan.statistics_of_guan_package()
return page_text return page_text
# 获取PDF文献中的链接。例如: link_starting_form='https://doi.org' # 获取PDF文献中的链接。例如: link_starting_form='https://doi.org'
@guan.function_decorator
def get_links_from_pdf(pdf_path, link_starting_form=''): def get_links_from_pdf(pdf_path, link_starting_form=''):
import PyPDF2 import PyPDF2
import re import re
@ -689,11 +673,10 @@ def get_links_from_pdf(pdf_path, link_starting_form=''):
links.append(u['/A']['/URI']) links.append(u['/A']['/URI'])
i0 += 1 i0 += 1
old = u['/A']['/URI'] old = u['/A']['/URI']
import guan
guan.statistics_of_guan_package()
return links return links
# 通过Sci-Hub网站下载文献 # 通过Sci-Hub网站下载文献
@guan.function_decorator
def download_with_scihub(address=None, num=1): def download_with_scihub(address=None, num=1):
from bs4 import BeautifulSoup from bs4 import BeautifulSoup
import re import re
@ -729,10 +712,9 @@ def download_with_scihub(address=None, num=1):
print('Completed!\n') print('Completed!\n')
if num != 1: if num != 1:
print('All completed!\n') print('All completed!\n')
import guan
guan.statistics_of_guan_package()
# 将字符串转成音频 # 将字符串转成音频
@guan.function_decorator
def str_to_audio(str='hello world', filename='str', rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0): def str_to_audio(str='hello world', filename='str', rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0):
import pyttsx3 import pyttsx3
import guan import guan
@ -754,9 +736,9 @@ def str_to_audio(str='hello world', filename='str', rate=125, voice=1, read=1, s
if read==1: if read==1:
engine.say(str) engine.say(str)
engine.runAndWait() engine.runAndWait()
guan.statistics_of_guan_package()
# 将txt文件转成音频 # 将txt文件转成音频
@guan.function_decorator
def txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0): def txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0):
import pyttsx3 import pyttsx3
import guan import guan
@ -782,9 +764,9 @@ def txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, compress=0, bitrat
if read==1: if read==1:
engine.say(text) engine.say(text)
engine.runAndWait() engine.runAndWait()
guan.statistics_of_guan_package()
# 将PDF文件转成音频 # 将PDF文件转成音频
@guan.function_decorator
def pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0): def pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, compress=0, bitrate='16k', print_text=0):
import pyttsx3 import pyttsx3
import guan import guan
@ -810,18 +792,17 @@ def pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, compress=0, bitrat
if read==1: if read==1:
engine.say(text) engine.say(text)
engine.runAndWait() engine.runAndWait()
guan.statistics_of_guan_package()
# 将wav音频文件压缩成MP3音频文件 # 将wav音频文件压缩成MP3音频文件
@guan.function_decorator
def compress_wav_to_mp3(wav_path, output_filename='a.mp3', bitrate='16k'): def compress_wav_to_mp3(wav_path, output_filename='a.mp3', bitrate='16k'):
# Note: Beside the installation of pydub, you may also need download FFmpeg on http://www.ffmpeg.org/download.html and add the bin path to the environment variable. # Note: Beside the installation of pydub, you may also need download FFmpeg on http://www.ffmpeg.org/download.html and add the bin path to the environment variable.
