update
This commit is contained in:
		
							
								
								
									
										879
									
								
								GJH_source_code.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										879
									
								
								GJH_source_code.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,879 @@ | |||||||
|  | import numpy as np | ||||||
|  | import cmath | ||||||
|  | from math import * | ||||||
|  | import copy | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # test | ||||||
|  |  | ||||||
|  | def test(): | ||||||
|  |     print('\nSuccess in the installation of GJH package!\n') | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # basic functions | ||||||
|  |  | ||||||
|  | def sigma_0(): | ||||||
|  |     return np.eye(2) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def sigma_x(): | ||||||
|  |     return np.array([[0, 1],[1, 0]]) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def sigma_y(): | ||||||
|  |     return np.array([[0, -1j],[1j, 0]]) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def sigma_z(): | ||||||
|  |     return np.array([[1, 0],[0, -1]]) | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # hermitian hamiltonian of tight binding model  | ||||||
|  |  | ||||||
|  | def finite_size_along_one_direction(N, on_site=0, hopping=1, period=0): | ||||||
|  |     on_site = np.array(on_site) | ||||||
|  |     hopping = np.array(hopping) | ||||||
|  |     if on_site.shape==(): | ||||||
|  |         dim = 1 | ||||||
|  |     else: | ||||||
|  |         dim = on_site.shape[0] | ||||||
|  |     hamiltonian = np.zeros((N*dim, N*dim), dtype=complex) | ||||||
|  |     for i0 in range(N): | ||||||
|  |         hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site | ||||||
|  |     for i0 in range(N-1): | ||||||
|  |         hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping | ||||||
|  |         hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj() | ||||||
|  |     if period == 1: | ||||||
|  |         hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping | ||||||
|  |         hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj() | ||||||
|  |     return hamiltonian | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def finite_size_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0): | ||||||
|  |     on_site = np.array(on_site) | ||||||
|  |     hopping_1 = np.array(hopping_1) | ||||||
|  |     hopping_2 = np.array(hopping_2) | ||||||
|  |     if on_site.shape==(): | ||||||
|  |         dim = 1 | ||||||
|  |     else: | ||||||
|  |         dim = on_site.shape[0] | ||||||
|  |     hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex)     | ||||||
|  |     for i1 in range(N1): | ||||||
|  |         for i2 in range(N2): | ||||||
|  |             hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site | ||||||
|  |     for i1 in range(N1-1): | ||||||
|  |         for i2 in range(N2): | ||||||
|  |             hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1 | ||||||
|  |             hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() | ||||||
|  |     for i1 in range(N1): | ||||||
|  |         for i2 in range(N2-1): | ||||||
|  |             hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2 | ||||||
|  |             hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj() | ||||||
|  |     if period_1 == 1: | ||||||
|  |         for i2 in range(N2): | ||||||
|  |             hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1 | ||||||
|  |             hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() | ||||||
|  |     if period_2 == 1: | ||||||
|  |         for i1 in range(N1): | ||||||
|  |             hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2 | ||||||
|  |             hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj() | ||||||
|  |     return hamiltonian | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def finite_size_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0): | ||||||
|  |     on_site = np.array(on_site) | ||||||
|  |     hopping_1 = np.array(hopping_1) | ||||||
|  |     hopping_2 = np.array(hopping_2) | ||||||
|  |     hopping_3 = np.array(hopping_3) | ||||||
|  |     if on_site.shape==(): | ||||||
|  |         dim = 1 | ||||||
|  |     else: | ||||||
|  |         dim = on_site.shape[0] | ||||||
|  |     hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex)  | ||||||
|  |     for i1 in range(N1): | ||||||
|  |         for i2 in range(N2): | ||||||
|  |             for i3 in range(N3): | ||||||
|  |                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site | ||||||
|  |     for i1 in range(N1-1): | ||||||
|  |         for i2 in range(N2): | ||||||
|  |             for i3 in range(N3): | ||||||
|  |                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1 | ||||||
|  |                 hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() | ||||||
|  |     for i1 in range(N1): | ||||||
|  |         for i2 in range(N2-1): | ||||||
|  |             for i3 in range(N3): | ||||||
|  |                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2 | ||||||
|  |                 hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() | ||||||
|  |     for i1 in range(N1): | ||||||
|  |         for i2 in range(N2): | ||||||
|  |             for i3 in range(N3-1): | ||||||
|  |                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3 | ||||||
|  |                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj() | ||||||
|  |     if period_1 == 1: | ||||||
|  |         for i2 in range(N2): | ||||||
|  |             for i3 in range(N3): | ||||||
|  |                 hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1 | ||||||
