This commit is contained in:
guanjihuan 2022-10-17 06:33:50 +08:00
parent b239e2774e
commit 8488629b94
3 changed files with 7 additions and 15 deletions

View File

@ -1,7 +1,7 @@
[metadata] [metadata]
# replace with your username: # replace with your username:
name = guan name = guan
version = 0.0.146 version = 0.0.147
author = guanjihuan author = guanjihuan
author_email = guanjihuan@163.com author_email = guanjihuan@163.com
description = An open source python package description = An open source python package

View File

@ -1,6 +1,6 @@
Metadata-Version: 2.1 Metadata-Version: 2.1
Name: guan Name: guan
Version: 0.0.146 Version: 0.0.147
Summary: An open source python package Summary: An open source python package
Home-page: https://py.guanjihuan.com Home-page: https://py.guanjihuan.com
Author: guanjihuan Author: guanjihuan

View File

@ -2,7 +2,7 @@
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
# The current version is guan-0.0.146, updated on December 17, 2022. # The current version is guan-0.0.147, updated on December 17, 2022.
# Installation: pip install --upgrade guan # Installation: pip install --upgrade guan
@ -1150,11 +1150,9 @@ def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01,
conductance_array = np.zeros(dim) conductance_array = np.zeros(dim)
i0 = 0 i0 = 0
for fermi_energy in fermi_energy_array: for fermi_energy in fermi_energy_array:
if print_show == 1:
print(fermi_energy)
conductance_array[i0] = np.real(guan.calculate_conductance(fermi_energy, h00, h01, length)) conductance_array[i0] = np.real(guan.calculate_conductance(fermi_energy, h00, h01, length))
if print_show == 1: if print_show == 1:
print(conductance_array[i0]) print(fermi_energy, conductance_array[i0])
i0 += 1 i0 += 1
return conductance_array return conductance_array
@ -1202,12 +1200,10 @@ def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01,
conductance_array = np.zeros(dim) conductance_array = np.zeros(dim)
i0 = 0 i0 = 0
for disorder_intensity in disorder_intensity_array: for disorder_intensity in disorder_intensity_array:
if print_show == 1:
print(disorder_intensity)
for times in range(calculation_times): for times in range(calculation_times):
conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length)) conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length))
if print_show == 1: if print_show == 1:
print(conductance_array[i0]/calculation_times) print(disorder_intensity, conductance_array[i0]/calculation_times)
i0 += 1 i0 += 1
conductance_array = conductance_array/calculation_times conductance_array = conductance_array/calculation_times
return conductance_array return conductance_array
@ -1217,12 +1213,10 @@ def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h
conductance_array = np.zeros(dim) conductance_array = np.zeros(dim)
i0 = 0 i0 = 0
for disorder_concentration in disorder_concentration_array: for disorder_concentration in disorder_concentration_array:
if print_show == 1:
print(disorder_concentration)
for times in range(calculation_times): for times in range(calculation_times):
conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length)) conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length))
if print_show == 1: if print_show == 1:
print(conductance_array[i0]/calculation_times) print(disorder_concentration, conductance_array[i0]/calculation_times)
i0 += 1 i0 += 1
conductance_array = conductance_array/calculation_times conductance_array = conductance_array/calculation_times
return conductance_array return conductance_array
@ -1232,12 +1226,10 @@ def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, l
conductance_array = np.zeros(dim) conductance_array = np.zeros(dim)
i0 = 0 i0 = 0
for length in length_array: for length in length_array:
if print_show == 1:
print(length)
for times in range(calculation_times): for times in range(calculation_times):
conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length)) conductance_array[i0] = conductance_array[i0]+np.real(guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length))
if print_show == 1: if print_show == 1:
print(conductance_array[i0]/calculation_times) print(length, conductance_array[i0]/calculation_times)
i0 += 1 i0 += 1
conductance_array = conductance_array/calculation_times conductance_array = conductance_array/calculation_times
return conductance_array return conductance_array