from pydub import AudioSegment from pydub import AudioSegment
sound = AudioSegment.from_mp3(wav_path) sound = AudioSegment.from_mp3(wav_path)
sound.export(output_filename,format="mp3",bitrate=bitrate) sound.export(output_filename,format="mp3",bitrate=bitrate)
import guan
guan.statistics_of_guan_package()
# 播放学术单词 # 播放学术单词
@guan.function_decorator
def play_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_translation=1, show_link=1, translation_time=2, rest_time=1): def play_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_translation=1, show_link=1, translation_time=2, rest_time=1):
from bs4 import BeautifulSoup from bs4 import BeautifulSoup
import re import re
@ -880,10 +861,9 @@ def play_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_translati
time.sleep(rest_time) time.sleep(rest_time)
pygame.mixer.music.stop() pygame.mixer.music.stop()
print() print()
import guan
guan.statistics_of_guan_package()
# 播放挑选过后的学术单词 # 播放挑选过后的学术单词
@guan.function_decorator
def play_selected_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_link=1, rest_time=3): def play_selected_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_link=1, rest_time=3):
from bs4 import BeautifulSoup from bs4 import BeautifulSoup
import re import re
@ -938,10 +918,9 @@ def play_selected_academic_words(reverse=0, random_on=0, bre_or_ame='ame', show_
time.sleep(rest_time) time.sleep(rest_time)
pygame.mixer.music.stop() pygame.mixer.music.stop()
print() print()
import guan
guan.statistics_of_guan_package()
# 播放元素周期表上的单词 # 播放元素周期表上的单词
@guan.function_decorator
def play_element_words(random_on=0, show_translation=1, show_link=1, translation_time=2, rest_time=1): def play_element_words(random_on=0, show_translation=1, show_link=1, translation_time=2, rest_time=1):
from bs4 import BeautifulSoup from bs4 import BeautifulSoup
import re import re
@ -995,19 +974,18 @@ def play_element_words(random_on=0, show_translation=1, show_link=1, translation
time.sleep(rest_time) time.sleep(rest_time)
pygame.mixer.music.stop() pygame.mixer.music.stop()
print() print()
import guan
guan.statistics_of_guan_package()
# Guan软件包的使用统计不涉及到用户的个人数据 # Guan软件包的使用统计不涉及到用户的个人数据
global_variable_of_first_guan_package_calling = [] global_variable_of_first_guan_package_calling = []
def statistics_of_guan_package(): def statistics_of_guan_package(function_name=None):
import guan import guan
if function_name == None:
function_name = guan.get_calling_function_name(layer=2) function_name = guan.get_calling_function_name(layer=2)
else:
pass
global global_variable_of_first_guan_package_calling global global_variable_of_first_guan_package_calling
if function_name not in global_variable_of_first_guan_package_calling: if function_name not in global_variable_of_first_guan_package_calling:
global_variable_of_first_guan_package_calling.append(function_name) global_variable_of_first_guan_package_calling.append(function_name)
function_calling_name = guan.get_calling_function_name(layer=3)
if function_calling_name == '<module>':
try: try:
import socket import socket
datetime_date = guan.get_date() datetime_date = guan.get_date()
@ -1055,12 +1033,6 @@ def get_mac_address():
mac_address = '-'.join([mac_address[i:i+2] for i in range(0, 11, 2)]) mac_address = '-'.join([mac_address[i:i+2] for i in range(0, 11, 2)])
return mac_address return mac_address
# 获取函数的源码
def get_function_source(function_name):
import inspect
function_source = inspect.getsource(function_name)
return function_source
# 获取调用本函数的函数名 # 获取调用本函数的函数名
def get_calling_function_name(layer=1): def get_calling_function_name(layer=1):
import inspect import inspect

View File

@ -1,6 +1,8 @@
# Module: quantum_transport # Module: quantum_transport
import guan
# 计算电导 # 计算电导
@guan.function_decorator
def calculate_conductance(fermi_energy, h00, h01, length=100): def calculate_conductance(fermi_energy, h00, h01, length=100):
import numpy as np import numpy as np
import copy import copy
@ -17,10 +19,10 @@ def calculate_conductance(fermi_energy, h00, h01, length=100):
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
guan.statistics_of_guan_package()
return conductance return conductance
# 计算不同费米能下的电导 # 计算不同费米能下的电导
@guan.function_decorator
def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100, print_show=0): def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100, print_show=0):
import numpy as np import numpy as np
import guan import guan
@ -32,10 +34,10 @@ def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01,
if print_show == 1: if print_show == 1:
print(fermi_energy, conductance_array[i0]) print(fermi_energy, conductance_array[i0])
i0 += 1 i0 += 1
guan.statistics_of_guan_package()
return conductance_array return conductance_array
# 计算在势垒散射下的电导 # 计算在势垒散射下的电导
@guan.function_decorator
def calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barrier_length=20, barrier_potential=1): def calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barrier_length=20, barrier_potential=1):
import numpy as np import numpy as np
import copy import copy
@ -56,10 +58,10 @@ def calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barri