|  |                 hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() | ||||||
|  |     if period_2 == 1: | ||||||
|  |         for i1 in range(N1): | ||||||
|  |             for i3 in range(N3): | ||||||
|  |                 hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2 | ||||||
|  |                 hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() | ||||||
|  |     if period_3 == 1: | ||||||
|  |         for i1 in range(N1): | ||||||
|  |             for i2 in range(N2): | ||||||
|  |                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3 | ||||||
|  |                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj() | ||||||
|  |     return hamiltonian | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def one_dimensional_fourier_transform(k, unit_cell, hopping): | ||||||
|  |     unit_cell = np.array(unit_cell) | ||||||
|  |     hopping = np.array(hopping) | ||||||
|  |     hamiltonian = unit_cell+hopping*cmath.exp(1j*k)+hopping.transpose().conj()*cmath.exp(-1j*k) | ||||||
|  |     return hamiltonian | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2): | ||||||
|  |     unit_cell = np.array(unit_cell) | ||||||
|  |     hopping_1 = np.array(hopping_1) | ||||||
|  |     hopping_2 = np.array(hopping_2) | ||||||
|  |     hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2) | ||||||
|  |     return hamiltonian | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3): | ||||||
|  |     unit_cell = np.array(unit_cell) | ||||||
|  |     hopping_1 = np.array(hopping_1) | ||||||
|  |     hopping_2 = np.array(hopping_2) | ||||||
|  |     hopping_3 = np.array(hopping_3) | ||||||
|  |     hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)+hopping_3*cmath.exp(1j*k3)+hopping_3.transpose().conj()*cmath.exp(-1j*k3) | ||||||
|  |     return hamiltonian | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # hamiltonian of graphene lattice | ||||||
|  |  | ||||||
|  | def hopping_along_zigzag_direction_for_graphene(N): | ||||||
|  |     hopping = np.zeros((4*N, 4*N), dtype=complex) | ||||||
|  |     for i0 in range(N): | ||||||
|  |         hopping[4*i0+1, 4*i0+0] = 1 | ||||||
|  |         hopping[4*i0+2, 4*i0+3] = 1 | ||||||
|  |     return hopping | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def finite_size_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0): | ||||||
|  |     on_site = finite_size_along_one_direction(4) | ||||||
|  |     hopping_1 = hopping_along_zigzag_direction_for_graphene(1) | ||||||
|  |     hopping_2 = np.zeros((4, 4), dtype=complex) | ||||||
|  |     hopping_2[3, 0] = 1 | ||||||
|  |     hamiltonian = finite_size_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2) | ||||||
|  |     return hamiltonian | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # calculate band structures | ||||||
|  |  | ||||||
|  | def calculate_eigenvalue(hamiltonian): | ||||||
|  |     if np.array(hamiltonian).shape==(): | ||||||
|  |         eigenvalue = np.real(hamiltonian) | ||||||
|  |     else: | ||||||
|  |         eigenvalue, eigenvector = np.linalg.eig(hamiltonian) | ||||||
|  |         eigenvalue = np.sort(np.real(eigenvalue)) | ||||||
|  |     return eigenvalue | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def calculate_eigenvalue_with_one_parameter(x, hamiltonian_function): | ||||||
|  |     dim_x = np.array(x).shape[0] | ||||||
|  |     i0 = 0 | ||||||
|  |     if np.array(hamiltonian_function(0)).shape==(): | ||||||
|  |         eigenvalue_array = np.zeros((dim_x, 1)) | ||||||
|  |         for x0 in x: | ||||||
|  |             hamiltonian = hamiltonian_function(x0) | ||||||
|  |             eigenvalue_array[i0, 0] = np.real(hamiltonian) | ||||||
|  |             i0 += 1 | ||||||
|  |     else: | ||||||
|  |         dim = np.array(hamiltonian_function(0)).shape[0] | ||||||
|  |         eigenvalue_array = np.zeros((dim_x, dim)) | ||||||
|  |         for x0 in x: | ||||||
|  |             hamiltonian = hamiltonian_function(x0) | ||||||
|  |             eigenvalue, eigenvector = np.linalg.eig(hamiltonian) | ||||||
|  |             eigenvalue_array[i0, :] = np.sort(np.real(eigenvalue[:])) | ||||||
|  |             i0 += 1 | ||||||
|  |     return eigenvalue_array | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def calculate_eigenvalue_with_two_parameters(x, y, hamiltonian_function):   | ||||||
|  |     dim_x = np.array(x).shape[0] | ||||||
|  |     dim_y = np.array(y).shape[0] | ||||||
|  |     if np.array(hamiltonian_function(0,0)).shape==(): | ||||||
|  |         eigenvalue_array = np.zeros((dim_y, dim_x, 1)) | ||||||
|  |         i0 = 0 | ||||||
|  |         for y0 in y: | ||||||
|  |             j0 = 0 | ||||||
|  |             for x0 in x: | ||||||
|  |                 hamiltonian = hamiltonian_function(x0, y0) | ||||||
|  |                 eigenvalue_array[i0, j0, 0] = np.real(hamiltonian) | ||||||
|  |                 j0 += 1 | ||||||
|  |             i0 += 1 | ||||||
|  |     else: | ||||||
|  |         dim = np.array(hamiltonian_function(0, 0)).shape[0] | ||||||
|  |         eigenvalue_array = np.zeros((dim_y, dim_x, dim)) | ||||||
|  |         i0 = 0 | ||||||
|  |         for y0 in y: | ||||||
|  |             j0 = 0 | ||||||
|  |             for x0 in x: | ||||||
|  |                 hamiltonian = hamiltonian_function(x0, y0) | ||||||
|  |                 eigenvalue, eigenvector = np.linalg.eig(hamiltonian) | ||||||
|  |                 eigenvalue_array[i0, j0, :] = np.sort(np.real(eigenvalue[:])) | ||||||
|  |                 j0 += 1 | ||||||
|  |             i0 += 1 | ||||||
|  |     return eigenvalue_array | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # calculate wave functions | ||||||
|  |  | ||||||
