0.1.75
This commit is contained in:
		| @@ -1,7 +1,7 @@ | |||||||
| [metadata] | [metadata] | ||||||
| # replace with your username: | # replace with your username: | ||||||
| name = guan | name = guan | ||||||
| version = 0.1.74 | version = 0.1.75 | ||||||
| author = guanjihuan | author = guanjihuan | ||||||
| author_email = guanjihuan@163.com | author_email = guanjihuan@163.com | ||||||
| description = An open source python package | description = An open source python package | ||||||
|   | |||||||
| @@ -1,6 +1,6 @@ | |||||||
| Metadata-Version: 2.1 | Metadata-Version: 2.1 | ||||||
| Name: guan | Name: guan | ||||||
| Version: 0.1.74 | Version: 0.1.75 | ||||||
| Summary: An open source python package | Summary: An open source python package | ||||||
| Home-page: https://py.guanjihuan.com | Home-page: https://py.guanjihuan.com | ||||||
| Author: guanjihuan | Author: guanjihuan | ||||||
|   | |||||||
| @@ -9,7 +9,10 @@ src/guan/__init__.py | |||||||
| src/guan/band_structures_and_wave_functions.py | src/guan/band_structures_and_wave_functions.py | ||||||
| src/guan/basic_functions.py | src/guan/basic_functions.py | ||||||
| src/guan/data_processing.py | src/guan/data_processing.py | ||||||
|  | src/guan/decorator.py | ||||||
| src/guan/density_of_states.py | src/guan/density_of_states.py | ||||||
|  | src/guan/figure_plotting.py | ||||||
|  | src/guan/file_reading_and_writing.py | ||||||
| src/guan/machine_learning.py | src/guan/machine_learning.py | ||||||
| src/guan/others.py | src/guan/others.py | ||||||
| src/guan/quantum_transport.py | src/guan/quantum_transport.py | ||||||
|   | |||||||
| @@ -1,47 +1,6 @@ | |||||||
| # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com. The GitHub location of this package is on https://github.com/guanjihuan/py.guanjihuan.com. | # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). The primary location of this package is on website https://py.guanjihuan.com. The GitHub location of this package is on https://github.com/guanjihuan/py.guanjihuan.com. | ||||||
|  |  | ||||||
| # 函数的装饰器,用于获取计算时间(秒) | from .decorator import * | ||||||
| def timer_decorator(func): |  | ||||||
|     import time |  | ||||||
|     def wrapper(*args, **kwargs): |  | ||||||
|         start = time.time() |  | ||||||
|         result = func(*args, **kwargs) |  | ||||||
|         end = time.time() |  | ||||||
|         print(f"Running time of {func.__name__}: {end - start} seconds") |  | ||||||
|         return result |  | ||||||
|     return wrapper |  | ||||||
|  |  | ||||||
| # 函数的装饰器,用于获取计算时间(分) |  | ||||||
| def timer_decorator_minutes(func): |  | ||||||
|     import time |  | ||||||
|     def wrapper(*args, **kwargs): |  | ||||||
|         start = time.time() |  | ||||||
|         result = func(*args, **kwargs) |  | ||||||
|         end = time.time() |  | ||||||
|         print(f"Running time of {func.__name__}: {(end - start)/60} minutes") |  | ||||||
|         return result |  | ||||||
|     return wrapper |  | ||||||
|  |  | ||||||
| # 函数的装饰器,用于获取计算时间(时) |  | ||||||
| def timer_decorator_hours(func): |  | ||||||
|     import time |  | ||||||
|     def wrapper(*args, **kwargs): |  | ||||||
|         start = time.time() |  | ||||||
|         result = func(*args, **kwargs) |  | ||||||
|         end = time.time() |  | ||||||
|         print(f"Running time of {func.__name__}: {(end - start)/3600} hours") |  | ||||||
|         return result |  | ||||||
|     return wrapper |  | ||||||
|  |  | ||||||
| # 函数的装饰器,用于GUAN软件包的统计 |  | ||||||
| def statistics_decorator(func): |  | ||||||
|     def wrapper(*args, **kwargs): |  | ||||||
|         result = func(*args, **kwargs) |  | ||||||
|         import guan |  | ||||||
|         guan.statistics_of_guan_package(func.__name__) |  | ||||||
|         return result |  | ||||||
|     return wrapper |  | ||||||
|  |  | ||||||
| from .basic_functions import * | from .basic_functions import * | ||||||
| from .Fourier_transform import * | from .Fourier_transform import * | ||||||
| from .Hamiltonian_of_examples import * | from .Hamiltonian_of_examples import * | ||||||
| @@ -51,5 +10,7 @@ from .density_of_states import * | |||||||
| from .quantum_transport import * | from .quantum_transport import * | ||||||
| from .topological_invariant import * | from .topological_invariant import * | ||||||
| from .machine_learning import * | from .machine_learning import * | ||||||
|  | from .file_reading_and_writing import * | ||||||
|  | from .figure_plotting import * | ||||||
| from .data_processing import * | from .data_processing import * | ||||||
| from .others import * | from .others import * | ||||||
| @@ -1,713 +1,6 @@ | |||||||
| # Module: data_processing (including figure-plotting and file-reading/writing) | # Module: data_processing | ||||||
| import guan | import guan | ||||||
|  |  | ||||||
| # 导入plt, fig, ax |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20): |  | ||||||
|     import matplotlib.pyplot as plt |  | ||||||
|     fig, ax = plt.subplots() |  | ||||||
|     plt.subplots_adjust(bottom=adjust_bottom, left=adjust_left) |  | ||||||
|     ax.grid() |  | ||||||
|     ax.tick_params(labelsize=labelsize)  |  | ||||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() |  | ||||||
|     [label.set_fontname('Times New Roman') for label in labels] |  | ||||||
|     return plt, fig, ax |  | ||||||
|  |  | ||||||
| # 基于plt, fig, ax画图 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def plot_without_starting_fig(plt, fig, ax, x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, style='', y_min=None, y_max=None, linewidth=None, markersize=None, color=None):  |  | ||||||
|     if color==None: |  | ||||||
|         ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize) |  | ||||||
|     else: |  | ||||||
|         ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize, color=color) |  | ||||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') |  | ||||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     if y_min!=None or y_max!=None: |  | ||||||
|         if y_min==None: |  | ||||||
|             y_min=min(y_array) |  | ||||||
|         if y_max==None: |  | ||||||
|             y_max=max(y_array) |  | ||||||
|         ax.set_ylim(y_min, y_max) |  | ||||||
|  |  | ||||||
| # 画图 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2):  |  | ||||||
|     import guan |  | ||||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) |  | ||||||
|     ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize) |  | ||||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') |  | ||||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     if y_min!=None or y_max!=None: |  | ||||||
|         if y_min==None: |  | ||||||
|             y_min=min(y_array) |  | ||||||
|         if y_max==None: |  | ||||||
|             y_max=max(y_array) |  | ||||||
|         ax.set_ylim(y_min, y_max) |  | ||||||
|     if save == 1: |  | ||||||
|         plt.savefig(filename+file_format, dpi=dpi)  |  | ||||||
|     if show == 1: |  | ||||||
|         plt.show() |  | ||||||
|     plt.close('all') |  | ||||||
|  |  | ||||||
| # 一组横坐标数据,两组纵坐标数据画图 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):  |  | ||||||
|     import guan |  | ||||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  |  | ||||||
|     ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) |  | ||||||
|     ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) |  | ||||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') |  | ||||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     if y_min!=None or y_max!=None: |  | ||||||
|         if y_min==None: |  | ||||||
|             y1_min=min(y1_array) |  | ||||||
|             y2_min=min(y2_array) |  | ||||||
|             y_min=min([y1_min, y2_min]) |  | ||||||
|         if y_max==None: |  | ||||||
|             y1_max=max(y1_array) |  | ||||||
|             y2_max=max(y2_array) |  | ||||||
|             y_max=max([y1_max, y2_max]) |  | ||||||
|         ax.set_ylim(y_min, y_max) |  | ||||||
|     if save == 1: |  | ||||||
|         plt.savefig(filename+file_format, dpi=dpi)  |  | ||||||
|     if show == 1: |  | ||||||
|         plt.show() |  | ||||||
|     plt.close('all') |  | ||||||
|  |  | ||||||
| # 两组横坐标数据,两组纵坐标数据画图 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):  |  | ||||||
|     import guan |  | ||||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  |  | ||||||
|     ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) |  | ||||||
|     ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) |  | ||||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') |  | ||||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     if y_min!=None or y_max!=None: |  | ||||||
|         if y_min==None: |  | ||||||
|             y1_min=min(y1_array) |  | ||||||
|             y2_min=min(y2_array) |  | ||||||
|             y_min=min([y1_min, y2_min]) |  | ||||||
|         if y_max==None: |  | ||||||
|             y1_max=max(y1_array) |  | ||||||
|             y2_max=max(y2_array) |  | ||||||
|             y_max=max([y1_max, y2_max]) |  | ||||||
|         ax.set_ylim(y_min, y_max) |  | ||||||
|     if save == 1: |  | ||||||
|         plt.savefig(filename+file_format, dpi=dpi)  |  | ||||||
|     if show == 1: |  | ||||||
|         plt.show() |  | ||||||
|     plt.close('all') |  | ||||||
|  |  | ||||||
| # 一组横坐标数据,三组纵坐标数据画图 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):  |  | ||||||
|     import guan |  | ||||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  |  | ||||||
|     ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) |  | ||||||
|     ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) |  | ||||||
|     ax.plot(x_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3) |  | ||||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') |  | ||||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     if y_min!=None or y_max!=None: |  | ||||||
|         if y_min==None: |  | ||||||
|             y1_min=min(y1_array) |  | ||||||
|             y2_min=min(y2_array) |  | ||||||
|             y3_min=min(y3_array) |  | ||||||
|             y_min=min([y1_min, y2_min, y3_min]) |  | ||||||
|         if y_max==None: |  | ||||||
|             y1_max=max(y1_array) |  | ||||||
|             y2_max=max(y2_array) |  | ||||||
|             y3_max=max(y3_array) |  | ||||||
|             y_max=max([y1_max, y2_max, y3_max]) |  | ||||||
|         ax.set_ylim(y_min, y_max) |  | ||||||
|     if save == 1: |  | ||||||
|         plt.savefig(filename+file_format, dpi=dpi)  |  | ||||||
|     if show == 1: |  | ||||||
|         plt.show() |  | ||||||
|     plt.close('all') |  | ||||||
|  |  | ||||||
| # 三组横坐标数据,三组纵坐标数据画图 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):  |  | ||||||
|     import guan |  | ||||||
|     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  |  | ||||||
|     ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) |  | ||||||
|     ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) |  | ||||||
|     ax.plot(x3_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3) |  | ||||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') |  | ||||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     if y_min!=None or y_max!=None: |  | ||||||
|         if y_min==None: |  | ||||||
|             y1_min=min(y1_array) |  | ||||||
|             y2_min=min(y2_array) |  | ||||||