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
guan.statistics_of_guan_package()
return conductance return conductance
# 计算在无序散射下的电导 # 计算在无序散射下的电导
@guan.function_decorator
def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100, calculation_times=1): def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100, calculation_times=1):
import numpy as np import numpy as np
import copy import copy
@ -85,10 +87,10 @@ def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensi
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
conductance_averaged += conductance conductance_averaged += conductance
conductance_averaged = conductance_averaged/calculation_times conductance_averaged = conductance_averaged/calculation_times
guan.statistics_of_guan_package()
return conductance_averaged return conductance_averaged
# 计算在无序垂直切片的散射下的电导 # 计算在无序垂直切片的散射下的电导
@guan.function_decorator
def calculate_conductance_with_slice_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100): def calculate_conductance_with_slice_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100):
import numpy as np import numpy as np
import copy import copy
@ -109,10 +111,10 @@ def calculate_conductance_with_slice_disorder(fermi_energy, h00, h01, disorder_i
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
guan.statistics_of_guan_package()
return conductance return conductance
# 计算在无序水平切片的散射下的电导 # 计算在无序水平切片的散射下的电导
@guan.function_decorator
def calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translational_symmetry(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100): def calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translational_symmetry(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100):
import numpy as np import numpy as np
import copy import copy
@ -134,10 +136,10 @@ def calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translation
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
guan.statistics_of_guan_package()
return conductance return conductance
# 计算在随机空位的散射下的电导 # 计算在随机空位的散射下的电导
@guan.function_decorator
def calculate_conductance_with_random_vacancy(fermi_energy, h00, h01, vacancy_concentration=0.5, vacancy_potential=1e9, length=100): def calculate_conductance_with_random_vacancy(fermi_energy, h00, h01, vacancy_concentration=0.5, vacancy_potential=1e9, length=100):
import numpy as np import numpy as np
import copy import copy
@ -159,10 +161,10 @@ def calculate_conductance_with_random_vacancy(fermi_energy, h00, h01, vacancy_co
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
guan.statistics_of_guan_package()
return conductance return conductance
# 计算在不同无序散射强度下的电导 # 计算在不同无序散射强度下的电导
@guan.function_decorator
def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1, print_show=0): def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1, print_show=0):
import numpy as np import numpy as np
import guan import guan
@ -176,10 +178,10 @@ def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01,
print(disorder_intensity, conductance_array[i0]/calculation_times) print(disorder_intensity, conductance_array[i0]/calculation_times)
i0 += 1 i0 += 1
conductance_array = conductance_array/calculation_times conductance_array = conductance_array/calculation_times
guan.statistics_of_guan_package()
return conductance_array return conductance_array
# 计算在不同无序浓度下的电导 # 计算在不同无序浓度下的电导
@guan.function_decorator
def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h01, disorder_concentration_array, disorder_intensity=2.0, length=100, calculation_times=1, print_show=0): def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h01, disorder_concentration_array, disorder_intensity=2.0, length=100, calculation_times=1, print_show=0):
import numpy as np import numpy as np
import guan import guan
@ -193,10 +195,10 @@ def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h
print(disorder_concentration, conductance_array[i0]/calculation_times) print(disorder_concentration, conductance_array[i0]/calculation_times)
i0 += 1 i0 += 1
conductance_array = conductance_array/calculation_times conductance_array = conductance_array/calculation_times
guan.statistics_of_guan_package()
return conductance_array return conductance_array
# 计算在不同无序散射长度下的电导 # 计算在不同无序散射长度下的电导
@guan.function_decorator
def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, length_array, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1, print_show=0): def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, length_array, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1, print_show=0):
import numpy as np import numpy as np
import guan import guan
@ -210,10 +212,10 @@ def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, l
print(length, conductance_array[i0]/calculation_times) print(length, conductance_array[i0]/calculation_times)
i0 += 1 i0 += 1
conductance_array = conductance_array/calculation_times conductance_array = conductance_array/calculation_times
guan.statistics_of_guan_package()
return conductance_array return conductance_array
# 计算得到Gamma矩阵和格林函数用于计算六端口的量子输运 # 计算得到Gamma矩阵和格林函数用于计算六端口的量子输运
@guan.function_decorator