|  | def calculate_eigenvector(hamiltonian): | ||||||
|  |     eigenvalue, eigenvector = np.linalg.eig(hamiltonian)  | ||||||
|  |     eigenvector = eigenvector[:, np.argsort(np.real(eigenvalue))]  | ||||||
|  |     return eigenvector | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # calculate green functions | ||||||
|  |  | ||||||
|  | def green_function(fermi_energy, hamiltonian, broadening, self_energy=0): | ||||||
|  |     if np.array(hamiltonian).shape==(): | ||||||
|  |         dim = 1 | ||||||
|  |     else: | ||||||
|  |         dim = np.array(hamiltonian).shape[0] | ||||||
|  |     green = np.linalg.inv((fermi_energy+broadening*1j)*np.eye(dim)-hamiltonian-self_energy) | ||||||
|  |     return green | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0): | ||||||
|  |     h01 = np.array(h01) | ||||||
|  |     if np.array(h00).shape==(): | ||||||
|  |         dim = 1 | ||||||
|  |     else: | ||||||
|  |         dim = np.array(h00).shape[0]    | ||||||
|  |     green_nn_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n_minus), h01)-self_energy) | ||||||
|  |     return green_nn_n | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def green_function_in_n(green_in_n_minus, h01, green_nn_n): | ||||||
|  |     green_in_n = np.dot(np.dot(green_in_n_minus, h01), green_nn_n) | ||||||
|  |     return green_in_n | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def green_function_ni_n(green_nn_n, h01, green_ni_n_minus): | ||||||
|  |     h01 = np.array(h01) | ||||||
|  |     green_ni_n = np.dot(np.dot(green_nn_n, h01.transpose().conj()), green_ni_n_minus) | ||||||
|  |     return green_ni_n | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus): | ||||||
|  |     green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus) | ||||||
|  |     return green_ii_n | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # calculate density of states | ||||||
|  |  | ||||||
|  | def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01): | ||||||
|  |     green = green_function(fermi_energy, hamiltonian, broadening) | ||||||
|  |     total_dos = -np.trace(np.imag(green))/pi | ||||||
|  |     return total_dos | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01): | ||||||
|  |     dim = np.array(fermi_energy_array).shape[0] | ||||||
|  |     total_dos_array = np.zeros(dim) | ||||||
|  |     i0 = 0 | ||||||
|  |     for fermi_energy in fermi_energy_array: | ||||||
|  |         total_dos_array[i0] = total_density_of_states(fermi_energy, hamiltonian, broadening) | ||||||
|  |         i0 += 1 | ||||||
|  |     return total_dos_array | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01): | ||||||
|  |     # dim_hamiltonian = N1*N2*internal_degree | ||||||
|  |     green = green_function(fermi_energy, hamiltonian, broadening) | ||||||
|  |     local_dos = np.zeros((N2, N1)) | ||||||
|  |     for i1 in range(N1): | ||||||
|  |         for i2 in range(N2): | ||||||
|  |             for i in range(internal_degree):  | ||||||
|  |                 local_dos[i2, i1] = local_dos[i2, i1]-np.imag(green[i1*N2*internal_degree+i2*internal_degree+i, i1*N2*internal_degree+i2*internal_degree+i])/pi | ||||||
|  |     return local_dos | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01): | ||||||
|  |     # dim_hamiltonian = N1*N2*N3*internal_degree | ||||||
|  |     green = green_function(fermi_energy, hamiltonian, broadening) | ||||||
|  |     local_dos = np.zeros((N3, N2, N1)) | ||||||
|  |     for i1 in range(N1): | ||||||
|  |         for i2 in range(N2): | ||||||
|  |             for i3 in range(N3): | ||||||
|  |                 for i in range(internal_degree):  | ||||||
|  |                     local_dos[i3, i2, i1] = local_dos[i3, i2, i1]-np.imag(green[i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i, i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i])/pi | ||||||
|  |     return local_dos | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01): | ||||||
|  |     # dim_h00 = N2*internal_degree | ||||||
|  |     local_dos = np.zeros((N2, N1)) | ||||||
|  |     green_11_1 = green_function(fermi_energy, h00, broadening) | ||||||
|  |     for i1 in range(N1): | ||||||
|  |         green_nn_n_minus = green_11_1 | ||||||
|  |         green_in_n_minus = green_11_1 | ||||||
|  |         green_ni_n_minus = green_11_1 | ||||||
|  |         green_ii_n_minus = green_11_1 | ||||||
|  |         for i2_0 in range(i1): | ||||||
|  |             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||||
|  |             green_nn_n_minus = green_nn_n | ||||||
|  |         if i1!=0: | ||||||
|  |             green_in_n_minus = green_nn_n | ||||||
|  |             green_ni_n_minus = green_nn_n | ||||||
|  |             green_ii_n_minus = green_nn_n | ||||||
|  |         for size_0 in range(N1-1-i1): | ||||||
|  |             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||||
|  |             green_nn_n_minus = green_nn_n | ||||||
|  |             green_ii_n = green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) | ||||||
|  |             green_ii_n_minus = green_ii_n | ||||||
|  |             green_in_n = green_function_in_n(green_in_n_minus, h01, green_nn_n) | ||||||
|  |             green_in_n_minus = green_in_n | ||||||
|  |             green_ni_n = green_function_ni_n(green_nn_n, h01, green_ni_n_minus) | ||||||
|  |             green_ni_n_minus = green_ni_n | ||||||
|  |         for i2 in range(N2): | ||||||
|  |             for i in range(internal_degree): | ||||||
|  |                 local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/pi | ||||||
|  |     return local_dos | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01): | ||||||
|  |     # dim_h00 = N2*N3*internal_degree | ||||||
