update
This commit is contained in:
		@@ -0,0 +1,9 @@
 | 
			
		||||
import guan
 | 
			
		||||
import numpy as np
 | 
			
		||||
import functools
 | 
			
		||||
 | 
			
		||||
# Fourier transform / calculate band structures / plot figures
 | 
			
		||||
x_array = np.linspace(-np.pi, np.pi, 100)
 | 
			
		||||
hamiltonian_function = functools.partial(guan.one_dimensional_fourier_transform, unit_cell=0, hopping=1)
 | 
			
		||||
eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function)
 | 
			
		||||
guan.plot(x_array, eigenvalue_array, xlabel='k', ylabel='E', type='-k')
 | 
			
		||||
							
								
								
									
										6
									
								
								Tutorial0/Hamiltonian_of_finite_size_systems.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								Tutorial0/Hamiltonian_of_finite_size_systems.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,6 @@
 | 
			
		||||
import guan
 | 
			
		||||
 | 
			
		||||
# Hamiltonian of finite size
 | 
			
		||||
print(guan.finite_size_along_one_direction(3), '\n')
 | 
			
		||||
print(guan.finite_size_along_two_directions_for_square_lattice(2, 2), '\n')
 | 
			
		||||
print(guan.finite_size_along_three_directions_for_cubic_lattice(2, 2, 2), '\n')
 | 
			
		||||
							
								
								
									
										24
									
								
								Tutorial0/calculate_Chern_number_and_Wilson_loop.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								Tutorial0/calculate_Chern_number_and_Wilson_loop.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,24 @@
 | 
			
		||||
import guan
 | 
			
		||||
import numpy as np
 | 
			
		||||
from math import *
 | 
			
		||||
 | 
			
		||||
# calculate Chern number
 | 
			
		||||
def hamiltonian_function(kx, ky):  # one QAH model with chern number 2
 | 
			
		||||
    t1 = 1.0
 | 
			
		||||
    t2 = 1.0
 | 
			
		||||
    t3 = 0.5
 | 
			
		||||
    m = -1.0
 | 
			
		||||
    hamiltonian = np.zeros((2, 2), dtype=complex)
 | 
			
		||||
    hamiltonian[0, 1] = 2*t1*cos(kx)-1j*2*t1*cos(ky)
 | 
			
		||||
    hamiltonian[1, 0] = 2*t1*cos(kx)+1j*2*t1*cos(ky)
 | 
			
		||||
    hamiltonian[0, 0] = m+2*t3*sin(kx)+2*t3*sin(ky)+2*t2*cos(kx+ky)
 | 
			
		||||
    hamiltonian[1, 1] = -(m+2*t3*sin(kx)+2*t3*sin(ky)+2*t2*cos(kx+ky))
 | 
			
		||||
    return hamiltonian
 | 
			
		||||
chern_number = guan.calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100)
 | 
			
		||||
print('Chern number=', chern_number)
 | 
			
		||||
 | 
			
		||||
# calculate Wilson loop
 | 
			
		||||
wilson_loop_array = guan.calculate_wilson_loop(guan.hamiltonian_of_ssh_model)
 | 
			
		||||
print('Wilson loop =', wilson_loop_array)
 | 
			
		||||
p = np.log(wilson_loop_array)/2/pi/1j
 | 
			
		||||
print('p =', p, '\n')
 | 
			
		||||
							
								
								
									
										15
									
								
								Tutorial0/calculate_conductance_and_scattering_matrix.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										15
									
								
								Tutorial0/calculate_conductance_and_scattering_matrix.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,15 @@
 | 
			
		||||
import guan
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
# calculate conductance
 | 
			
		||||
fermi_energy_array = np.linspace(-5, 5, 400)
 | 
			
		||||
h00 = guan.finite_size_along_one_direction(4)
 | 
			
		||||
h01 = np.identity(4)
 | 
			
		||||
conductance_array = guan.calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01)
 | 
			
		||||
guan.plot(fermi_energy_array, conductance_array, xlabel='E', ylabel='Conductance', type='-o')
 | 
			
		||||
 | 
			
		||||
# calculate scattering matrix
 | 
			
		||||
fermi_energy = 0
 | 
			
		||||
h00 = guan.finite_size_along_one_direction(4)
 | 
			
		||||
h01 = np.identity(4)
 | 
			
		||||
guan.print_or_write_scattering_matrix(fermi_energy, h00, h01)
 | 
			
		||||
							
								
								
									
										31
									
								
								Tutorial0/calculate_density_of_states.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										31
									