def get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10): def get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10):
import numpy as np import numpy as np
import guan import guan
@ -257,10 +259,10 @@ def get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_fo
self_energy6, gamma6 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_6, h01_for_lead_1, h_lead6_to_center) self_energy6, gamma6 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_6, h01_for_lead_1, h_lead6_to_center)
gamma_array = [gamma1, gamma2, gamma3, gamma4, gamma5, gamma6] gamma_array = [gamma1, gamma2, gamma3, gamma4, gamma5, gamma6]
green = np.linalg.inv(fermi_energy*np.eye(internal_degree*width*length)-center_hamiltonian-self_energy1-self_energy2-self_energy3-self_energy4-self_energy5-self_energy6) green = np.linalg.inv(fermi_energy*np.eye(internal_degree*width*length)-center_hamiltonian-self_energy1-self_energy2-self_energy3-self_energy4-self_energy5-self_energy6)
guan.statistics_of_guan_package()
return gamma_array, green return gamma_array, green
# 计算六端口的透射矩阵 # 计算六端口的透射矩阵
@guan.function_decorator
def calculate_six_terminal_transmission_matrix(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10): def calculate_six_terminal_transmission_matrix(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10):
import numpy as np import numpy as np
import guan import guan
@ -282,10 +284,10 @@ def calculate_six_terminal_transmission_matrix(fermi_energy, h00_for_lead_4, h01
if j0!=i0: if j0!=i0:
transmission_matrix[i0, i0] = transmission_matrix[i0, i0]-transmission_matrix[i0, j0] transmission_matrix[i0, i0] = transmission_matrix[i0, i0]-transmission_matrix[i0, j0]
transmission_matrix = np.real(transmission_matrix) transmission_matrix = np.real(transmission_matrix)
guan.statistics_of_guan_package()
return transmission_matrix return transmission_matrix
# 计算从电极1出发的透射系数 # 计算从电极1出发的透射系数
@guan.function_decorator
def calculate_six_terminal_transmissions_from_lead_1(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10): def calculate_six_terminal_transmissions_from_lead_1(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10):
import numpy as np import numpy as np
import guan import guan
@ -295,21 +297,20 @@ def calculate_six_terminal_transmissions_from_lead_1(fermi_energy, h00_for_lead_
transmission_14 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[3]), green.transpose().conj()))) transmission_14 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[3]), green.transpose().conj())))
transmission_15 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[4]), green.transpose().conj()))) transmission_15 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[4]), green.transpose().conj())))
transmission_16 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[5]), green.transpose().conj()))) transmission_16 = np.real(np.trace(np.dot(np.dot(np.dot(gamma_array[0], green), gamma_array[5]), green.transpose().conj())))
guan.statistics_of_guan_package()
return transmission_12, transmission_13, transmission_14, transmission_15, transmission_16 return transmission_12, transmission_13, transmission_14, transmission_15, transmission_16
# 通过动量k的虚部判断通道为传播通道还是衰减通道 # 通过动量k的虚部判断通道为传播通道还是衰减通道
@guan.function_decorator
def if_active_channel(k_of_channel): def if_active_channel(k_of_channel):
import numpy as np import numpy as np
if np.abs(np.imag(k_of_channel))<1e-6: if np.abs(np.imag(k_of_channel))<1e-6:
if_active = 1 if_active = 1
else: else:
if_active = 0 if_active = 0
import guan
guan.statistics_of_guan_package()
return if_active return if_active
# 获取通道的动量和速度,用于计算散射矩阵 # 获取通道的动量和速度,用于计算散射矩阵
@guan.function_decorator
def get_k_and_velocity_of_channel(fermi_energy, h00, h01): def get_k_and_velocity_of_channel(fermi_energy, h00, h01):
import numpy as np import numpy as np
import math import math
@ -343,10 +344,10 @@ def get_k_and_velocity_of_channel(fermi_energy, h00, h01):
velocity_of_channel[dim0] = eigenvalue[dim0]*np.dot(np.dot(temp[0:dim, :].transpose().conj(), h01),temp[0:dim, :])[dim0, dim0] velocity_of_channel[dim0] = eigenvalue[dim0]*np.dot(np.dot(temp[0:dim, :].transpose().conj(), h01),temp[0:dim, :])[dim0, dim0]
velocity_of_channel = -2*np.imag(velocity_of_channel) velocity_of_channel = -2*np.imag(velocity_of_channel)
eigenvector = copy.deepcopy(temp) eigenvector = copy.deepcopy(temp)
guan.statistics_of_guan_package()
return k_of_channel, velocity_of_channel, eigenvalue, eigenvector return k_of_channel, velocity_of_channel, eigenvalue, eigenvector
# 获取分类后的动量和速度以及U和F用于计算散射矩阵 # 获取分类后的动量和速度以及U和F用于计算散射矩阵
@guan.function_decorator
def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01): def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01):
import numpy as np import numpy as np
import guan import guan
@ -396,10 +397,10 @@ def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01):
lambda_matrix_left = np.diag(lambda_left) lambda_matrix_left = np.diag(lambda_left)
f_right = np.dot(np.dot(u_right, lambda_matrix_right), np.linalg.inv(u_right)) f_right = np.dot(np.dot(u_right, lambda_matrix_right), np.linalg.inv(u_right))