|  |     local_dos = np.zeros((N3, N2, N1)) | ||||||
|  |     green_11_1 = green_function(fermi_energy, h00, broadening) | ||||||
|  |     for i1 in range(N1): | ||||||
|  |         green_nn_n_minus = green_11_1 | ||||||
|  |         green_in_n_minus = green_11_1 | ||||||
|  |         green_ni_n_minus = green_11_1 | ||||||
|  |         green_ii_n_minus = green_11_1 | ||||||
|  |         for i1_0 in range(i1): | ||||||
|  |             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||||
|  |             green_nn_n_minus = green_nn_n | ||||||
|  |         if i1!=0: | ||||||
|  |             green_in_n_minus = green_nn_n | ||||||
|  |             green_ni_n_minus = green_nn_n | ||||||
|  |             green_ii_n_minus = green_nn_n | ||||||
|  |         for size_0 in range(N1-1-i1): | ||||||
|  |             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||||
|  |             green_nn_n_minus = green_nn_n | ||||||
|  |             green_ii_n = green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) | ||||||
|  |             green_ii_n_minus = green_ii_n | ||||||
|  |             green_in_n = green_function_in_n(green_in_n_minus, h01, green_nn_n) | ||||||
|  |             green_in_n_minus = green_in_n | ||||||
|  |             green_ni_n = green_function_ni_n(green_nn_n, h01, green_ni_n_minus) | ||||||
|  |             green_ni_n_minus = green_ni_n | ||||||
|  |         for i2 in range(N2): | ||||||
|  |             for i3 in range(N3): | ||||||
|  |                 for i in range(internal_degree): | ||||||
|  |                     local_dos[i3, i2, i1] = local_dos[i3, i2, i1] -np.imag(green_ii_n_minus[i2*N3*internal_degree+i3*internal_degree+i, i2*N3*internal_degree+i3*internal_degree+i])/pi        | ||||||
|  |     return local_dos | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # calculate conductance | ||||||
|  |  | ||||||
|  | def transfer_matrix(fermi_energy, h00, h01): | ||||||
|  |     h01 = np.array(h01) | ||||||
|  |     if np.array(h00).shape==(): | ||||||
|  |         dim = 1 | ||||||
|  |     else: | ||||||
|  |         dim = np.array(h00).shape[0] | ||||||
|  |     transfer = np.zeros((2*dim, 2*dim), dtype=complex) | ||||||
|  |     transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00) | ||||||
|  |     transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj()) | ||||||
|  |     transfer[dim:2*dim, 0:dim] = np.identity(dim) | ||||||
|  |     transfer[dim:2*dim, dim:2*dim] = 0 | ||||||
|  |     return transfer | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def surface_green_function_of_lead(fermi_energy, h00, h01): | ||||||
|  |     h01 = np.array(h01) | ||||||
|  |     if np.array(h00).shape==(): | ||||||
|  |         dim = 1 | ||||||
|  |     else: | ||||||
|  |         dim = np.array(h00).shape[0] | ||||||
|  |     fermi_energy = fermi_energy+1e-9*1j | ||||||
|  |     transfer = transfer_matrix(fermi_energy, h00, h01) | ||||||
|  |     eigenvalue, eigenvector = np.linalg.eig(transfer) | ||||||
|  |     ind = np.argsort(np.abs(eigenvalue)) | ||||||
|  |     temp = np.zeros((2*dim, 2*dim), dtype=complex) | ||||||
|  |     i0 = 0 | ||||||
|  |     for ind0 in ind: | ||||||
|  |         temp[:, i0] = eigenvector[:, ind0] | ||||||
|  |         i0 += 1 | ||||||
|  |     s1 = temp[dim:2*dim, 0:dim] | ||||||
|  |     s2 = temp[0:dim, 0:dim] | ||||||
|  |     s3 = temp[dim:2*dim, dim:2*dim] | ||||||
|  |     s4 = temp[0:dim, dim:2*dim] | ||||||
|  |     right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1))) | ||||||
|  |     left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4))) | ||||||
|  |     return right_lead_surface, left_lead_surface | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def self_energy_of_lead(fermi_energy, h00, h01): | ||||||
|  |     h01 = np.array(h01) | ||||||
|  |     right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01) | ||||||
|  |     right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj()) | ||||||
|  |     left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01) | ||||||
|  |     return right_self_energy, left_self_energy | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def calculate_conductance(fermi_energy, h00, h01, length=100): | ||||||
|  |     right_self_energy, left_self_energy = self_energy_of_lead(fermi_energy, h00, h01) | ||||||
|  |     for ix in range(length): | ||||||
|  |         if ix == 0: | ||||||
|  |             green_nn_n = green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) | ||||||
|  |             green_0n_n = copy.deepcopy(green_nn_n) | ||||||
|  |         elif ix != length-1: | ||||||
|  |             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0) | ||||||
|  |             green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n) | ||||||
|  |         else: | ||||||
|  |             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||||
|  |             green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n) | ||||||
|  |     right_self_energy = (right_self_energy - right_self_energy.transpose().conj())*(0+1j) | ||||||
|  |     left_self_energy = (left_self_energy - left_self_energy.transpose().conj())*(0+1j) | ||||||
|  |     conductance = np.trace(np.dot(np.dot(np.dot(left_self_energy, green_0n_n), right_self_energy), green_0n_n.transpose().conj())) | ||||||
|  |     return conductance | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100): | ||||||
|  |     dim = np.array(fermi_energy_array).shape[0] | ||||||
|  |     conductance_array = np.zeros(dim) | ||||||
|  |     i0 = 0 | ||||||
|  |     for fermi_energy_0 in fermi_energy_array: | ||||||
|  |         conductance_array[i0] = np.real(calculate_conductance(fermi_energy_0, h00, h01, length)) | ||||||
|  |         i0 += 1 | ||||||