|             y3_min=min(y3_array) |  | ||||||
|             y_min=min([y1_min, y2_min, y3_min]) |  | ||||||
|         if y_max==None: |  | ||||||
|             y1_max=max(y1_array) |  | ||||||
|             y2_max=max(y2_array) |  | ||||||
|             y3_max=max(y3_array) |  | ||||||
|             y_max=max([y1_max, y2_max, y3_max]) |  | ||||||
|         ax.set_ylim(y_min, y_max) |  | ||||||
|     if save == 1: |  | ||||||
|         plt.savefig(filename+file_format, dpi=dpi)  |  | ||||||
|     if show == 1: |  | ||||||
|         plt.show() |  | ||||||
|     plt.close('all') |  | ||||||
|  |  | ||||||
| # 画三维图 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', file_format='.jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100):  |  | ||||||
|     import numpy as np |  | ||||||
|     import matplotlib.pyplot as plt |  | ||||||
|     from matplotlib import cm |  | ||||||
|     from matplotlib.ticker import LinearLocator |  | ||||||
|     matrix = np.array(matrix) |  | ||||||
|     fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) |  | ||||||
|     plt.subplots_adjust(bottom=0.1, right=0.65)  |  | ||||||
|     x_array, y_array = np.meshgrid(x_array, y_array) |  | ||||||
|     if len(matrix.shape) == 2: |  | ||||||
|         surf = ax.plot_surface(x_array, y_array, matrix, rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)  |  | ||||||
|     elif len(matrix.shape) == 3: |  | ||||||
|         for i0 in range(matrix.shape[2]): |  | ||||||
|             surf = ax.plot_surface(x_array, y_array, matrix[:,:,i0], rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)  |  | ||||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') |  | ||||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     ax.set_zlabel(zlabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     ax.zaxis.set_major_locator(LinearLocator(5))  |  | ||||||
|     ax.zaxis.set_major_formatter('{x:.2f}')   |  | ||||||
|     if z_min!=None or z_max!=None: |  | ||||||
|         if z_min==None: |  | ||||||
|             z_min=matrix.min() |  | ||||||
|         if z_max==None: |  | ||||||
|             z_max=matrix.max() |  | ||||||
|         ax.set_zlim(z_min, z_max) |  | ||||||
|     ax.tick_params(labelsize=labelsize)  |  | ||||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels() |  | ||||||
|     [label.set_fontname('Times New Roman') for label in labels]  |  | ||||||
|     cax = plt.axes([0.8, 0.1, 0.05, 0.8])  |  | ||||||
|     cbar = fig.colorbar(surf, cax=cax)   |  | ||||||
|     cbar.ax.tick_params(labelsize=labelsize) |  | ||||||
|     for l in cbar.ax.yaxis.get_ticklabels(): |  | ||||||
|         l.set_family('Times New Roman') |  | ||||||
|     if save == 1: |  | ||||||
|         plt.savefig(filename+file_format, dpi=dpi)  |  | ||||||
|     if show == 1: |  | ||||||
|         plt.show() |  | ||||||
|     plt.close('all') |  | ||||||
|  |  | ||||||
| # 画Contour图 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300): |  | ||||||
|     import numpy as np |  | ||||||
|     import matplotlib.pyplot as plt |  | ||||||
|     fig, ax = plt.subplots() |  | ||||||
|     plt.subplots_adjust(bottom=0.2, right=0.75, left=0.2)  |  | ||||||
|     x_array, y_array = np.meshgrid(x_array, y_array) |  | ||||||
|     contour = ax.contourf(x_array,y_array,matrix,cmap=cmap, levels=levels)  |  | ||||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') |  | ||||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     ax.tick_params(labelsize=labelsize)  |  | ||||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() |  | ||||||
|     [label.set_fontname('Times New Roman') for label in labels] |  | ||||||
|     cax = plt.axes([0.8, 0.2, 0.05, 0.68]) |  | ||||||
|     cbar = fig.colorbar(contour, cax=cax)  |  | ||||||
|     cbar.ax.tick_params(labelsize=labelsize)  |  | ||||||
|     for l in cbar.ax.yaxis.get_ticklabels(): |  | ||||||
|         l.set_family('Times New Roman') |  | ||||||
|     if save == 1: |  | ||||||
|         plt.savefig(filename+file_format, dpi=dpi)  |  | ||||||
|     if show == 1: |  | ||||||
|         plt.show() |  | ||||||
|     plt.close('all') |  | ||||||
|  |  | ||||||
| # 画棋盘图/伪彩色图 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def plot_pcolor(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300):   |  | ||||||
|     import numpy as np |  | ||||||
|     import matplotlib.pyplot as plt |  | ||||||
|     fig, ax = plt.subplots() |  | ||||||
|     plt.subplots_adjust(bottom=0.2, right=0.75, left=0.2)  |  | ||||||
|     x_array, y_array = np.meshgrid(x_array, y_array) |  | ||||||
|     contour = ax.pcolor(x_array,y_array,matrix, cmap=cmap) |  | ||||||
|     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') |  | ||||||
|     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  |  | ||||||
|     ax.tick_params(labelsize=labelsize)  |  | ||||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() |  | ||||||
|     [label.set_fontname('Times New Roman') for label in labels] |  | ||||||
|     cax = plt.axes([0.8, 0.2, 0.05, 0.68]) |  | ||||||
|     cbar = fig.colorbar(contour, cax=cax)  |  | ||||||
|     cbar.ax.tick_params(labelsize=labelsize)  |  | ||||||
|     for l in cbar.ax.yaxis.get_ticklabels(): |  | ||||||
|         l.set_family('Times New Roman') |  | ||||||
|     if save == 1: |  | ||||||
|         plt.savefig(filename+file_format, dpi=dpi)  |  | ||||||
|     if show == 1: |  | ||||||
|         plt.show() |  | ||||||
|     plt.close('all') |  | ||||||
|  |  | ||||||
| # 通过坐标画点和线 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distance=1.1, line_style='-k', linewidth=1, dot_style='ro', markersize=3, show=1, save=0, filename='a', file_format='.eps', dpi=300): |  | ||||||
|     import numpy as np |  | ||||||
|     import matplotlib.pyplot as plt |  | ||||||
|     coordinate_array = np.array(coordinate_array) |  | ||||||
|     print(coordinate_array.shape) |  | ||||||
|     x_range = max(coordinate_array[:, 0])-min(coordinate_array[:, 0]) |  | ||||||
|     y_range = max(coordinate_array[:, 1])-min(coordinate_array[:, 1]) |  | ||||||
|     fig, ax = plt.subplots(figsize=(6*x_range/y_range,6)) |  | ||||||
|     plt.subplots_adjust(left=0, bottom=0, right=1, top=1) |  | ||||||
|     plt.axis('off') |  | ||||||
|     if draw_lines==1: |  | ||||||
|         for i1 in range(coordinate_array.shape[0]): |  | ||||||
|             for i2 in range(coordinate_array.shape[0]): |  | ||||||
|                 if np.sqrt((coordinate_array[i1, 0] - coordinate_array[i2, 0])**2+(coordinate_array[i1, 1] - coordinate_array[i2, 1])**2) < max_distance: |  | ||||||
|                     ax.plot([coordinate_array[i1, 0], coordinate_array[i2, 0]], [coordinate_array[i1, 1], coordinate_array[i2, 1]], line_style, linewidth=linewidth) |  | ||||||
|     if draw_dots==1: |  | ||||||
|         for i in range(coordinate_array.shape[0]): |  | ||||||
|             ax.plot(coordinate_array[i, 0], coordinate_array[i, 1], dot_style, markersize=markersize) |  | ||||||
|     if show==1: |  | ||||||
|         plt.show() |  | ||||||
|     if save==1: |  | ||||||
|         if file_format=='.eps': |  | ||||||
|             plt.savefig(filename+file_format) |  | ||||||
|         else: |  | ||||||
|             plt.savefig(filename+file_format, dpi=dpi) |  | ||||||
|  |  | ||||||
| # 合并两个图片 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filename='a', file_format='.jpg', dpi=300): |  | ||||||
|     import numpy as np |  | ||||||
|     num = np.array(image_path_array).shape[0] |  | ||||||
|     if num != 2: |  | ||||||
|         print('Error: The number of images should be two!') |  | ||||||
|     else: |  | ||||||
|         import matplotlib.pyplot as plt |  | ||||||
|         import matplotlib.image as mpimg |  | ||||||
|         fig = plt.figure(figsize=figsize) |  | ||||||
|         plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)  |  | ||||||
|         ax1 = fig.add_subplot(121) |  | ||||||
|         ax2 = fig.add_subplot(122) |  | ||||||
|         image_1 = mpimg.imread(image_path_array[0]) |  | ||||||
|         image_2 = mpimg.imread(image_path_array[1]) |  | ||||||
|         ax1.imshow(image_1) |  | ||||||
|         ax2.imshow(image_2) |  | ||||||
|         ax1.axis('off') |  | ||||||
|         ax2.axis('off') |  | ||||||
|         if show == 1: |  | ||||||
|             plt.show() |  | ||||||
|         if save == 1: |  | ||||||
|             plt.savefig(filename+file_format, dpi=dpi) |  | ||||||
|         plt.close('all') |  | ||||||
|  |  | ||||||
| # 合并三个图片 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filename='a', file_format='.jpg', dpi=300): |  | ||||||
|     import numpy as np |  | ||||||
|     num = np.array(image_path_array).shape[0] |  | ||||||
|     if num != 3: |  | ||||||
|         print('Error: The number of images should be three!') |  | ||||||
|     else: |  | ||||||
|         import matplotlib.pyplot as plt |  | ||||||
|         import matplotlib.image as mpimg |  | ||||||
|         fig = plt.figure(figsize=figsize) |  | ||||||
|         plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)  |  | ||||||
|         ax1 = fig.add_subplot(131) |  | ||||||
|         ax2 = fig.add_subplot(132) |  | ||||||
|         ax3 = fig.add_subplot(133) |  | ||||||
|         image_1 = mpimg.imread(image_path_array[0]) |  | ||||||
|         image_2 = mpimg.imread(image_path_array[1]) |  | ||||||
|         image_3 = mpimg.imread(image_path_array[2]) |  | ||||||
|         ax1.imshow(image_1) |  | ||||||
|         ax2.imshow(image_2) |  | ||||||
|         ax3.imshow(image_3) |  | ||||||
|         ax1.axis('off') |  | ||||||
|         ax2.axis('off') |  | ||||||
|         ax3.axis('off') |  | ||||||
|         if show == 1: |  | ||||||
|             plt.show() |  | ||||||
|         if save == 1: |  | ||||||
|             plt.savefig(filename+file_format, dpi=dpi) |  | ||||||
|         plt.close('all') |  | ||||||
|  |  | ||||||
| # 合并四个图片 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filename='a', file_format='.jpg', dpi=300): |  | ||||||
|     import numpy as np |  | ||||||
|     num = np.array(image_path_array).shape[0] |  | ||||||
|     if num != 4: |  | ||||||
|         print('Error: The number of images should be four!') |  | ||||||
|     else: |  | ||||||
|         import matplotlib.pyplot as plt |  | ||||||
|         import matplotlib.image as mpimg |  | ||||||
|         fig = plt.figure(figsize=figsize) |  | ||||||
|         plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)  |  | ||||||
|         ax1 = fig.add_subplot(221) |  | ||||||
|         ax2 = fig.add_subplot(222) |  | ||||||
|         ax3 = fig.add_subplot(223) |  | ||||||
|         ax4 = fig.add_subplot(224) |  | ||||||
|         image_1 = mpimg.imread(image_path_array[0]) |  | ||||||
|         image_2 = mpimg.imread(image_path_array[1]) |  | ||||||
|         image_3 = mpimg.imread(image_path_array[2]) |  | ||||||
|         image_4 = mpimg.imread(image_path_array[3]) |  | ||||||
|         ax1.imshow(image_1) |  | ||||||
|         ax2.imshow(image_2) |  | ||||||
|         ax3.imshow(image_3) |  | ||||||
|         ax4.imshow(image_4) |  | ||||||
|         ax1.axis('off') |  | ||||||
|         ax2.axis('off') |  | ||||||
|         ax3.axis('off') |  | ||||||
|         ax4.axis('off') |  | ||||||
|         if show == 1: |  | ||||||
|             plt.show() |  | ||||||
|         if save == 1: |  | ||||||