								
								Tutorial0/calculate_density_of_states.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,31 @@
 | 
			
		||||
import guan
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
# calculate density of states
 | 
			
		||||
hamiltonian = guan.finite_size_along_two_directions_for_square_lattice(2,2)
 | 
			
		||||
fermi_energy_array = np.linspace(-4, 4, 400)
 | 
			
		||||
total_dos_array = guan.total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.1)
 | 
			
		||||
guan.plot(fermi_energy_array, total_dos_array, xlabel='E', ylabel='Total DOS', type='-o')
 | 
			
		||||
 | 
			
		||||
fermi_energy = 0
 | 
			
		||||
N1 = 3
 | 
			
		||||
N2 = 4
 | 
			
		||||
hamiltonian = guan.finite_size_along_two_directions_for_square_lattice(N1,N2)
 | 
			
		||||
LDOS = guan.local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1=N1, N2=N2)
 | 
			
		||||
print('square lattice:\n', LDOS, '\n')
 | 
			
		||||
h00 = guan.finite_size_along_one_direction(N2)
 | 
			
		||||
h01 = np.identity(N2)
 | 
			
		||||
LDOS = guan.local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00=h00, h01=h01, N2=N2, N1=N1)
 | 
			
		||||
print(LDOS, '\n\n')
 | 
			
		||||
# guan.plot_contour(range(N1), range(N2), LDOS)
 | 
			
		||||
 | 
			
		||||
N1 = 3
 | 
			
		||||
N2 = 4
 | 
			
		||||
N3 = 5
 | 
			
		||||
hamiltonian = guan.finite_size_along_three_directions_for_cubic_lattice(N1, N2, N3)
 | 
			
		||||
LDOS = guan.local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1=N1, N2=N2, N3=N3)
 | 
			
		||||
print('cubic lattice:\n', LDOS, '\n')
 | 
			
		||||
h00 = guan.finite_size_along_two_directions_for_square_lattice(N2, N3)
 | 
			
		||||
h01 = np.identity(N2*N3)
 | 
			
		||||
LDOS = guan.local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3=N3, N2=N2, N1=N1)
 | 
			
		||||
print(LDOS)
 | 
			
		||||
							
								
								
									
										17
									
								
								Tutorial0/read_and_write.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										17
									
								
								Tutorial0/read_and_write.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,17 @@
 | 
			
		||||
import guan
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
# read and write
 | 
			
		||||
x_array = np.array([1, 2, 3])
 | 
			
		||||
y_array = np.array([5, 6, 7])
 | 
			
		||||
guan.write_one_dimensional_data(x_array, y_array, filename='one_dimensional_data')
 | 
			
		||||
matrix = np.zeros((3, 3))
 | 
			
		||||
matrix[0, 1] = 11
 | 
			
		||||
guan.write_two_dimensional_data(x_array, y_array, matrix, filename='two_dimensional_data')
 | 
			
		||||
x_read, y_read = guan.read_one_dimensional_data('one_dimensional_data')
 | 
			
		||||
print(x_read, '\n')
 | 
			
		||||
print(y_read, '\n\n')
 | 
			
		||||
x_read, y_read, matrix_read = guan.read_two_dimensional_data('two_dimensional_data')
 | 
			
		||||
print(x_read, '\n')
 | 
			
		||||
print(y_read, '\n')
 | 
			
		||||
print(matrix_read)
 | 
			
		||||
							
								
								
									
										9
									
								
								Tutorial0/some_models_in_the_reciprocal_space.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										9
									
								
								Tutorial0/some_models_in_the_reciprocal_space.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,9 @@
 | 
			
		||||
import guan
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
# Hamiltonian of models in the reciprocal space / calculate band structures / plot figures
 | 
			
		||||
x_array = np.linspace(-np.pi, np.pi, 100)
 | 
			
		||||
eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(x_array, guan.hamiltonian_of_square_lattice_in_quasi_one_dimension)
 | 
			
		||||
guan.plot(x_array, eigenvalue_array, xlabel='k', ylabel='E', type='-k')
 | 
			
		||||
eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(x_array, guan.hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension)
 | 
			
		||||
guan.plot(x_array, eigenvalue_array, xlabel='k', ylabel='E', type='-k')
 | 
			
		||||
							
								
								
									
										12
									
								
								Tutorial0/test_and_Pauli_matrix.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										12
									
								
								Tutorial0/test_and_Pauli_matrix.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,12 @@
 | 
			
		||||
import guan
 | 
			
		||||
 | 
			
		||||
# test
 | 
			
		||||
print('test')
 | 
			
		||||
guan.test()
 | 
			
		||||
 | 
			
		||||
# Pauli matrix
 | 
			
		||||
print('Pauli matrix')
 | 
			
		||||
print('sigma_0:\n', guan.sigma_0(), '\n')
 | 
			
		||||
print('sigma_x:\n', guan.sigma_x(), '\n')
 | 
			
		||||
print('sigma_y:\n', guan.sigma_y(), '\n')
 | 
			
		||||
print('sigma_z:\n', guan.sigma_z(), '\n')
 | 
			
		||||
		Reference in New Issue
	
	Block a user