|  |     return conductance_array | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # calculate scattering matrix | ||||||
|  |  | ||||||
|  | def if_active_channel(k_of_channel): | ||||||
|  |     if np.abs(np.imag(k_of_channel))<1e-6: | ||||||
|  |         if_active = 1 | ||||||
|  |     else: | ||||||
|  |         if_active = 0 | ||||||
|  |     return if_active | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def get_k_and_velocity_of_channel(fermi_energy, h00, h01): | ||||||
|  |     if np.array(h00).shape==(): | ||||||
|  |         dim = 1 | ||||||
|  |     else: | ||||||
|  |         dim = np.array(h00).shape[0] | ||||||
|  |     transfer = transfer_matrix(fermi_energy, h00, h01) | ||||||
|  |     eigenvalue, eigenvector = np.linalg.eig(transfer) | ||||||
|  |     k_of_channel = np.log(eigenvalue)/1j | ||||||
|  |     ind = np.argsort(np.real(k_of_channel)) | ||||||
|  |     k_of_channel = np.sort(k_of_channel) | ||||||
|  |     temp = np.zeros((2*dim, 2*dim), dtype=complex) | ||||||
|  |     temp2 = np.zeros((2*dim), dtype=complex) | ||||||
|  |     i0 = 0 | ||||||
|  |     for ind0 in ind: | ||||||
|  |         temp[:, i0] = eigenvector[:, ind0] | ||||||
|  |         temp2[i0] = eigenvalue[ind0] | ||||||
|  |         i0 += 1 | ||||||
|  |     eigenvalue = copy.deepcopy(temp2) | ||||||
|  |     temp = temp[0:dim, :] | ||||||
|  |     factor = np.zeros(2*dim, dtype=complex) | ||||||
|  |     for dim0 in range(dim): | ||||||
|  |         factor = factor+np.square(np.abs(temp[dim0, :])) | ||||||
|  |     for dim0 in range(2*dim): | ||||||
|  |         temp[:, dim0] = temp[:, dim0]/np.sqrt(factor[dim0]) | ||||||
|  |     velocity_of_channel = np.zeros((2*dim), dtype=complex) | ||||||
|  |     for dim0 in range(2*dim): | ||||||
|  |         velocity_of_channel[dim0] = eigenvalue[dim0]*np.dot(np.dot(temp[0:dim, :].transpose().conj(), h01),temp[0:dim, :])[dim0, dim0] | ||||||
|  |     velocity_of_channel = -2*np.imag(velocity_of_channel) | ||||||
|  |     eigenvector = copy.deepcopy(temp)  | ||||||
|  |     return k_of_channel, velocity_of_channel, eigenvalue, eigenvector | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01): | ||||||
|  |     if np.array(h00).shape==(): | ||||||
|  |         dim = 1 | ||||||
|  |     else: | ||||||
|  |         dim = np.array(h00).shape[0] | ||||||
|  |     k_of_channel, velocity_of_channel, eigenvalue, eigenvector = get_k_and_velocity_of_channel(fermi_energy, h00, h01) | ||||||
|  |     ind_right_active = 0; ind_right_evanescent = 0; ind_left_active = 0; ind_left_evanescent = 0 | ||||||
|  |     k_right = np.zeros(dim, dtype=complex); k_left = np.zeros(dim, dtype=complex) | ||||||
|  |     velocity_right = np.zeros(dim, dtype=complex); velocity_left = np.zeros(dim, dtype=complex) | ||||||
|  |     lambda_right = np.zeros(dim, dtype=complex); lambda_left = np.zeros(dim, dtype=complex) | ||||||
|  |     u_right = np.zeros((dim, dim), dtype=complex); u_left = np.zeros((dim, dim), dtype=complex) | ||||||
|  |     for dim0 in range(2*dim): | ||||||
|  |         if_active = if_active_channel(k_of_channel[dim0]) | ||||||
|  |         if if_active_channel(k_of_channel[dim0]) == 1: | ||||||
|  |             direction = np.sign(velocity_of_channel[dim0]) | ||||||
|  |         else: | ||||||
|  |             direction = np.sign(np.imag(k_of_channel[dim0])) | ||||||
|  |         if direction == 1: | ||||||
|  |             if if_active == 1:  # right-moving active channel | ||||||
|  |                 k_right[ind_right_active] = k_of_channel[dim0] | ||||||
|  |                 velocity_right[ind_right_active] = velocity_of_channel[dim0] | ||||||
|  |                 lambda_right[ind_right_active] = eigenvalue[dim0] | ||||||
|  |                 u_right[:, ind_right_active] = eigenvector[:, dim0] | ||||||
|  |                 ind_right_active += 1 | ||||||
|  |             else:               # right-moving evanescent channel | ||||||
|  |                 k_right[dim-1-ind_right_evanescent] = k_of_channel[dim0] | ||||||
|  |                 velocity_right[dim-1-ind_right_evanescent] = velocity_of_channel[dim0] | ||||||
|  |                 lambda_right[dim-1-ind_right_evanescent] = eigenvalue[dim0] | ||||||
|  |                 u_right[:, dim-1-ind_right_evanescent] = eigenvector[:, dim0] | ||||||
|  |                 ind_right_evanescent += 1 | ||||||
|  |         else: | ||||||
|  |             if if_active == 1:  # left-moving active channel | ||||||
|  |                 k_left[ind_left_active] = k_of_channel[dim0] | ||||||
|  |                 velocity_left[ind_left_active] = velocity_of_channel[dim0] | ||||||
|  |                 lambda_left[ind_left_active] = eigenvalue[dim0] | ||||||
|  |                 u_left[:, ind_left_active] = eigenvector[:, dim0] | ||||||
|  |                 ind_left_active += 1 | ||||||
|  |             else:               # left-moving evanescent channel | ||||||
|  |                 k_left[dim-1-ind_left_evanescent] = k_of_channel[dim0] | ||||||
|  |                 velocity_left[dim-1-ind_left_evanescent] = velocity_of_channel[dim0] | ||||||
|  |                 lambda_left[dim-1-ind_left_evanescent] = eigenvalue[dim0] | ||||||
|  |                 u_left[:, dim-1-ind_left_evanescent] = eigenvector[:, dim0] | ||||||
|  |                 ind_left_evanescent += 1 | ||||||
|  |     lambda_matrix_right = np.diag(lambda_right) | ||||||
|  |     lambda_matrix_left = np.diag(lambda_left) | ||||||
|  |     f_right = np.dot(np.dot(u_right, lambda_matrix_right), np.linalg.inv(u_right)) | ||||||
|  |     f_left = np.dot(np.dot(u_left, lambda_matrix_left), np.linalg.inv(u_left)) | ||||||
|  |     return k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def calculate_scattering_matrix(fermi_energy, h00, h01, length=100): | ||||||