|             plt.savefig(filename+file_format, dpi=dpi) |  | ||||||
|         plt.close('all') |  | ||||||
|  |  | ||||||
| # 对某个目录中的txt文件批量读取和画图 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def batch_reading_and_plotting(directory, xlabel='x', ylabel='y'): |  | ||||||
|     import re |  | ||||||
|     import os |  | ||||||
|     import guan |  | ||||||
|     for root, dirs, files in os.walk(directory): |  | ||||||
|         for file in files: |  | ||||||
|             if re.search('^txt.', file[::-1]): |  | ||||||
|                 filename = file[:-4] |  | ||||||
|                 x_array, y_array = guan.read_one_dimensional_data(filename=filename) |  | ||||||
|                 guan.plot(x_array, y_array, xlabel=xlabel, ylabel=ylabel, title=filename, show=0, save=1, filename=filename) |  | ||||||
|  |  | ||||||
| # 将图片制作GIF动画 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def make_gif(image_path_array, filename='a', duration=0.1): |  | ||||||
|     import imageio |  | ||||||
|     images = [] |  | ||||||
|     for image_path in image_path_array: |  | ||||||
|         im = imageio.imread(image_path) |  | ||||||
|         images.append(im) |  | ||||||
|     imageio.mimsave(filename+'.gif', images, 'GIF', duration=duration) |  | ||||||
|  |  | ||||||
| # 选取Matplotlib颜色 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def color_matplotlib(): |  | ||||||
|     color_array = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'] |  | ||||||
|     return color_array |  | ||||||
|  |  | ||||||
| # 如果不存在文件夹,则新建文件夹 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def make_directory(directory='./test'): |  | ||||||
|     import os |  | ||||||
|     if not os.path.exists(directory): |  | ||||||
|         os.makedirs(directory) |  | ||||||
|  |  | ||||||
| # 如果不存在文件,则新建空文件 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def make_file(file_path='./a.txt'): |  | ||||||
|     import os |  | ||||||
|     if not os.path.exists(file_path): |  | ||||||
|         with open(file_path, 'w') as f: |  | ||||||
|             pass |  | ||||||
|  |  | ||||||
| # 读取文本文件内容,如果不存在,则新建空文件 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def read_text_file(file_path='./a.txt'): |  | ||||||
|     import os |  | ||||||
|     if not os.path.exists(file_path): |  | ||||||
|         with open(file_path, 'w') as f: |  | ||||||
|             pass |  | ||||||
|         return '' |  | ||||||
|     else: |  | ||||||
|         with open(file_path, 'r') as f: |  | ||||||
|             content = f.read() |  | ||||||
|         return content |  | ||||||
|  |  | ||||||
| # 将变量存到文件 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def dump_data(data, filename, file_format='.txt'): |  | ||||||
|     import pickle |  | ||||||
|     with open(filename+file_format, 'wb') as f: |  | ||||||
|         pickle.dump(data, f) |  | ||||||
|  |  | ||||||
| # 从文件中恢复数据到变量 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def load_data(filename, file_format='.txt'): |  | ||||||
|     import pickle |  | ||||||
|     with open(filename+file_format, 'rb') as f: |  | ||||||
|         data = pickle.load(f) |  | ||||||
|     return data |  | ||||||
|  |  | ||||||
| # 读取文件中的一维数据(一行一组x和y) |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def read_one_dimensional_data(filename='a', file_format='.txt'):  |  | ||||||
|     import numpy as np |  | ||||||
|     f = open(filename+file_format, 'r') |  | ||||||
|     text = f.read() |  | ||||||
|     f.close() |  | ||||||
|     row_list = np.array(text.split('\n'))  |  | ||||||
|     dim_column = np.array(row_list[0].split()).shape[0]  |  | ||||||
|     x_array = np.array([]) |  | ||||||
|     y_array = np.array([]) |  | ||||||
|     for row in row_list: |  | ||||||
|         column = np.array(row.split())  |  | ||||||
|         if column.shape[0] != 0:   |  | ||||||
|             x_array = np.append(x_array, [float(column[0])], axis=0)   |  | ||||||
|             y_row = np.zeros(dim_column-1) |  | ||||||
|             for dim0 in range(dim_column-1): |  | ||||||
|                 y_row[dim0] = float(column[dim0+1]) |  | ||||||
|             if np.array(y_array).shape[0] == 0: |  | ||||||
|                 y_array = [y_row] |  | ||||||
|             else: |  | ||||||
|                 y_array = np.append(y_array, [y_row], axis=0) |  | ||||||
|     return x_array, y_array |  | ||||||
|  |  | ||||||
| # 读取文件中的一维数据(一行一组x和y)(支持复数形式) |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def read_one_dimensional_complex_data(filename='a', file_format='.txt'):  |  | ||||||
|     import numpy as np |  | ||||||
|     f = open(filename+file_format, 'r') |  | ||||||
|     text = f.read() |  | ||||||
|     f.close() |  | ||||||
|     row_list = np.array(text.split('\n'))  |  | ||||||
|     dim_column = np.array(row_list[0].split()).shape[0]  |  | ||||||
|     x_array = np.array([]) |  | ||||||
|     y_array = np.array([]) |  | ||||||
|     for row in row_list: |  | ||||||
|         column = np.array(row.split())  |  | ||||||
|         if column.shape[0] != 0:   |  | ||||||
|             x_array = np.append(x_array, [complex(column[0])], axis=0)   |  | ||||||
|             y_row = np.zeros(dim_column-1, dtype=complex) |  | ||||||
|             for dim0 in range(dim_column-1): |  | ||||||
|                 y_row[dim0] = complex(column[dim0+1]) |  | ||||||
|             if np.array(y_array).shape[0] == 0: |  | ||||||
|                 y_array = [y_row] |  | ||||||
|             else: |  | ||||||
|                 y_array = np.append(y_array, [y_row], axis=0) |  | ||||||
|     return x_array, y_array |  | ||||||
|  |  | ||||||
| # 读取文件中的二维数据(第一行和第一列分别为横纵坐标) |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def read_two_dimensional_data(filename='a', file_format='.txt'):  |  | ||||||
|     import numpy as np |  | ||||||
|     f = open(filename+file_format, 'r') |  | ||||||
|     text = f.read() |  | ||||||
|     f.close() |  | ||||||
|     row_list = np.array(text.split('\n'))  |  | ||||||
|     dim_column = np.array(row_list[0].split()).shape[0]  |  | ||||||
|     x_array = np.array([]) |  | ||||||
|     y_array = np.array([]) |  | ||||||
|     matrix = np.array([]) |  | ||||||
|     for i0 in range(row_list.shape[0]): |  | ||||||
|         column = np.array(row_list[i0].split())  |  | ||||||
|         if i0 == 0: |  | ||||||
|             x_str = column[1::]  |  | ||||||
|             x_array = np.zeros(x_str.shape[0]) |  | ||||||
|             for i00 in range(x_str.shape[0]): |  | ||||||
|                 x_array[i00] = float(x_str[i00])  |  | ||||||
|         elif column.shape[0] != 0:  |  | ||||||
|             y_array = np.append(y_array, [float(column[0])], axis=0)   |  | ||||||
|             matrix_row = np.zeros(dim_column-1) |  | ||||||
|             for dim0 in range(dim_column-1): |  | ||||||
|                 matrix_row[dim0] = float(column[dim0+1]) |  | ||||||
|             if np.array(matrix).shape[0] == 0: |  | ||||||
|                 matrix = [matrix_row] |  | ||||||
|             else: |  | ||||||
|                 matrix = np.append(matrix, [matrix_row], axis=0) |  | ||||||
|     return x_array, y_array, matrix |  | ||||||
|  |  | ||||||
| # 读取文件中的二维数据(第一行和第一列分别为横纵坐标)(支持复数形式) |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def read_two_dimensional_complex_data(filename='a', file_format='.txt'):  |  | ||||||
|     import numpy as np |  | ||||||
|     f = open(filename+file_format, 'r') |  | ||||||
|     text = f.read() |  | ||||||
|     f.close() |  | ||||||
|     row_list = np.array(text.split('\n'))  |  | ||||||
|     dim_column = np.array(row_list[0].split()).shape[0]  |  | ||||||
|     x_array = np.array([]) |  | ||||||
|     y_array = np.array([]) |  | ||||||
|     matrix = np.array([]) |  | ||||||
|     for i0 in range(row_list.shape[0]): |  | ||||||
|         column = np.array(row_list[i0].split())  |  | ||||||
|         if i0 == 0: |  | ||||||
|             x_str = column[1::]  |  | ||||||
|             x_array = np.zeros(x_str.shape[0], dtype=complex) |  | ||||||
|             for i00 in range(x_str.shape[0]): |  | ||||||
|                 x_array[i00] = complex(x_str[i00])  |  | ||||||
|         elif column.shape[0] != 0:  |  | ||||||
|             y_array = np.append(y_array, [complex(column[0])], axis=0)   |  | ||||||
|             matrix_row = np.zeros(dim_column-1, dtype=complex) |  | ||||||
|             for dim0 in range(dim_column-1): |  | ||||||
|                 matrix_row[dim0] = complex(column[dim0+1]) |  | ||||||
|             if np.array(matrix).shape[0] == 0: |  | ||||||
|                 matrix = [matrix_row] |  | ||||||
|             else: |  | ||||||
|                 matrix = np.append(matrix, [matrix_row], axis=0) |  | ||||||
|     return x_array, y_array, matrix |  | ||||||
|  |  | ||||||
| # 读取文件中的二维数据(不包括x和y) |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def read_two_dimensional_data_without_xy_array(filename='a', file_format='.txt'): |  | ||||||
|     import numpy as np |  | ||||||
|     matrix = np.loadtxt(filename+file_format) |  | ||||||
|     return matrix |  | ||||||
|  |  | ||||||
| # 打开文件用于新增内容 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def open_file(filename='a', file_format='.txt'): |  | ||||||
|     f = open(filename+file_format, 'a', encoding='UTF-8') |  | ||||||
|     return f |  | ||||||
|  |  | ||||||
| # 在文件中写入一维数据(一行一组x和y) |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def write_one_dimensional_data(x_array, y_array, filename='a', file_format='.txt'): |  | ||||||
|     import guan |  | ||||||
|     with open(filename+file_format, 'w', encoding='UTF-8') as f: |  | ||||||
|         guan.write_one_dimensional_data_without_opening_file(x_array, y_array, f) |  | ||||||
|  |  | ||||||
| # 在文件中写入一维数据(一行一组x和y)(需要输入已打开的文件) |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def write_one_dimensional_data_without_opening_file(x_array, y_array, f): |  | ||||||
|     import numpy as np |  | ||||||
|     x_array = np.array(x_array) |  | ||||||
|     y_array = np.array(y_array) |  | ||||||
|     i0 = 0 |  | ||||||
|     for x0 in x_array: |  | ||||||
|         f.write(str(x0)+'   ') |  | ||||||
|         if len(y_array.shape) == 1: |  | ||||||
|             f.write(str(y_array[i0])+'\n') |  | ||||||
|         elif len(y_array.shape) == 2: |  | ||||||
|             for j0 in range(y_array.shape[1]): |  | ||||||
|                 f.write(str(y_array[i0, j0])+'   ') |  | ||||||
|             f.write('\n') |  | ||||||
|         i0 += 1 |  | ||||||
|  |  | ||||||
| # 在文件中写入二维数据(第一行和第一列分别为横纵坐标) |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def write_two_dimensional_data(x_array, y_array, matrix, filename='a', file_format='.txt'): |  | ||||||
|     import guan |  | ||||||
|     with open(filename+file_format, 'w', encoding='UTF-8') as f: |  | ||||||
|         guan.write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f) |  | ||||||
|  |  | ||||||
| # 在文件中写入二维数据(第一行和第一列分别为横纵坐标)(需要输入已打开的文件) |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f): |  | ||||||
|     import numpy as np |  | ||||||
|     x_array = np.array(x_array) |  | ||||||
|     y_array = np.array(y_array) |  | ||||||
|     matrix = np.array(matrix) |  | ||||||
|     f.write('0   ') |  | ||||||
|     for x0 in x_array: |  | ||||||
|         f.write(str(x0)+'   ') |  | ||||||
|     f.write('\n') |  | ||||||
|     i0 = 0 |  | ||||||
|     for y0 in y_array: |  | ||||||