f_left = np.dot(np.dot(u_left, lambda_matrix_left), np.linalg.inv(u_left)) f_left = np.dot(np.dot(u_left, lambda_matrix_left), np.linalg.inv(u_left))
guan.statistics_of_guan_package()
return k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active return k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active
# 计算散射矩阵 # 计算散射矩阵
@guan.function_decorator
def calculate_scattering_matrix(fermi_energy, h00, h01, length=100): def calculate_scattering_matrix(fermi_energy, h00, h01, length=100):
import numpy as np import numpy as np
import math import math
@ -442,10 +443,10 @@ def calculate_scattering_matrix(fermi_energy, h00, h01, length=100):
for sum_of_tran_refl in sum_of_tran_refl_array: for sum_of_tran_refl in sum_of_tran_refl_array:
if sum_of_tran_refl > 1.001: if sum_of_tran_refl > 1.001:
print('Error Alert: scattering matrix is not normalized!') print('Error Alert: scattering matrix is not normalized!')
guan.statistics_of_guan_package()
return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active
# 从散射矩阵中,获取散射矩阵的信息 # 从散射矩阵中,获取散射矩阵的信息
@guan.function_decorator
def information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active): def information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active):
import numpy as np import numpy as np
if np.array(transmission_matrix).shape==(): if np.array(transmission_matrix).shape==():
@ -464,22 +465,20 @@ def information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_r
total_conductance = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))) total_conductance = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])))
total_reflection_of_channels = np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) total_reflection_of_channels = np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
sum_of_transmission_and_reflection_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) sum_of_transmission_and_reflection_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
import guan
guan.statistics_of_guan_package()
return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels
# 已知h00和h01计算散射矩阵并获得散射矩阵的信息 # 已知h00和h01计算散射矩阵并获得散射矩阵的信息
@guan.function_decorator
def calculate_scattering_matrix_and_get_information(fermi_energy, h00, h01, length=100): def calculate_scattering_matrix_and_get_information(fermi_energy, h00, h01, length=100):
import guan import guan
transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length) transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length)
number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active) number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active)
guan.statistics_of_guan_package()
return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels
# 从散射矩阵中打印出散射矩阵的信息 # 从散射矩阵中打印出散射矩阵的信息
@guan.function_decorator
def print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=1, write_file=0, filename='a', file_format='.txt'): def print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=1, write_file=0, filename='a', file_format='.txt'):
if print_show == 1: if print_show == 1:
print('\nActive channel (left or right) = ', number_of_active_channels) print('\nActive channel (left or right) = ', number_of_active_channels)
@ -522,10 +521,9 @@ def print_or_write_scattering_matrix_with_information_of_scattering_matrix(numbe
f.write('\n') f.write('\n')
f.write('Total transmission of channels:\n'+str(total_transmission_of_channels)+'\n') f.write('Total transmission of channels:\n'+str(total_transmission_of_channels)+'\n')
f.write('Total conductance = '+str(total_conductance)+'\n') f.write('Total conductance = '+str(total_conductance)+'\n')
import guan
guan.statistics_of_guan_package()
# 已知h00和h01计算散射矩阵并打印出散射矩阵的信息 # 已知h00和h01计算散射矩阵并打印出散射矩阵的信息
@guan.function_decorator
def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', file_format='.txt'): def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', file_format='.txt'):
import guan import guan
transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length) transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=length)
@ -534,9 +532,8 @@ def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_s
guan.print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=print_show, write_file=write_file, filename=filename, file_format=file_format) guan.print_or_write_scattering_matrix_with_information_of_scattering_matrix(number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels, print_show=print_show, write_file=write_file, filename=filename, file_format=file_format)
guan.statistics_of_guan_package()
# 在无序下,计算散射矩阵 # 在无序下,计算散射矩阵
@guan.function_decorator
def calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0): def calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0):
import numpy as np import numpy as np
import math import math
@ -583,10 +580,10 @@ def calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length=100
for sum_of_tran_refl in sum_of_tran_refl_array: for sum_of_tran_refl in sum_of_tran_refl_array:
if sum_of_tran_refl > 1.001: if sum_of_tran_refl > 1.001:
print('Error Alert: scattering matrix is not normalized!') print('Error Alert: scattering matrix is not normalized!')