|  |     h01 = np.array(h01) | ||||||
|  |     if np.array(h00).shape==(): | ||||||
|  |         dim = 1 | ||||||
|  |     else: | ||||||
|  |         dim = np.array(h00).shape[0] | ||||||
|  |     k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = get_classified_k_velocity_u_and_f(fermi_energy, h00, h01) | ||||||
|  |     right_self_energy = np.dot(h01, f_right) | ||||||
|  |     left_self_energy = np.dot(h01.transpose().conj(), np.linalg.inv(f_left)) | ||||||
|  |     for i0 in range(length): | ||||||
|  |         if i0 == 0: | ||||||
|  |             green_nn_n = green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) | ||||||
|  |             green_00_n = copy.deepcopy(green_nn_n) | ||||||
|  |             green_0n_n = copy.deepcopy(green_nn_n) | ||||||
|  |             green_n0_n = copy.deepcopy(green_nn_n) | ||||||
|  |         elif i0 != length-1:  | ||||||
|  |             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)  | ||||||
|  |         else: | ||||||
|  |             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||||
|  |         green_00_n = green_function_ii_n(green_00_n, green_0n_n, h01, green_nn_n, green_n0_n) | ||||||
|  |         green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n) | ||||||
|  |         green_n0_n = green_function_ni_n(green_nn_n, h01, green_n0_n) | ||||||
|  |     temp = np.dot(h01.transpose().conj(), np.linalg.inv(f_right)-np.linalg.inv(f_left)) | ||||||
|  |     transmission_matrix = np.dot(np.dot(np.linalg.inv(u_right), np.dot(green_n0_n, temp)), u_right)  | ||||||
|  |     reflection_matrix = np.dot(np.dot(np.linalg.inv(u_left), np.dot(green_00_n, temp)-np.identity(dim)), u_right) | ||||||
|  |     for dim0 in range(dim): | ||||||
|  |         for dim1 in range(dim): | ||||||
|  |             if_active = if_active_channel(k_right[dim0])*if_active_channel(k_right[dim1]) | ||||||
|  |             if if_active == 1: | ||||||
|  |                 transmission_matrix[dim0, dim1] = np.sqrt(np.abs(velocity_right[dim0]/velocity_right[dim1])) * transmission_matrix[dim0, dim1] | ||||||
|  |                 reflection_matrix[dim0, dim1] = np.sqrt(np.abs(velocity_left[dim0]/velocity_right[dim1]))*reflection_matrix[dim0, dim1] | ||||||
|  |             else: | ||||||
|  |                 transmission_matrix[dim0, dim1] = 0 | ||||||
|  |                 reflection_matrix[dim0, dim1] = 0 | ||||||
|  |     sum_of_tran_refl_array = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)+np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) | ||||||
|  |     for sum_of_tran_refl in sum_of_tran_refl_array: | ||||||
|  |         if sum_of_tran_refl > 1.001: | ||||||
|  |             print('Error Alert: scattering matrix is not normalized!') | ||||||
|  |     return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, on_print=1, on_write=0): | ||||||
|  |     if np.array(h00).shape==(): | ||||||
|  |         dim = 1 | ||||||
|  |     else: | ||||||
|  |         dim = np.array(h00).shape[0] | ||||||
|  |     transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = calculate_scattering_matrix(fermi_energy, h00, h01, length) | ||||||
|  |     if on_print == 1: | ||||||
|  |         print('\nActive channel (left or right) = ', ind_right_active) | ||||||
|  |         print('Evanescent channel (left or right) = ', dim-ind_right_active, '\n') | ||||||
|  |         print('K of right-moving active channels:\n', np.real(k_right[0:ind_right_active])) | ||||||
|  |         print('K of left-moving active channels:\n', np.real(k_left[0:ind_right_active]), '\n') | ||||||
|  |         print('Velocity of right-moving active channels:\n', np.real(velocity_right[0:ind_right_active])) | ||||||
|  |         print('Velocity of left-moving active channels:\n', np.real(velocity_left[0:ind_right_active]), '\n') | ||||||
|  |         print('Transmission matrix:\n', np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))) | ||||||
|  |         print('Reflection matrix:\n', np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), '\n') | ||||||
|  |         print('Total transmission of channels:\n', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) | ||||||
|  |         print('Total reflection of channels:\n',np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) | ||||||
|  |         print('Sum of transmission and reflection of channels:\n', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) | ||||||
|  |         print('Total conductance = ', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))), '\n') | ||||||
|  |     if on_write == 1: | ||||||
|  |         with open('a.txt', 'w') as f: | ||||||
|  |             f.write('Active channel (left or right) = ' + str(ind_right_active) + '\n') | ||||||
|  |             f.write('Evanescent channel (left or right) = ' + str(dim - ind_right_active) + '\n\n') | ||||||
|  |             f.write('Channel               K                                     Velocity\n') | ||||||
|  |             for ind0 in range(ind_right_active): | ||||||
|  |                 f.write('   '+str(ind0 + 1) + '   |    '+str(np.real(k_right[ind0]))+'            ' + str(np.real(velocity_right[ind0]))+'\n') | ||||||
|  |             f.write('\n') | ||||||
|  |             for ind0 in range(ind_right_active): | ||||||
|  |                 f.write('  -' + str(ind0 + 1) + '   |    ' + str(np.real(k_left[ind0])) + '            ' + str(np.real(velocity_left[ind0])) + '\n') | ||||||
|  |             f.write('\nScattering matrix:\n              ') | ||||||
|  |             for ind0 in range(ind_right_active): | ||||||
|  |                 f.write(str(ind0+1)+'               ') | ||||||
|  |             f.write('\n') | ||||||