|         f.write(str(y0)) |  | ||||||
|         j0 = 0 |  | ||||||
|         for x0 in x_array: |  | ||||||
|             f.write('   '+str(matrix[i0, j0])+'   ') |  | ||||||
|             j0 += 1 |  | ||||||
|         f.write('\n') |  | ||||||
|         i0 += 1 |  | ||||||
|  |  | ||||||
| # 在文件中写入二维数据(不包括x和y) |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def write_two_dimensional_data_without_xy_array(matrix, filename='a', file_format='.txt'): |  | ||||||
|     import guan |  | ||||||
|     with open(filename+file_format, 'w', encoding='UTF-8') as f: |  | ||||||
|         guan.write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f) |  | ||||||
|  |  | ||||||
| # 在文件中写入二维数据(不包括x和y)(需要输入已打开的文件) |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f): |  | ||||||
|     for row in matrix: |  | ||||||
|         for element in row: |  | ||||||
|             f.write(str(element)+'   ') |  | ||||||
|         f.write('\n') |  | ||||||
|     import guan |  | ||||||
|  |  | ||||||
| # 以显示编号的样式,打印数组 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def print_array_with_index(array, show_index=1, index_type=0): |  | ||||||
|     if show_index==0: |  | ||||||
|         for i0 in array: |  | ||||||
|             print(i0) |  | ||||||
|     else: |  | ||||||
|         if index_type==0: |  | ||||||
|             index = 0 |  | ||||||
|             for i0 in array: |  | ||||||
|                 print(index, i0) |  | ||||||
|                 index += 1 |  | ||||||
|         else: |  | ||||||
|             index = 0 |  | ||||||
|             for i0 in array: |  | ||||||
|                 index += 1 |  | ||||||
|                 print(index, i0) |  | ||||||
|  |  | ||||||
| # 获取目录中的所有文件名 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def get_all_filenames_in_directory(directory='./', file_format=None): |  | ||||||
|     import os |  | ||||||
|     file_list = [] |  | ||||||
|     for root, dirs, files in os.walk(directory): |  | ||||||
|         for i0 in range(len(files)): |  | ||||||
|             if file_format == None: |  | ||||||
|                 file_list.append(files[i0]) |  | ||||||
|             else: |  | ||||||
|                 if file_format in files[i0]: |  | ||||||
|                     file_list.append(files[i0]) |  | ||||||
|     return file_list |  | ||||||
|  |  | ||||||
| # 获取目录中的所有文件名(不包括子目录) |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def get_all_filenames_in_directory_without_subdirectory(directory='./', file_format=None): |  | ||||||
|     import os |  | ||||||
|     file_list = [] |  | ||||||
|     for root, dirs, files in os.walk(directory): |  | ||||||
|         for i0 in range(len(files)): |  | ||||||
|             if file_format == None: |  | ||||||
|                 file_list.append(files[i0]) |  | ||||||
|             else: |  | ||||||
|                 if file_format in files[i0]: |  | ||||||
|                     file_list.append(files[i0]) |  | ||||||
|         break |  | ||||||
|     return file_list |  | ||||||
|  |  | ||||||
| # 获取文件夹中某种文本类型的文件路径以及读取内容 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def read_text_files_in_directory(directory='./', file_format='.md'): |  | ||||||
|     import os |  | ||||||
|     file_list = [] |  | ||||||
|     for root, dirs, files in os.walk(directory): |  | ||||||
|         for i0 in range(len(files)): |  | ||||||
|             if file_format in files[i0]: |  | ||||||
|                 file_list.append(root+'/'+files[i0]) |  | ||||||
|     content_array = [] |  | ||||||
|     for file in file_list: |  | ||||||
|         with open(file, 'r') as f: |  | ||||||
|             content_array.append(f.read()) |  | ||||||
|     return file_list, content_array |  | ||||||
|  |  | ||||||
| # 在多个文本文件中查找关键词 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def find_words_in_multiple_files(words, directory='./', file_format='.md'): |  | ||||||
|     import guan |  | ||||||
|     file_list, content_array = guan.read_text_files_in_directory(directory=directory, file_format=file_format) |  | ||||||
|     num_files = len(file_list) |  | ||||||
|     file_list_with_words = [] |  | ||||||
|     for i0 in range(num_files): |  | ||||||
|         if words in content_array[i0]: |  | ||||||
|             file_list_with_words.append(file_list[i0]) |  | ||||||
|     return file_list_with_words |  | ||||||
|  |  | ||||||
| # 并行计算前的预处理,把参数分成多份 | # 并行计算前的预处理,把参数分成多份 | ||||||
| @guan.statistics_decorator | @guan.statistics_decorator | ||||||
| def preprocess_for_parallel_calculations(parameter_array_all, cpus=1, task_index=0): | def preprocess_for_parallel_calculations(parameter_array_all, cpus=1, task_index=0): | ||||||
| @@ -745,6 +38,24 @@ def generate_random_int_number_for_a_specific_seed(seed=0, x_min=0, x_max=10): | |||||||
|     rand_num = np.random.randint(x_min, x_max) # 左闭右开[x_min, x_max) |     rand_num = np.random.randint(x_min, x_max) # 左闭右开[x_min, x_max) | ||||||
|     return rand_num |     return rand_num | ||||||
|  |  | ||||||
|  | # 以显示编号的样式,打印数组 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def print_array_with_index(array, show_index=1, index_type=0): | ||||||
|  |     if show_index==0: | ||||||
|  |         for i0 in array: | ||||||
|  |             print(i0) | ||||||
|  |     else: | ||||||
|  |         if index_type==0: | ||||||
|  |             index = 0 | ||||||
|  |             for i0 in array: | ||||||
|  |                 print(index, i0) | ||||||
|  |                 index += 1 | ||||||
|  |         else: | ||||||
|  |             index = 0 | ||||||
|  |             for i0 in array: | ||||||
|  |                 index += 1 | ||||||
|  |                 print(index, i0) | ||||||
|  |  | ||||||
| # 使用jieba软件包进行分词 | # 使用jieba软件包进行分词 | ||||||
| @guan.statistics_decorator | @guan.statistics_decorator | ||||||
| def divide_text_into_words(text): | def divide_text_into_words(text): | ||||||
| @@ -752,18 +63,79 @@ def divide_text_into_words(text): | |||||||
|     words = jieba.lcut(text) |     words = jieba.lcut(text) | ||||||
|     return words |     return words | ||||||
|  |  | ||||||
| # 拼接两个PDF文件 | # 根据一定的字符长度来分割文本 | ||||||
| @guan.statistics_decorator | @guan.statistics_decorator | ||||||
| def combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_file='combined_file.pdf'): | def split_text(text, wrap_width=3000):   | ||||||
|     import PyPDF2 |     import textwrap   | ||||||
|     output_pdf = PyPDF2.PdfWriter() |     split_text_list = textwrap.wrap(text, wrap_width) | ||||||
|     with open(input_file_1, 'rb') as file1: |     return split_text_list | ||||||
|         pdf1 = PyPDF2.PdfReader(file1) |  | ||||||
|         for page in range(len(pdf1.pages)): | # 判断某个字符是中文还是英文或其他 | ||||||
|             output_pdf.add_page(pdf1.pages[page]) | @guan.statistics_decorator | ||||||
|     with open(input_file_2, 'rb') as file2: | def check_Chinese_or_English(a):   | ||||||
|         pdf2 = PyPDF2.PdfReader(file2) |     if '\u4e00' <= a <= '\u9fff' :   | ||||||
|         for page in range(len(pdf2.pages)): |         word_type = 'Chinese'   | ||||||
|             output_pdf.add_page(pdf2.pages[page]) |     elif '\x00' <= a <= '\xff':   | ||||||
|     with open(output_file, 'wb') as combined_file: |         word_type = 'English' | ||||||
|         output_pdf.write(combined_file) |     else: | ||||||
|  |         word_type = 'Others'  | ||||||
|  |     return word_type | ||||||
|  |  | ||||||
|  | # 统计中英文文本的字数,默认不包括空格 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def count_words(text, include_space=0, show_words=0): | ||||||
|  |     import jieba | ||||||
|  |     import guan | ||||||
|  |     words = jieba.lcut(text)   | ||||||
|  |     new_words = [] | ||||||
|  |     if include_space == 0: | ||||||
|  |         for word in words: | ||||||
|  |             if word != ' ': | ||||||
|  |                 new_words.append(word) | ||||||
|  |     else: | ||||||
|  |         new_words = words | ||||||
|  |     num_words = 0 | ||||||
|  |     new_words_2 = [] | ||||||
|  |     for word in new_words: | ||||||
|  |         word_type = guan.check_Chinese_or_English(word[0]) | ||||||
|  |         if word_type == 'Chinese': | ||||||
|  |             num_words += len(word) | ||||||
|  |             for one_word in word: | ||||||
|  |                 new_words_2.append(one_word) | ||||||
|  |         elif word_type == 'English' or 'Others': | ||||||
|  |             num_words += 1 | ||||||
|  |             new_words_2.append(word) | ||||||
|  |     if show_words == 1: | ||||||
|  |         print(new_words_2) | ||||||
|  |     return num_words | ||||||
|  |  | ||||||
|  | # 将RGB转成HEX | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def rgb_to_hex(rgb, pound=1): | ||||||
|  |     if pound==0: | ||||||
|  |         return '%02x%02x%02x' % rgb | ||||||
|  |     else: | ||||||
|  |         return '#%02x%02x%02x' % rgb | ||||||
|  |  | ||||||
|  | # 将HEX转成RGB | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def hex_to_rgb(hex): | ||||||
|  |     hex = hex.lstrip('#') | ||||||
|  |     length = len(hex) | ||||||
|  |     return tuple(int(hex[i:i+length//3], 16) for i in range(0, length, length//3)) | ||||||
|  |  | ||||||
|  | # 使用MD5进行散列加密 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def encryption_MD5(password, salt=''): | ||||||
|  |     import hashlib | ||||||
|  |     password = salt+password | ||||||
|  |     hashed_password = hashlib.md5(password.encode()).hexdigest() | ||||||
|  |     return hashed_password | ||||||
|  |  | ||||||
|  | # 使用SHA-256进行散列加密 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def encryption_SHA_256(password, salt=''): | ||||||
|  |     import hashlib | ||||||
|  |     password = salt+password | ||||||
|  |     hashed_password = hashlib.sha256(password.encode()).hexdigest() | ||||||
|  |     return hashed_password | ||||||
							
								
								
									
										41
									
								
								PyPI/src/guan/decorator.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										41
									
								
								PyPI/src/guan/decorator.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,41 @@ | |||||||
|  | # 函数的装饰器,用于获取计算时间(秒) | ||||||
|  | def timer_decorator(func): | ||||||
|  |     import time | ||||||
|  |     def wrapper(*args, **kwargs): | ||||||
|  |         start = time.time() | ||||||
|  |         result = func(*args, **kwargs) | ||||||
|  |         end = time.time() | ||||||
|  |         print(f"Running time of {func.__name__}: {end - start} seconds") | ||||||
|  |         return result | ||||||
|  |     return wrapper | ||||||
|  |  | ||||||
|  | # 函数的装饰器,用于获取计算时间(分) | ||||||
|  | def timer_decorator_minutes(func): | ||||||
|  |     import time | ||||||
|  |     def wrapper(*args, **kwargs): | ||||||
|  |         start = time.time() | ||||||
|  |         result = func(*args, **kwargs) | ||||||
|  |         end = time.time() | ||||||
|  |         print(f"Running time of {func.__name__}: {(end - start)/60} minutes") | ||||||
|  |         return result | ||||||
|  |     return wrapper | ||||||
|  |  | ||||||
|  | # 函数的装饰器,用于获取计算时间(时) | ||||||
|  | def timer_decorator_hours(func): | ||||||
|  |     import time | ||||||
|  |     def wrapper(*args, **kwargs): | ||||||
|  |         start = time.time() | ||||||
|  |         result = func(*args, **kwargs) | ||||||
|  |         end = time.time() | ||||||