guan.statistics_of_guan_package()
return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active
# 在无序下,计算散射矩阵,并获取散射矩阵多次计算的平均信息 # 在无序下,计算散射矩阵,并获取散射矩阵多次计算的平均信息
@guan.function_decorator
def calculate_scattering_matrix_with_disorder_and_get_averaged_information(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1): def calculate_scattering_matrix_with_disorder_and_get_averaged_information(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1):
import guan import guan
transmission_matrix_for_active_channels_averaged = 0 transmission_matrix_for_active_channels_averaged = 0
@ -600,5 +597,4 @@ def calculate_scattering_matrix_with_disorder_and_get_averaged_information(fermi
reflection_matrix_for_active_channels_averaged += reflection_matrix_for_active_channels reflection_matrix_for_active_channels_averaged += reflection_matrix_for_active_channels
transmission_matrix_for_active_channels_averaged = transmission_matrix_for_active_channels_averaged/calculation_times transmission_matrix_for_active_channels_averaged = transmission_matrix_for_active_channels_averaged/calculation_times
reflection_matrix_for_active_channels_averaged = reflection_matrix_for_active_channels_averaged/calculation_times reflection_matrix_for_active_channels_averaged = reflection_matrix_for_active_channels_averaged/calculation_times
guan.statistics_of_guan_package()
return transmission_matrix_for_active_channels_averaged, reflection_matrix_for_active_channels_averaged return transmission_matrix_for_active_channels_averaged, reflection_matrix_for_active_channels_averaged

View File

@ -1,6 +1,8 @@
# Module: topological_invariant # Module: topological_invariant
import guan
# 通过高效法计算方格子的陈数 # 通过高效法计算方格子的陈数
@guan.function_decorator
def calculate_chern_number_for_square_lattice_with_efficient_method(hamiltonian_function, precision=100, print_show=0): def calculate_chern_number_for_square_lattice_with_efficient_method(hamiltonian_function, precision=100, print_show=0):
import numpy as np import numpy as np
import math import math
@ -36,10 +38,10 @@ def calculate_chern_number_for_square_lattice_with_efficient_method(hamiltonian_
F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))
chern_number[i] = chern_number[i] + F chern_number[i] = chern_number[i] + F
chern_number = chern_number/(2*math.pi*1j) chern_number = chern_number/(2*math.pi*1j)
guan.statistics_of_guan_package()
return chern_number return chern_number
# 通过高效法计算方格子的陈数(可计算简并的情况) # 通过高效法计算方格子的陈数(可计算简并的情况)
@guan.function_decorator
def calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision=100, print_show=0): def calculate_chern_number_for_square_lattice_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision=100, print_show=0):
import numpy as np import numpy as np
import math import math
@ -106,11 +108,10 @@ def calculate_chern_number_for_square_lattice_with_efficient_method_for_degenera
det_value= det_value*dot_matrix det_value= det_value*dot_matrix
chern_number += cmath.log(det_value) chern_number += cmath.log(det_value)
chern_number = chern_number/(2*math.pi*1j) chern_number = chern_number/(2*math.pi*1j)
import guan
guan.statistics_of_guan_package()
return chern_number return chern_number
# 通过Wilson loop方法计算方格子的陈数 # 通过Wilson loop方法计算方格子的陈数
@guan.function_decorator
def calculate_chern_number_for_square_lattice_with_wilson_loop(hamiltonian_function, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): def calculate_chern_number_for_square_lattice_with_wilson_loop(hamiltonian_function, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
import numpy as np import numpy as np
import math import math
@ -152,11 +153,10 @@ def calculate_chern_number_for_square_lattice_with_wilson_loop(hamiltonian_funct
arg = np.log(np.diagonal(wilson_loop))/1j arg = np.log(np.diagonal(wilson_loop))/1j
chern_number = chern_number + arg chern_number = chern_number + arg
chern_number = chern_number/(2*math.pi) chern_number = chern_number/(2*math.pi)
import guan
guan.statistics_of_guan_package()
return chern_number return chern_number
# 通过Wilson loop方法计算方格子的陈数可计算简并的情况 # 通过Wilson loop方法计算方格子的陈数可计算简并的情况
@guan.function_decorator
def calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): def calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
import numpy as np import numpy as np
import math import math