|  |             for ind1 in range(ind_right_active): | ||||||
|  |                 f.write('  '+str(ind1+1)+'    ') | ||||||
|  |                 for ind2 in range(ind_right_active): | ||||||
|  |                     f.write('%f' % np.square(np.abs(transmission_matrix[ind1, ind2]))+'    ') | ||||||
|  |                 f.write('\n') | ||||||
|  |             f.write('\n') | ||||||
|  |             for ind1 in range(ind_right_active): | ||||||
|  |                 f.write(' -'+str(ind1+1)+'    ') | ||||||
|  |                 for ind2 in range(ind_right_active): | ||||||
|  |                     f.write('%f' % np.square(np.abs(reflection_matrix[ind1, ind2]))+'    ') | ||||||
|  |                 f.write('\n') | ||||||
|  |             f.write('\n') | ||||||
|  |             f.write('Total transmission of channels:\n'+str(np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0))+'\n') | ||||||
|  |             f.write('Total conductance = '+str(np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))))+'\n') | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # calculate chern number | ||||||
|  |  | ||||||
|  | def calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100): | ||||||
|  |     if np.array(hamiltonian_function(0, 0)).shape==(): | ||||||
|  |         dim = 1 | ||||||
|  |     else: | ||||||
|  |         dim = np.array(hamiltonian_function(0, 0)).shape[0]    | ||||||
|  |     delta = 2*pi/precision | ||||||
|  |     chern_number = np.zeros(dim, dtype=complex) | ||||||
|  |     for kx in np.arange(-pi, pi, delta): | ||||||
|  |         for ky in np.arange(-pi, pi, delta): | ||||||
|  |             H = hamiltonian_function(kx, ky) | ||||||
|  |             vector = calculate_eigenvector(H) | ||||||
|  |             H_delta_kx = hamiltonian_function(kx+delta, ky)  | ||||||
|  |             vector_delta_kx = calculate_eigenvector(H_delta_kx) | ||||||
|  |             H_delta_ky = hamiltonian_function(kx, ky+delta) | ||||||
|  |             vector_delta_ky = calculate_eigenvector(H_delta_ky) | ||||||
|  |             H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) | ||||||
|  |             vector_delta_kx_ky = calculate_eigenvector(H_delta_kx_ky) | ||||||
|  |             for i in range(dim): | ||||||
|  |                 vector_i = vector[:, i] | ||||||
|  |                 vector_delta_kx_i = vector_delta_kx[:, i] | ||||||
|  |                 vector_delta_ky_i = vector_delta_ky[:, i] | ||||||
|  |                 vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] | ||||||
|  |                 Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) | ||||||
|  |                 Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) | ||||||
|  |                 Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) | ||||||
|  |                 Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) | ||||||
|  |                 F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) | ||||||
|  |                 chern_number[i] = chern_number[i] + F | ||||||
|  |     chern_number = chern_number/(2*pi*1j) | ||||||
|  |     return chern_number | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # calculate wilson loop | ||||||
|  |  | ||||||
|  | def calculate_wilson_loop(hamiltonian_function, k_min=-pi, k_max=pi, precision=100): | ||||||
|  |     k_array = np.linspace(k_min, k_max, precision) | ||||||
|  |     dim = np.array(hamiltonian_function(0)).shape[0] | ||||||
|  |     wilson_loop_array = np.ones(dim, dtype=complex) | ||||||
|  |     for i in range(dim): | ||||||
|  |         eigenvector_array = [] | ||||||
|  |         for k in k_array: | ||||||
|  |             eigenvector  = calculate_eigenvector(hamiltonian_function(k))   | ||||||
|  |             if k != k_max: | ||||||
|  |                 eigenvector_array.append(eigenvector[:, i]) | ||||||
|  |             else: | ||||||
|  |                 eigenvector_array.append(eigenvector_array[0]) | ||||||
|  |         for i0 in range(precision-1): | ||||||
|  |             F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0]) | ||||||
|  |             wilson_loop_array[i] = np.dot(F, wilson_loop_array[i]) | ||||||
|  |     return wilson_loop_array | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # read and write | ||||||
|  |  | ||||||
|  | def read_one_dimensional_data(filename='a'):  | ||||||
|  |     f = open(filename+'.txt', 'r') | ||||||
|  |     text = f.read() | ||||||
|  |     f.close() | ||||||
|  |     row_list = np.array(text.split('\n'))  | ||||||
|  |     dim_column = np.array(row_list[0].split()).shape[0]  | ||||||
|  |     x = np.array([]) | ||||||
|  |     y = np.array([]) | ||||||
|  |     for row in row_list: | ||||||
|  |         column = np.array(row.split())  | ||||||
|  |         if column.shape[0] != 0:   | ||||||
|  |             x = np.append(x, [float(column[0])], axis=0)   | ||||||
|  |             y_row = np.zeros(dim_column-1) | ||||||
|  |             for dim0 in range(dim_column-1): | ||||||
|  |                 y_row[dim0] = float(column[dim0+1]) | ||||||
|  |             if np.array(y).shape[0] == 0: | ||||||
|  |                 y = [y_row] | ||||||
|  |             else: | ||||||
|  |                 y = np.append(y, [y_row], axis=0) | ||||||
|  |     return x, y | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def read_two_dimensional_data(filename='a'):  | ||||||
|  |     f = open(filename+'.txt', 'r') | ||||||
|  |     text = f.read() | ||||||
|  |     f.close() | ||||||
|  |     row_list = np.array(text.split('\n'))  | ||||||
|  |     dim_column = np.array(row_list[0].split()).shape[0]  | ||||||
|  |     x = np.array([]) | ||||||
|  |     y = np.array([]) | ||||||