|  |         print(f"Running time of {func.__name__}: {(end - start)/3600} hours") | ||||||
|  |         return result | ||||||
|  |     return wrapper | ||||||
|  |  | ||||||
|  | # 函数的装饰器,用于GUAN软件包的统计 | ||||||
|  | def statistics_decorator(func): | ||||||
|  |     def wrapper(*args, **kwargs): | ||||||
|  |         result = func(*args, **kwargs) | ||||||
|  |         import guan | ||||||
|  |         guan.statistics_of_guan_package(func.__name__) | ||||||
|  |         return result | ||||||
|  |     return wrapper | ||||||
							
								
								
									
										403
									
								
								PyPI/src/guan/figure_plotting.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										403
									
								
								PyPI/src/guan/figure_plotting.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,403 @@ | |||||||
|  | # Module: figure_plotting | ||||||
|  | import guan | ||||||
|  |  | ||||||
|  | # 导入plt, fig, ax | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def import_plt_and_start_fig_ax(adjust_bottom=0.2, adjust_left=0.2, labelsize=20): | ||||||
|  |     import matplotlib.pyplot as plt | ||||||
|  |     fig, ax = plt.subplots() | ||||||
|  |     plt.subplots_adjust(bottom=adjust_bottom, left=adjust_left) | ||||||
|  |     ax.grid() | ||||||
|  |     ax.tick_params(labelsize=labelsize)  | ||||||
|  |     labels = ax.get_xticklabels() + ax.get_yticklabels() | ||||||
|  |     [label.set_fontname('Times New Roman') for label in labels] | ||||||
|  |     return plt, fig, ax | ||||||
|  |  | ||||||
|  | # 基于plt, fig, ax画图 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def plot_without_starting_fig(plt, fig, ax, x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, style='', y_min=None, y_max=None, linewidth=None, markersize=None, color=None):  | ||||||
|  |     if color==None: | ||||||
|  |         ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize) | ||||||
|  |     else: | ||||||
|  |         ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize, color=color) | ||||||
|  |     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||||
|  |     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     if y_min!=None or y_max!=None: | ||||||
|  |         if y_min==None: | ||||||
|  |             y_min=min(y_array) | ||||||
|  |         if y_max==None: | ||||||
|  |             y_max=max(y_array) | ||||||
|  |         ax.set_ylim(y_min, y_max) | ||||||
|  |  | ||||||
|  | # 画图 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def plot(x_array, y_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style='', y_min=None, y_max=None, linewidth=None, markersize=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||||
|  |     import guan | ||||||
|  |     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize) | ||||||
|  |     ax.plot(x_array, y_array, style, linewidth=linewidth, markersize=markersize) | ||||||
|  |     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||||
|  |     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     if y_min!=None or y_max!=None: | ||||||
|  |         if y_min==None: | ||||||
|  |             y_min=min(y_array) | ||||||
|  |         if y_max==None: | ||||||
|  |             y_max=max(y_array) | ||||||
|  |         ax.set_ylim(y_min, y_max) | ||||||
|  |     if save == 1: | ||||||
|  |         plt.savefig(filename+file_format, dpi=dpi)  | ||||||
|  |     if show == 1: | ||||||
|  |         plt.show() | ||||||
|  |     plt.close('all') | ||||||
|  |  | ||||||
|  | # 一组横坐标数据,两组纵坐标数据画图 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def plot_two_array(x_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||||
|  |     import guan | ||||||
|  |     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  | ||||||
|  |     ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) | ||||||
|  |     ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) | ||||||
|  |     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||||
|  |     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     if y_min!=None or y_max!=None: | ||||||
|  |         if y_min==None: | ||||||
|  |             y1_min=min(y1_array) | ||||||
|  |             y2_min=min(y2_array) | ||||||
|  |             y_min=min([y1_min, y2_min]) | ||||||
|  |         if y_max==None: | ||||||
|  |             y1_max=max(y1_array) | ||||||
|  |             y2_max=max(y2_array) | ||||||
|  |             y_max=max([y1_max, y2_max]) | ||||||
|  |         ax.set_ylim(y_min, y_max) | ||||||
|  |     if save == 1: | ||||||
|  |         plt.savefig(filename+file_format, dpi=dpi)  | ||||||
|  |     if show == 1: | ||||||
|  |         plt.show() | ||||||
|  |     plt.close('all') | ||||||
|  |  | ||||||
|  | # 两组横坐标数据,两组纵坐标数据画图 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def plot_two_array_with_two_horizontal_array(x1_array, x2_array, y1_array, y2_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, markersize_1=None, markersize_2=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||||
|  |     import guan | ||||||
|  |     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  | ||||||
|  |     ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) | ||||||
|  |     ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) | ||||||
|  |     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||||
|  |     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     if y_min!=None or y_max!=None: | ||||||
|  |         if y_min==None: | ||||||
|  |             y1_min=min(y1_array) | ||||||
|  |             y2_min=min(y2_array) | ||||||
|  |             y_min=min([y1_min, y2_min]) | ||||||
|  |         if y_max==None: | ||||||
|  |             y1_max=max(y1_array) | ||||||
|  |             y2_max=max(y2_array) | ||||||
|  |             y_max=max([y1_max, y2_max]) | ||||||
|  |         ax.set_ylim(y_min, y_max) | ||||||
|  |     if save == 1: | ||||||
|  |         plt.savefig(filename+file_format, dpi=dpi)  | ||||||
|  |     if show == 1: | ||||||
|  |         plt.show() | ||||||
|  |     plt.close('all') | ||||||
|  |  | ||||||
|  | # 一组横坐标数据,三组纵坐标数据画图 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def plot_three_array(x_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||||
|  |     import guan | ||||||
|  |     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  | ||||||
|  |     ax.plot(x_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) | ||||||
|  |     ax.plot(x_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) | ||||||
|  |     ax.plot(x_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3) | ||||||
|  |     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||||
|  |     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     if y_min!=None or y_max!=None: | ||||||
|  |         if y_min==None: | ||||||
|  |             y1_min=min(y1_array) | ||||||
|  |             y2_min=min(y2_array) | ||||||
|  |             y3_min=min(y3_array) | ||||||
|  |             y_min=min([y1_min, y2_min, y3_min]) | ||||||
|  |         if y_max==None: | ||||||
|  |             y1_max=max(y1_array) | ||||||
|  |             y2_max=max(y2_array) | ||||||
|  |             y3_max=max(y3_array) | ||||||
|  |             y_max=max([y1_max, y2_max, y3_max]) | ||||||
|  |         ax.set_ylim(y_min, y_max) | ||||||
|  |     if save == 1: | ||||||
|  |         plt.savefig(filename+file_format, dpi=dpi)  | ||||||
|  |     if show == 1: | ||||||
|  |         plt.show() | ||||||
|  |     plt.close('all') | ||||||
|  |  | ||||||
|  | # 三组横坐标数据,三组纵坐标数据画图 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def plot_three_array_with_three_horizontal_array(x1_array, x2_array, x3_array, y1_array, y2_array, y3_array, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=20, show=1, save=0, filename='a', file_format='.jpg', dpi=300, style_1='', style_2='', style_3='', y_min=None, y_max=None, linewidth_1=None, linewidth_2=None, linewidth_3=None,markersize_1=None, markersize_2=None, markersize_3=None, adjust_bottom=0.2, adjust_left=0.2):  | ||||||
|  |     import guan | ||||||
|  |     plt, fig, ax = guan.import_plt_and_start_fig_ax(adjust_bottom=adjust_bottom, adjust_left=adjust_left, labelsize=labelsize)  | ||||||
|  |     ax.plot(x1_array, y1_array, style_1, linewidth=linewidth_1, markersize=markersize_1) | ||||||
|  |     ax.plot(x2_array, y2_array, style_2, linewidth=linewidth_2, markersize=markersize_2) | ||||||
|  |     ax.plot(x3_array, y3_array, style_3, linewidth=linewidth_3, markersize=markersize_3) | ||||||
|  |     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||||
|  |     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     if y_min!=None or y_max!=None: | ||||||
|  |         if y_min==None: | ||||||
|  |             y1_min=min(y1_array) | ||||||
|  |             y2_min=min(y2_array) | ||||||
|  |             y3_min=min(y3_array) | ||||||
|  |             y_min=min([y1_min, y2_min, y3_min]) | ||||||
|  |         if y_max==None: | ||||||
|  |             y1_max=max(y1_array) | ||||||
|  |             y2_max=max(y2_array) | ||||||
|  |             y3_max=max(y3_array) | ||||||
|  |             y_max=max([y1_max, y2_max, y3_max]) | ||||||
|  |         ax.set_ylim(y_min, y_max) | ||||||
|  |     if save == 1: | ||||||
|  |         plt.savefig(filename+file_format, dpi=dpi)  | ||||||
|  |     if show == 1: | ||||||
|  |         plt.show() | ||||||
|  |     plt.close('all') | ||||||
|  |  | ||||||
|  | # 画三维图 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', fontsize=20, labelsize=15, show=1, save=0, filename='a', file_format='.jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100):  | ||||||
|  |     import numpy as np | ||||||
|  |     import matplotlib.pyplot as plt | ||||||
|  |     from matplotlib import cm | ||||||
|  |     from matplotlib.ticker import LinearLocator | ||||||
|  |     matrix = np.array(matrix) | ||||||
|  |     fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) | ||||||
|  |     plt.subplots_adjust(bottom=0.1, right=0.65)  | ||||||
|  |     x_array, y_array = np.meshgrid(x_array, y_array) | ||||||
|  |     if len(matrix.shape) == 2: | ||||||
|  |         surf = ax.plot_surface(x_array, y_array, matrix, rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)  | ||||||
|  |     elif len(matrix.shape) == 3: | ||||||
|  |         for i0 in range(matrix.shape[2]): | ||||||
|  |             surf = ax.plot_surface(x_array, y_array, matrix[:,:,i0], rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)  | ||||||
|  |     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||||
|  |     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_zlabel(zlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.zaxis.set_major_locator(LinearLocator(5))  | ||||||
|  |     ax.zaxis.set_major_formatter('{x:.2f}')   | ||||||
|  |     if z_min!=None or z_max!=None: | ||||||
|  |         if z_min==None: | ||||||
|  |             z_min=matrix.min() | ||||||
|  |         if z_max==None: | ||||||
|  |             z_max=matrix.max() | ||||||
|  |         ax.set_zlim(z_min, z_max) | ||||||
|  |     ax.tick_params(labelsize=labelsize)  | ||||||
|  |     labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels() | ||||||
|  |     [label.set_fontname('Times New Roman') for label in labels]  | ||||||
|  |     cax = plt.axes([0.8, 0.1, 0.05, 0.8])  | ||||||
|  |     cbar = fig.colorbar(surf, cax=cax)   | ||||||
|  |     cbar.ax.tick_params(labelsize=labelsize) | ||||||