@ -217,11 +217,10 @@ def calculate_chern_number_for_square_lattice_with_wilson_loop_for_degenerate_ca
arg = np.log(wilson_loop)/1j arg = np.log(wilson_loop)/1j
chern_number = chern_number + arg chern_number = chern_number + arg
chern_number = chern_number/(2*math.pi) chern_number = chern_number/(2*math.pi)
import guan
guan.statistics_of_guan_package()
return chern_number return chern_number
# 通过高效法计算贝利曲率 # 通过高效法计算贝利曲率
@guan.function_decorator
def calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0): def calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0):
import numpy as np import numpy as np
import cmath import cmath
@ -265,10 +264,10 @@ def calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min=
berry_curvature_array[j0, i0, i] = berry_curvature berry_curvature_array[j0, i0, i] = berry_curvature
j0 += 1 j0 += 1
i0 += 1 i0 += 1
guan.statistics_of_guan_package()
return k_array, berry_curvature_array return k_array, berry_curvature_array
# 通过高效法计算贝利曲率(可计算简并的情况) # 通过高效法计算贝利曲率(可计算简并的情况)
@guan.function_decorator
def calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision=100, print_show=0): def calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision=100, print_show=0):
import numpy as np import numpy as np
import cmath import cmath
@ -344,11 +343,10 @@ def calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamilton
berry_curvature_array[j00, i00] = berry_curvature berry_curvature_array[j00, i00] = berry_curvature
j00 += 1 j00 += 1
i00 += 1 i00 += 1
import guan
guan.statistics_of_guan_package()
return k_array, berry_curvature_array return k_array, berry_curvature_array
# 通过Wilson loop方法计算贝里曲率 # 通过Wilson loop方法计算贝里曲率
@guan.function_decorator
def calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): def calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
import numpy as np import numpy as np
import math import math
@ -402,11 +400,10 @@ def calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min='defa
berry_curvature_array[j00, i00, :]=berry_curvature berry_curvature_array[j00, i00, :]=berry_curvature
j00 += 1 j00 += 1
i00 += 1 i00 += 1
import guan
guan.statistics_of_guan_package()
return k_array, berry_curvature_array return k_array, berry_curvature_array
# 通过Wilson loop方法计算贝里曲率可计算简并的情况 # 通过Wilson loop方法计算贝里曲率可计算简并的情况
@guan.function_decorator
def calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): def calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min='default', k_max='default', precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
import numpy as np import numpy as np
import math import math
@ -475,11 +472,10 @@ def calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_f
berry_curvature_array[j000, i000]=berry_curvature berry_curvature_array[j000, i000]=berry_curvature
j000 += 1 j000 += 1
i000 += 1 i000 += 1
import guan
guan.statistics_of_guan_package()
return k_array, berry_curvature_array return k_array, berry_curvature_array
# 计算蜂窝格子的陈数(高效法) # 计算蜂窝格子的陈数(高效法)
@guan.function_decorator
def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0): def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0):
import numpy as np import numpy as np
import math import math
@ -520,10 +516,10 @@ def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, prec
F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))
chern_number[i] = chern_number[i] + F chern_number[i] = chern_number[i] + F
chern_number = chern_number/(2*math.pi*1j) chern_number = chern_number/(2*math.pi*1j)
guan.statistics_of_guan_package()
return chern_number return chern_number
# 计算Wilson loop # 计算Wilson loop
@guan.function_decorator
def calculate_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0): def calculate_wilson_loop(hamiltonian_function, k_min='default', k_max='default', precision=100, print_show=0):
import numpy as np import numpy as np
import guan import guan
@ -548,5 +544,4 @@ def calculate_wilson_loop(hamiltonian_function, k_min='default', k_max='default'
for i0 in range(precision-1): for i0 in range(precision-1):
F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0]) F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0])
wilson_loop_array[i] = np.dot(F, wilson_loop_array[i]) wilson_loop_array[i] = np.dot(F, wilson_loop_array[i])
guan.statistics_of_guan_package()
return wilson_loop_array return wilson_loop_array