|  |     for l in cbar.ax.yaxis.get_ticklabels(): | ||||||
|  |         l.set_family('Times New Roman') | ||||||
|  |     if save == 1: | ||||||
|  |         plt.savefig(filename+file_format, dpi=dpi)  | ||||||
|  |     if show == 1: | ||||||
|  |         plt.show() | ||||||
|  |     plt.close('all') | ||||||
|  |  | ||||||
|  | # 画Contour图 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300): | ||||||
|  |     import numpy as np | ||||||
|  |     import matplotlib.pyplot as plt | ||||||
|  |     fig, ax = plt.subplots() | ||||||
|  |     plt.subplots_adjust(bottom=0.2, right=0.75, left=0.2)  | ||||||
|  |     x_array, y_array = np.meshgrid(x_array, y_array) | ||||||
|  |     contour = ax.contourf(x_array,y_array,matrix,cmap=cmap, levels=levels)  | ||||||
|  |     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||||
|  |     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.tick_params(labelsize=labelsize)  | ||||||
|  |     labels = ax.get_xticklabels() + ax.get_yticklabels() | ||||||
|  |     [label.set_fontname('Times New Roman') for label in labels] | ||||||
|  |     cax = plt.axes([0.8, 0.2, 0.05, 0.68]) | ||||||
|  |     cbar = fig.colorbar(contour, cax=cax)  | ||||||
|  |     cbar.ax.tick_params(labelsize=labelsize)  | ||||||
|  |     for l in cbar.ax.yaxis.get_ticklabels(): | ||||||
|  |         l.set_family('Times New Roman') | ||||||
|  |     if save == 1: | ||||||
|  |         plt.savefig(filename+file_format, dpi=dpi)  | ||||||
|  |     if show == 1: | ||||||
|  |         plt.show() | ||||||
|  |     plt.close('all') | ||||||
|  |  | ||||||
|  | # 画棋盘图/伪彩色图 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def plot_pcolor(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', fontsize=20, labelsize=15, cmap='jet', levels=None, show=1, save=0, filename='a', file_format='.jpg', dpi=300):   | ||||||
|  |     import numpy as np | ||||||
|  |     import matplotlib.pyplot as plt | ||||||
|  |     fig, ax = plt.subplots() | ||||||
|  |     plt.subplots_adjust(bottom=0.2, right=0.75, left=0.2)  | ||||||
|  |     x_array, y_array = np.meshgrid(x_array, y_array) | ||||||
|  |     contour = ax.pcolor(x_array,y_array,matrix, cmap=cmap) | ||||||
|  |     ax.set_title(title, fontsize=fontsize, fontfamily='Times New Roman') | ||||||
|  |     ax.set_xlabel(xlabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_ylabel(ylabel, fontsize=fontsize, fontfamily='Times New Roman')  | ||||||
|  |     ax.tick_params(labelsize=labelsize)  | ||||||
|  |     labels = ax.get_xticklabels() + ax.get_yticklabels() | ||||||
|  |     [label.set_fontname('Times New Roman') for label in labels] | ||||||
|  |     cax = plt.axes([0.8, 0.2, 0.05, 0.68]) | ||||||
|  |     cbar = fig.colorbar(contour, cax=cax)  | ||||||
|  |     cbar.ax.tick_params(labelsize=labelsize)  | ||||||
|  |     for l in cbar.ax.yaxis.get_ticklabels(): | ||||||
|  |         l.set_family('Times New Roman') | ||||||
|  |     if save == 1: | ||||||
|  |         plt.savefig(filename+file_format, dpi=dpi)  | ||||||
|  |     if show == 1: | ||||||
|  |         plt.show() | ||||||
|  |     plt.close('all') | ||||||
|  |  | ||||||
|  | # 通过坐标画点和线 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def draw_dots_and_lines(coordinate_array, draw_dots=1, draw_lines=1, max_distance=1.1, line_style='-k', linewidth=1, dot_style='ro', markersize=3, show=1, save=0, filename='a', file_format='.eps', dpi=300): | ||||||
|  |     import numpy as np | ||||||
|  |     import matplotlib.pyplot as plt | ||||||
|  |     coordinate_array = np.array(coordinate_array) | ||||||
|  |     print(coordinate_array.shape) | ||||||
|  |     x_range = max(coordinate_array[:, 0])-min(coordinate_array[:, 0]) | ||||||
|  |     y_range = max(coordinate_array[:, 1])-min(coordinate_array[:, 1]) | ||||||
|  |     fig, ax = plt.subplots(figsize=(6*x_range/y_range,6)) | ||||||
|  |     plt.subplots_adjust(left=0, bottom=0, right=1, top=1) | ||||||
|  |     plt.axis('off') | ||||||
|  |     if draw_lines==1: | ||||||
|  |         for i1 in range(coordinate_array.shape[0]): | ||||||
|  |             for i2 in range(coordinate_array.shape[0]): | ||||||
|  |                 if np.sqrt((coordinate_array[i1, 0] - coordinate_array[i2, 0])**2+(coordinate_array[i1, 1] - coordinate_array[i2, 1])**2) < max_distance: | ||||||
|  |                     ax.plot([coordinate_array[i1, 0], coordinate_array[i2, 0]], [coordinate_array[i1, 1], coordinate_array[i2, 1]], line_style, linewidth=linewidth) | ||||||
|  |     if draw_dots==1: | ||||||
|  |         for i in range(coordinate_array.shape[0]): | ||||||
|  |             ax.plot(coordinate_array[i, 0], coordinate_array[i, 1], dot_style, markersize=markersize) | ||||||
|  |     if show==1: | ||||||
|  |         plt.show() | ||||||
|  |     if save==1: | ||||||
|  |         if file_format=='.eps': | ||||||
|  |             plt.savefig(filename+file_format) | ||||||
|  |         else: | ||||||
|  |             plt.savefig(filename+file_format, dpi=dpi) | ||||||
|  |  | ||||||
|  | # 合并两个图片 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def combine_two_images(image_path_array, figsize=(16,8), show=0, save=1, filename='a', file_format='.jpg', dpi=300): | ||||||
|  |     import numpy as np | ||||||
|  |     num = np.array(image_path_array).shape[0] | ||||||
|  |     if num != 2: | ||||||
|  |         print('Error: The number of images should be two!') | ||||||
|  |     else: | ||||||
|  |         import matplotlib.pyplot as plt | ||||||
|  |         import matplotlib.image as mpimg | ||||||
|  |         fig = plt.figure(figsize=figsize) | ||||||
|  |         plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)  | ||||||
|  |         ax1 = fig.add_subplot(121) | ||||||
|  |         ax2 = fig.add_subplot(122) | ||||||
|  |         image_1 = mpimg.imread(image_path_array[0]) | ||||||
|  |         image_2 = mpimg.imread(image_path_array[1]) | ||||||
|  |         ax1.imshow(image_1) | ||||||
|  |         ax2.imshow(image_2) | ||||||
|  |         ax1.axis('off') | ||||||
|  |         ax2.axis('off') | ||||||
|  |         if show == 1: | ||||||
|  |             plt.show() | ||||||
|  |         if save == 1: | ||||||
|  |             plt.savefig(filename+file_format, dpi=dpi) | ||||||
|  |         plt.close('all') | ||||||
|  |  | ||||||
|  | # 合并三个图片 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def combine_three_images(image_path_array, figsize=(16,5), show=0, save=1, filename='a', file_format='.jpg', dpi=300): | ||||||
|  |     import numpy as np | ||||||
|  |     num = np.array(image_path_array).shape[0] | ||||||
|  |     if num != 3: | ||||||
|  |         print('Error: The number of images should be three!') | ||||||
|  |     else: | ||||||
|  |         import matplotlib.pyplot as plt | ||||||
|  |         import matplotlib.image as mpimg | ||||||
|  |         fig = plt.figure(figsize=figsize) | ||||||
|  |         plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)  | ||||||
|  |         ax1 = fig.add_subplot(131) | ||||||
|  |         ax2 = fig.add_subplot(132) | ||||||
|  |         ax3 = fig.add_subplot(133) | ||||||
|  |         image_1 = mpimg.imread(image_path_array[0]) | ||||||
|  |         image_2 = mpimg.imread(image_path_array[1]) | ||||||
|  |         image_3 = mpimg.imread(image_path_array[2]) | ||||||
|  |         ax1.imshow(image_1) | ||||||
|  |         ax2.imshow(image_2) | ||||||
|  |         ax3.imshow(image_3) | ||||||
|  |         ax1.axis('off') | ||||||
|  |         ax2.axis('off') | ||||||
|  |         ax3.axis('off') | ||||||
|  |         if show == 1: | ||||||
|  |             plt.show() | ||||||
|  |         if save == 1: | ||||||
|  |             plt.savefig(filename+file_format, dpi=dpi) | ||||||
|  |         plt.close('all') | ||||||
|  |  | ||||||
|  | # 合并四个图片 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def combine_four_images(image_path_array, figsize=(16,16), show=0, save=1, filename='a', file_format='.jpg', dpi=300): | ||||||
|  |     import numpy as np | ||||||
|  |     num = np.array(image_path_array).shape[0] | ||||||
|  |     if num != 4: | ||||||
|  |         print('Error: The number of images should be four!') | ||||||
|  |     else: | ||||||
|  |         import matplotlib.pyplot as plt | ||||||
|  |         import matplotlib.image as mpimg | ||||||
|  |         fig = plt.figure(figsize=figsize) | ||||||
|  |         plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0, hspace=0)  | ||||||
|  |         ax1 = fig.add_subplot(221) | ||||||
|  |         ax2 = fig.add_subplot(222) | ||||||
|  |         ax3 = fig.add_subplot(223) | ||||||
|  |         ax4 = fig.add_subplot(224) | ||||||
|  |         image_1 = mpimg.imread(image_path_array[0]) | ||||||
|  |         image_2 = mpimg.imread(image_path_array[1]) | ||||||
|  |         image_3 = mpimg.imread(image_path_array[2]) | ||||||
|  |         image_4 = mpimg.imread(image_path_array[3]) | ||||||
|  |         ax1.imshow(image_1) | ||||||
|  |         ax2.imshow(image_2) | ||||||
|  |         ax3.imshow(image_3) | ||||||
|  |         ax4.imshow(image_4) | ||||||
|  |         ax1.axis('off') | ||||||
|  |         ax2.axis('off') | ||||||
|  |         ax3.axis('off') | ||||||
|  |         ax4.axis('off') | ||||||
|  |         if show == 1: | ||||||
|  |             plt.show() | ||||||
|  |         if save == 1: | ||||||
|  |             plt.savefig(filename+file_format, dpi=dpi) | ||||||
|  |         plt.close('all') | ||||||
|  |  | ||||||
|  | # 对某个目录中的txt文件批量读取和画图 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def batch_reading_and_plotting(directory, xlabel='x', ylabel='y'): | ||||||
|  |     import re | ||||||
|  |     import os | ||||||
|  |     import guan | ||||||
|  |     for root, dirs, files in os.walk(directory): | ||||||
|  |         for file in files: | ||||||
|  |             if re.search('^txt.', file[::-1]): | ||||||
|  |                 filename = file[:-4] | ||||||
|  |                 x_array, y_array = guan.read_one_dimensional_data(filename=filename) | ||||||
|  |                 guan.plot(x_array, y_array, xlabel=xlabel, ylabel=ylabel, title=filename, show=0, save=1, filename=filename) | ||||||
|  |  | ||||||
|  | # 将图片制作GIF动画 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def make_gif(image_path_array, filename='a', duration=0.1): | ||||||
|  |     import imageio | ||||||
|  |     images = [] | ||||||
|  |     for image_path in image_path_array: | ||||||
|  |         im = imageio.imread(image_path) | ||||||
|  |         images.append(im) | ||||||
|  |     imageio.mimsave(filename+'.gif', images, 'GIF', duration=duration) | ||||||
|  |  | ||||||
|  | # 选取Matplotlib颜色 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def color_matplotlib(): | ||||||
|  |     color_array = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan'] | ||||||
|  |     return color_array | ||||||
							
								
								
									
										337
									
								
								PyPI/src/guan/file_reading_and_writing.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										337
									
								
								PyPI/src/guan/file_reading_and_writing.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,337 @@ | |||||||
|  | # Module: file_reading_and_writing | ||||||
|  | import guan | ||||||
|  |  | ||||||
|  | # 使用pickle将变量保存到文件(支持几乎所有对象类型) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def dump_data(data, filename, file_format='.txt'): | ||||||
|  |     import pickle | ||||||
|  |     with open(filename+file_format, 'wb') as f: | ||||||
|  |         pickle.dump(data, f) | ||||||
|  |  | ||||||
|  | # 使用pickle从文件中恢复数据到变量(支持几乎所有对象类型) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def load_data(filename, file_format='.txt'): | ||||||
|  |     import pickle | ||||||
|  |     with open(filename+file_format, 'rb') as f: | ||||||
|  |         data = pickle.load(f) | ||||||
|  |     return data | ||||||
|  |  | ||||||
|  | # 使用NumPy保存数组变量到npy文件(二进制文件) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def save_npy_data(data, filename): | ||||||
|  |     import numpy as np | ||||||
|  |     np.save(filename+'.npy', data) | ||||||
|  |  | ||||||
|  | # 使用NumPy从npy文件恢复数据到数组变量(二进制文件) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def load_npy_data(filename): | ||||||
|  |     import numpy as np | ||||||
|  |     data = np.load(filename+'.npy') | ||||||
|  |     return data | ||||||
|  |  | ||||||
|  | # 使用NumPy保存数组变量到TXT文件(文本文件) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def save_txt_data(data, filename): | ||||||
|  |     import numpy as np | ||||||
|  |     np.savetxt(filename+'.txt', data) | ||||||
|  |  | ||||||
|  | # 使用NumPy从TXT文件恢复数据到数组变量(文本文件) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def load_txt_data(filename): | ||||||
|  |     import numpy as np | ||||||
|  |     data = np.loadtxt(filename+'.txt') | ||||||
|  |     return data | ||||||
|  |  | ||||||
|  | # 读取文件中的一维数据(一行一组x和y) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def read_one_dimensional_data(filename='a', file_format='.txt'):  | ||||||
|  |     import numpy as np | ||||||
|  |     f = open(filename+file_format, 'r') | ||||||
|  |     text = f.read() | ||||||
|  |     f.close() | ||||||
|  |     row_list = np.array(text.split('\n'))  | ||||||
|  |     dim_column = np.array(row_list[0].split()).shape[0]  | ||||||
|  |     x_array = np.array([]) | ||||||
|  |     y_array = np.array([]) | ||||||
|  |     for row in row_list: | ||||||
|  |         column = np.array(row.split())  | ||||||
|  |         if column.shape[0] != 0:   | ||||||
|  |             x_array = np.append(x_array, [float(column[0])], axis=0)   | ||||||
|  |             y_row = np.zeros(dim_column-1) | ||||||
|  |             for dim0 in range(dim_column-1): | ||||||
|  |                 y_row[dim0] = float(column[dim0+1]) | ||||||
|  |             if np.array(y_array).shape[0] == 0: | ||||||
|  |                 y_array = [y_row] | ||||||
|  |             else: | ||||||
|  |                 y_array = np.append(y_array, [y_row], axis=0) | ||||||
|  |     return x_array, y_array | ||||||
|  |  | ||||||
|  | # 读取文件中的一维数据(一行一组x和y)(支持复数形式) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def read_one_dimensional_complex_data(filename='a', file_format='.txt'):  | ||||||
|  |     import numpy as np | ||||||
|  |     f = open(filename+file_format, 'r') | ||||||
|  |     text = f.read() | ||||||
|  |     f.close() | ||||||
|  |     row_list = np.array(text.split('\n'))  | ||||||
|  |     dim_column = np.array(row_list[0].split()).shape[0]  | ||||||
|  |     x_array = np.array([]) | ||||||
|  |     y_array = np.array([]) | ||||||
|  |     for row in row_list: | ||||||
|  |         column = np.array(row.split())  | ||||||
|  |         if column.shape[0] != 0:   | ||||||
|  |             x_array = np.append(x_array, [complex(column[0])], axis=0)   | ||||||
|  |             y_row = np.zeros(dim_column-1, dtype=complex) | ||||||
|  |             for dim0 in range(dim_column-1): | ||||||
|  |                 y_row[dim0] = complex(column[dim0+1]) | ||||||
|  |             if np.array(y_array).shape[0] == 0: | ||||||
|  |                 y_array = [y_row] | ||||||
|  |             else: | ||||||
|  |                 y_array = np.append(y_array, [y_row], axis=0) | ||||||
|  |     return x_array, y_array | ||||||
|  |  | ||||||
|  | # 读取文件中的二维数据(第一行和第一列分别为横纵坐标) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def read_two_dimensional_data(filename='a', file_format='.txt'):  | ||||||
|  |     import numpy as np | ||||||
|  |     f = open(filename+file_format, 'r') | ||||||
|  |     text = f.read() | ||||||
|  |     f.close() | ||||||
|  |     row_list = np.array(text.split('\n'))  | ||||||
|  |     dim_column = np.array(row_list[0].split()).shape[0]  | ||||||
|  |     x_array = np.array([]) | ||||||
|  |     y_array = np.array([]) | ||||||
|  |     matrix = np.array([]) | ||||||
|  |     for i0 in range(row_list.shape[0]): | ||||||
|  |         column = np.array(row_list[i0].split())  | ||||||
|  |         if i0 == 0: | ||||||
|  |             x_str = column[1::]  | ||||||
|  |             x_array = np.zeros(x_str.shape[0]) | ||||||
|  |             for i00 in range(x_str.shape[0]): | ||||||
|  |                 x_array[i00] = float(x_str[i00])  | ||||||
|  |         elif column.shape[0] != 0:  | ||||||
|  |             y_array = np.append(y_array, [float(column[0])], axis=0)   | ||||||
|  |             matrix_row = np.zeros(dim_column-1) | ||||||
|  |             for dim0 in range(dim_column-1): | ||||||
|  |                 matrix_row[dim0] = float(column[dim0+1]) | ||||||
|  |             if np.array(matrix).shape[0] == 0: | ||||||
|  |                 matrix = [matrix_row] | ||||||
|  |             else: | ||||||
|  |                 matrix = np.append(matrix, [matrix_row], axis=0) | ||||||
|  |     return x_array, y_array, matrix | ||||||
|  |  | ||||||
|  | # 读取文件中的二维数据(第一行和第一列分别为横纵坐标)(支持复数形式) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def read_two_dimensional_complex_data(filename='a', file_format='.txt'):  | ||||||
|  |     import numpy as np | ||||||
|  |     f = open(filename+file_format, 'r') | ||||||
|  |     text = f.read() | ||||||
|  |     f.close() | ||||||
|  |     row_list = np.array(text.split('\n'))  | ||||||
|  |     dim_column = np.array(row_list[0].split()).shape[0]  | ||||||
|  |     x_array = np.array([]) | ||||||
|  |     y_array = np.array([]) | ||||||
|  |     matrix = np.array([]) | ||||||
|  |     for i0 in range(row_list.shape[0]): | ||||||
|  |         column = np.array(row_list[i0].split())  | ||||||
|  |         if i0 == 0: | ||||||
|  |             x_str = column[1::]  | ||||||
|  |             x_array = np.zeros(x_str.shape[0], dtype=complex) | ||||||
|  |             for i00 in range(x_str.shape[0]): | ||||||
|  |                 x_array[i00] = complex(x_str[i00])  | ||||||
|  |         elif column.shape[0] != 0:  | ||||||
|  |             y_array = np.append(y_array, [complex(column[0])], axis=0)   | ||||||
|  |             matrix_row = np.zeros(dim_column-1, dtype=complex) | ||||||
|  |             for dim0 in range(dim_column-1): | ||||||
|  |                 matrix_row[dim0] = complex(column[dim0+1]) | ||||||
|  |             if np.array(matrix).shape[0] == 0: | ||||||
|  |                 matrix = [matrix_row] | ||||||
|  |             else: | ||||||
|  |                 matrix = np.append(matrix, [matrix_row], axis=0) | ||||||
|  |     return x_array, y_array, matrix | ||||||
|  |  | ||||||
|  | # 读取文件中的二维数据(不包括x和y) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def read_two_dimensional_data_without_xy_array(filename='a', file_format='.txt'): | ||||||
|  |     import numpy as np | ||||||
|  |     matrix = np.loadtxt(filename+file_format) | ||||||
|  |     return matrix | ||||||
|  |  | ||||||
|  | # 打开文件用于新增内容 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def open_file(filename='a', file_format='.txt'): | ||||||
|  |     f = open(filename+file_format, 'a', encoding='UTF-8') | ||||||
|  |     return f | ||||||
|  |  | ||||||
|  | # 在文件中写入一维数据(一行一组x和y) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def write_one_dimensional_data(x_array, y_array, filename='a', file_format='.txt'): | ||||||
|  |     import guan | ||||||
|  |     with open(filename+file_format, 'w', encoding='UTF-8') as f: | ||||||
|  |         guan.write_one_dimensional_data_without_opening_file(x_array, y_array, f) | ||||||
|  |  | ||||||
|  | # 在文件中写入一维数据(一行一组x和y)(需要输入已打开的文件) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def write_one_dimensional_data_without_opening_file(x_array, y_array, f): | ||||||
|  |     import numpy as np | ||||||
|  |     x_array = np.array(x_array) | ||||||
|  |     y_array = np.array(y_array) | ||||||
|  |     i0 = 0 | ||||||
|  |     for x0 in x_array: | ||||||
|  |         f.write(str(x0)+'   ') | ||||||
|  |         if len(y_array.shape) == 1: | ||||||
|  |             f.write(str(y_array[i0])+'\n') | ||||||
|  |         elif len(y_array.shape) == 2: | ||||||
|  |             for j0 in range(y_array.shape[1]): | ||||||
|  |                 f.write(str(y_array[i0, j0])+'   ') | ||||||
|  |             f.write('\n') | ||||||
|  |         i0 += 1 | ||||||
|  |  | ||||||
|  | # 在文件中写入二维数据(第一行和第一列分别为横纵坐标) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def write_two_dimensional_data(x_array, y_array, matrix, filename='a', file_format='.txt'): | ||||||
|  |     import guan | ||||||
|  |     with open(filename+file_format, 'w', encoding='UTF-8') as f: | ||||||
|  |         guan.write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f) | ||||||
|  |  | ||||||
|  | # 在文件中写入二维数据(第一行和第一列分别为横纵坐标)(需要输入已打开的文件) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def write_two_dimensional_data_without_opening_file(x_array, y_array, matrix, f): | ||||||
|  |     import numpy as np | ||||||
|  |     x_array = np.array(x_array) | ||||||
|  |     y_array = np.array(y_array) | ||||||
|  |     matrix = np.array(matrix) | ||||||
|  |     f.write('0   ') | ||||||
|  |     for x0 in x_array: | ||||||
|  |         f.write(str(x0)+'   ') | ||||||
|  |     f.write('\n') | ||||||
|  |     i0 = 0 | ||||||
|  |     for y0 in y_array: | ||||||
|  |         f.write(str(y0)) | ||||||
|  |         j0 = 0 | ||||||
|  |         for x0 in x_array: | ||||||
|  |             f.write('   '+str(matrix[i0, j0])+'   ') | ||||||
|  |             j0 += 1 | ||||||
|  |         f.write('\n') | ||||||
|  |         i0 += 1 | ||||||
|  |  | ||||||
|  | # 在文件中写入二维数据(不包括x和y) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def write_two_dimensional_data_without_xy_array(matrix, filename='a', file_format='.txt'): | ||||||
|  |     import guan | ||||||
|  |     with open(filename+file_format, 'w', encoding='UTF-8') as f: | ||||||
|  |         guan.write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f) | ||||||
|  |  | ||||||
|  | # 在文件中写入二维数据(不包括x和y)(需要输入已打开的文件) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def write_two_dimensional_data_without_xy_array_and_without_opening_file(matrix, f): | ||||||
|  |     for row in matrix: | ||||||
|  |         for element in row: | ||||||
|  |             f.write(str(element)+'   ') | ||||||
|  |         f.write('\n') | ||||||
|  |  | ||||||
|  | # 如果不存在文件夹,则新建文件夹 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def make_directory(directory='./test'): | ||||||
|  |     import os | ||||||
|  |     if not os.path.exists(directory): | ||||||
|  |         os.makedirs(directory) | ||||||
|  |  | ||||||
|  | # 如果不存在文件,则新建空文件 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def make_file(file_path='./a.txt'): | ||||||
|  |     import os | ||||||
|  |     if not os.path.exists(file_path): | ||||||
|  |         with open(file_path, 'w') as f: | ||||||
|  |             pass | ||||||
|  |  | ||||||
|  | # 读取文本文件内容,如果不存在,则新建空文件 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def read_text_file(file_path='./a.txt'): | ||||||
|  |     import os | ||||||
|  |     if not os.path.exists(file_path): | ||||||
|  |         with open(file_path, 'w') as f: | ||||||
|  |             pass | ||||||
|  |         return '' | ||||||
|  |     else: | ||||||
|  |         with open(file_path, 'r') as f: | ||||||
|  |             content = f.read() | ||||||
|  |         return content | ||||||
|  |  | ||||||
|  | # 获取目录中的所有文件名 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def get_all_filenames_in_directory(directory='./', file_format=None): | ||||||
|  |     import os | ||||||
|  |     file_list = [] | ||||||
|  |     for root, dirs, files in os.walk(directory): | ||||||
|  |         for i0 in range(len(files)): | ||||||
|  |             if file_format == None: | ||||||
|  |                 file_list.append(files[i0]) | ||||||
|  |             else: | ||||||
|  |                 if file_format in files[i0]: | ||||||
|  |                     file_list.append(files[i0]) | ||||||
|  |     return file_list | ||||||
|  |  | ||||||
|  | # 获取目录中的所有文件名(不包括子目录) | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def get_all_filenames_in_directory_without_subdirectory(directory='./', file_format=None): | ||||||
|  |     import os | ||||||
|  |     file_list = [] | ||||||
|  |     for root, dirs, files in os.walk(directory): | ||||||
|  |         for i0 in range(len(files)): | ||||||
|  |             if file_format == None: | ||||||
|  |                 file_list.append(files[i0]) | ||||||
|  |             else: | ||||||
|  |                 if file_format in files[i0]: | ||||||
|  |                     file_list.append(files[i0]) | ||||||
|  |         break | ||||||
|  |     return file_list | ||||||
|  |  | ||||||
|  | # 获取文件夹中某种文本类型的文件路径以及读取内容 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def read_text_files_in_directory(directory='./', file_format='.md'): | ||||||
|  |     import os | ||||||
|  |     file_list = [] | ||||||
|  |     for root, dirs, files in os.walk(directory): | ||||||
|  |         for i0 in range(len(files)): | ||||||
|  |             if file_format in files[i0]: | ||||||
|  |                 file_list.append(root+'/'+files[i0]) | ||||||
|  |     content_array = [] | ||||||
|  |     for file in file_list: | ||||||
|  |         with open(file, 'r') as f: | ||||||
|  |             content_array.append(f.read()) | ||||||
|  |     return file_list, content_array | ||||||
|  |  | ||||||
|  | # 在多个文本文件中查找关键词 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def find_words_in_multiple_files(words, directory='./', file_format='.md'): | ||||||
|  |     import guan | ||||||
|  |     file_list, content_array = guan.read_text_files_in_directory(directory=directory, file_format=file_format) | ||||||
|  |     num_files = len(file_list) | ||||||
|  |     file_list_with_words = [] | ||||||
|  |     for i0 in range(num_files): | ||||||
|  |         if words in content_array[i0]: | ||||||
|  |             file_list_with_words.append(file_list[i0]) | ||||||
|  |     return file_list_with_words | ||||||
|  |  | ||||||
|  | # 复制一份文件 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def copy_file(file1='./a.txt', file2='./b.txt'): | ||||||
|  |     import shutil | ||||||
|  |     shutil.copy(file1, file2) | ||||||
|  |  | ||||||
|  | # 拼接两个PDF文件 | ||||||
|  | @guan.statistics_decorator | ||||||
|  | def combine_two_pdf_files(input_file_1='a.pdf', input_file_2='b.pdf', output_file='combined_file.pdf'): | ||||||
|  |     import PyPDF2 | ||||||
|  |     output_pdf = PyPDF2.PdfWriter() | ||||||
|  |     with open(input_file_1, 'rb') as file1: | ||||||
|  |         pdf1 = PyPDF2.PdfReader(file1) | ||||||
|  |         for page in range(len(pdf1.pages)): | ||||||
|  |             output_pdf.add_page(pdf1.pages[page]) | ||||||
|  |     with open(input_file_2, 'rb') as file2: | ||||||
|  |         pdf2 = PyPDF2.PdfReader(file2) | ||||||
|  |         for page in range(len(pdf2.pages)): | ||||||
|  |             output_pdf.add_page(pdf2.pages[page]) | ||||||
|  |     with open(output_file, 'wb') as combined_file: | ||||||
|  |         output_pdf.write(combined_file) | ||||||
| @@ -165,9 +165,9 @@ def batch_train_model(model, train_loader, optimizer='Adam', learning_rate=0.001 | |||||||
|             loss.backward() |             loss.backward() | ||||||
|             optimizer.step() |             optimizer.step() | ||||||
|             losses.append(loss.item()) |             losses.append(loss.item()) | ||||||
|             if print_show == 1: |         if print_show == 1: | ||||||
|                 if (epoch + 1) % 100 == 0: |             if (epoch + 1) % 100 == 0: | ||||||
|                     print(epoch, loss.item()) |                 print(epoch, loss.item()) | ||||||
|     return model, losses |     return model, losses | ||||||
|  |  | ||||||
| # 保存模型参数到文件 | # 保存模型参数到文件 | ||||||
|   | |||||||
| @@ -19,76 +19,6 @@ def get_time(colon=True): | |||||||
|         datetime_time = datetime_time.replace(':', '') |         datetime_time = datetime_time.replace(':', '') | ||||||
|     return datetime_time |     return datetime_time | ||||||
|  |  | ||||||
| # 判断某个字符是中文还是英文或其他 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def check_Chinese_or_English(a):   |  | ||||||
|     if '\u4e00' <= a <= '\u9fff' :   |  | ||||||
|         word_type = 'Chinese'   |  | ||||||
|     elif '\x00' <= a <= '\xff':   |  | ||||||
|         word_type = 'English' |  | ||||||
|     else: |  | ||||||
|         word_type = 'Others'  |  | ||||||
|     return word_type |  | ||||||
|  |  | ||||||
| # 统计中英文文本的字数,默认不包括空格 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def count_words(text, include_space=0, show_words=0): |  | ||||||
|     import jieba |  | ||||||
|     import guan |  | ||||||
|     words = jieba.lcut(text)   |  | ||||||
|     new_words = [] |  | ||||||
|     if include_space == 0: |  | ||||||
|         for word in words: |  | ||||||
|             if word != ' ': |  | ||||||
|                 new_words.append(word) |  | ||||||
|     else: |  | ||||||
|         new_words = words |  | ||||||
|     num_words = 0 |  | ||||||
|     new_words_2 = [] |  | ||||||
|     for word in new_words: |  | ||||||
|         word_type = guan.check_Chinese_or_English(word[0]) |  | ||||||
|         if word_type == 'Chinese': |  | ||||||
|             num_words += len(word) |  | ||||||
|             for one_word in word: |  | ||||||
|                 new_words_2.append(one_word) |  | ||||||
|         elif word_type == 'English' or 'Others': |  | ||||||
|             num_words += 1 |  | ||||||
|             new_words_2.append(word) |  | ||||||
|     if show_words == 1: |  | ||||||
|         print(new_words_2) |  | ||||||
|     return num_words |  | ||||||
|  |  | ||||||
| # 将RGB转成HEX |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def rgb_to_hex(rgb, pound=1): |  | ||||||
|     if pound==0: |  | ||||||
|         return '%02x%02x%02x' % rgb |  | ||||||
|     else: |  | ||||||
|         return '#%02x%02x%02x' % rgb |  | ||||||
|  |  | ||||||
| # 将HEX转成RGB |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def hex_to_rgb(hex): |  | ||||||
|     hex = hex.lstrip('#') |  | ||||||
|     length = len(hex) |  | ||||||
|     return tuple(int(hex[i:i+length//3], 16) for i in range(0, length, length//3)) |  | ||||||
|  |  | ||||||
| # 使用MD5进行散列加密 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def encryption_MD5(password, salt=''): |  | ||||||
|     import hashlib |  | ||||||
|     password = salt+password |  | ||||||
|     hashed_password = hashlib.md5(password.encode()).hexdigest() |  | ||||||
|     return hashed_password |  | ||||||
|  |  | ||||||
| # 使用SHA-256进行散列加密 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def encryption_SHA_256(password, salt=''): |  | ||||||
|     import hashlib |  | ||||||
|     password = salt+password |  | ||||||
|     hashed_password = hashlib.sha256(password.encode()).hexdigest() |  | ||||||
|     return hashed_password |  | ||||||
|  |  | ||||||
| # 自动先后运行程序 | # 自动先后运行程序 | ||||||
| @guan.statistics_decorator | @guan.statistics_decorator | ||||||
| def run_programs_sequentially(program_files=['./a.py', './b.py'], execute='python ', show_time=0): | def run_programs_sequentially(program_files=['./a.py', './b.py'], execute='python ', show_time=0): | ||||||
| @@ -109,12 +39,6 @@ def run_programs_sequentially(program_files=['./a.py', './b.py'], execute='pytho | |||||||
|         end = time.time() |         end = time.time() | ||||||
|         print('Total running time = '+str((end-start)/60)+' min') |         print('Total running time = '+str((end-start)/60)+' min') | ||||||
|  |  | ||||||
| # 复制一份文件 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def copy_file(file1='./a.txt', file2='./b.txt'): |  | ||||||
|     import shutil |  | ||||||
|     shutil.copy(file1, file2) |  | ||||||
|  |  | ||||||
| # 获取CPU使用率 | # 获取CPU使用率 | ||||||
| @guan.statistics_decorator | @guan.statistics_decorator | ||||||
| def get_cpu_usage(interval=1): | def get_cpu_usage(interval=1): | ||||||
| @@ -197,13 +121,6 @@ def count_number_of_import_statements(filename, file_format='.py', num=1000): | |||||||
|     import_statement_counter = Counter(import_array).most_common(num) |     import_statement_counter = Counter(import_array).most_common(num) | ||||||
|     return import_statement_counter |     return import_statement_counter | ||||||
|  |  | ||||||
| # 根据一定的字符长度来分割文本 |  | ||||||
| @guan.statistics_decorator |  | ||||||
| def split_text(text, wrap_width=3000):   |  | ||||||
|     import textwrap   |  | ||||||
|     split_text_list = textwrap.wrap(text, wrap_width) |  | ||||||
|     return split_text_list |  | ||||||
|  |  | ||||||
| # 获取本月的所有日期 | # 获取本月的所有日期 | ||||||
| @guan.statistics_decorator | @guan.statistics_decorator | ||||||
| def get_days_of_the_current_month(str_or_datetime='str'): | def get_days_of_the_current_month(str_or_datetime='str'): | ||||||
|   | |||||||
| @@ -1,6 +1,6 @@ | |||||||
| ## Guan package | ## Guan package | ||||||
|  |  | ||||||
| Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated, such as machine learning, figure plotting and file reading/writing. | Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about (Ji-Huan Guan, 关济寰). With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated, such as machine learning, figure plotting, file reading and writing, and data processing. | ||||||
|  |  | ||||||
| The primary location of this package is on https://py.guanjihuan.com. | The primary location of this package is on https://py.guanjihuan.com. | ||||||
|  |  | ||||||
| @@ -14,6 +14,7 @@ import guan | |||||||
|  |  | ||||||
| ## Summary of API Reference | ## Summary of API Reference | ||||||
|  |  | ||||||
|  | + decorator | ||||||
| + basic functions | + basic functions | ||||||
| + Fourier transform | + Fourier transform | ||||||
| + Hamiltonian of examples | + Hamiltonian of examples | ||||||
| @@ -23,6 +24,8 @@ import guan | |||||||
| + quantum transport | + quantum transport | ||||||
| + topological invariant | + topological invariant | ||||||
| + machine learning | + machine learning | ||||||
|  | + file reading and writing | ||||||
|  | + figure plotting | ||||||
| + data processing | + data processing | ||||||
| + others | + others | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user