|  |     matrix = np.array([]) | ||||||
|  |     for i0 in range(row_list.shape[0]): | ||||||
|  |         column = np.array(row_list[i0].split())  | ||||||
|  |         if i0 == 0: | ||||||
|  |             x_str = column[1::]  | ||||||
|  |             x = np.zeros(x_str.shape[0]) | ||||||
|  |             for i00 in range(x_str.shape[0]): | ||||||
|  |                 x[i00] = float(x_str[i00])  | ||||||
|  |         elif column.shape[0] != 0:  | ||||||
|  |             y = np.append(y, [float(column[0])], axis=0)   | ||||||
|  |             matrix_row = np.zeros(dim_column-1) | ||||||
|  |             for dim0 in range(dim_column-1): | ||||||
|  |                 matrix_row[dim0] = float(column[dim0+1]) | ||||||
|  |             if np.array(matrix).shape[0] == 0: | ||||||
|  |                 matrix = [matrix_row] | ||||||
|  |             else: | ||||||
|  |                 matrix = np.append(matrix, [matrix_row], axis=0) | ||||||
|  |     return x, y, matrix | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def write_one_dimensional_data(x, y, filename='a'):  | ||||||
|  |     with open(filename+'.txt', 'w') as f: | ||||||
|  |         i0 = 0 | ||||||
|  |         for x0 in x: | ||||||
|  |             f.write(str(x0)+'   ') | ||||||
|  |             if len(y.shape) == 1: | ||||||
|  |                 f.write(str(y[i0])+'\n') | ||||||
|  |             elif len(y.shape) == 2: | ||||||
|  |                 for j0 in range(y.shape[1]): | ||||||
|  |                     f.write(str(y[i0, j0])+'   ') | ||||||
|  |                 f.write('\n') | ||||||
|  |             i0 += 1 | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def write_two_dimensional_data(x, y, matrix, filename='a'):  | ||||||
|  |     with open(filename+'.txt', 'w') as f: | ||||||
|  |         f.write('0   ') | ||||||
|  |         for x0 in x: | ||||||
|  |             f.write(str(x0)+'   ') | ||||||
|  |         f.write('\n') | ||||||
|  |         i0 = 0 | ||||||
|  |         for y0 in y: | ||||||
|  |             f.write(str(y0)) | ||||||
|  |             j0 = 0 | ||||||
|  |             for x0 in x: | ||||||
|  |                 f.write('   '+str(matrix[i0, j0])+'   ') | ||||||
|  |                 j0 += 1 | ||||||
|  |             f.write('\n') | ||||||
|  |             i0 += 1 | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # plot figures | ||||||
|  |  | ||||||
|  | def plot(x, y, xlabel='x', ylabel='y', title='', filename='a', show=1, save=0, type=''):  | ||||||
|  |     import matplotlib.pyplot as plt | ||||||
|  |     fig, ax = plt.subplots() | ||||||
|  |     plt.subplots_adjust(bottom=0.20, left=0.18)  | ||||||
|  |     ax.plot(x, y, type) | ||||||
|  |     ax.grid() | ||||||
|  |     ax.set_title(title, fontsize=20, fontfamily='Times New Roman') | ||||||
|  |     ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')  | ||||||
|  |     ax.tick_params(labelsize=20)  | ||||||
|  |     labels = ax.get_xticklabels() + ax.get_yticklabels() | ||||||
|  |     [label.set_fontname('Times New Roman') for label in labels] | ||||||
|  |     if save == 1: | ||||||
|  |         plt.savefig(filename+'.jpg', dpi=300)  | ||||||
|  |     if show == 1: | ||||||
|  |         plt.show() | ||||||
|  |     plt.close('all') | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def plot_3d_surface(x, y, matrix, xlabel='x', ylabel='y', zlabel='z', title='', filename='a', show=1, save=0):  | ||||||
|  |     import matplotlib.pyplot as plt | ||||||
|  |     from matplotlib import cm | ||||||
|  |     from matplotlib.ticker import LinearLocator | ||||||
|  |     fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) | ||||||
|  |     plt.subplots_adjust(bottom=0.1, right=0.65)  | ||||||
|  |     x, y = np.meshgrid(x, y) | ||||||
|  |     if len(matrix.shape) == 2: | ||||||
|  |         surf = ax.plot_surface(x, y, matrix, cmap=cm.coolwarm, linewidth=0, antialiased=False)  | ||||||
|  |     elif len(matrix.shape) == 3: | ||||||
|  |         for i0 in range(matrix.shape[2]): | ||||||
|  |             surf = ax.plot_surface(x, y, matrix[:,:,i0], cmap=cm.coolwarm, linewidth=0, antialiased=False)  | ||||||
|  |     ax.set_title(title, fontsize=20, fontfamily='Times New Roman') | ||||||
|  |     ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_zlabel(zlabel, fontsize=20, fontfamily='Times New Roman')  | ||||||
|  |     ax.zaxis.set_major_locator(LinearLocator(5))  | ||||||
|  |     ax.zaxis.set_major_formatter('{x:.2f}')    | ||||||
|  |     ax.tick_params(labelsize=15)  | ||||||
|  |     labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels() | ||||||
|  |     [label.set_fontname('Times New Roman') for label in labels]  | ||||||
|  |     cax = plt.axes([0.80, 0.15, 0.05, 0.75])  | ||||||
|  |     cbar = fig.colorbar(surf, cax=cax)   | ||||||
|  |     cbar.ax.tick_params(labelsize=15) | ||||||
|  |     for l in cbar.ax.yaxis.get_ticklabels(): | ||||||
|  |         l.set_family('Times New Roman') | ||||||
|  |     if save == 1: | ||||||
|  |         plt.savefig(filename+'.jpg', dpi=300)  | ||||||
|  |     if show == 1: | ||||||
|  |         plt.show() | ||||||
|  |     plt.close('all') | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def plot_contour(x, y, matrix, xlabel='x', ylabel='y', title='', filename='a', show=1, save=0):   | ||||||
|  |     import matplotlib.pyplot as plt | ||||||
|  |     fig, ax = plt.subplots() | ||||||
|  |     plt.subplots_adjust(bottom=0.2, right=0.75, left = 0.16)  | ||||||
|  |     x, y = np.meshgrid(x, y) | ||||||
|  |     contour = ax.contourf(x,y,matrix,cmap='jet')  | ||||||
|  |     ax.set_title(title, fontsize=20, fontfamily='Times New Roman') | ||||||
|  |     ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')  | ||||||
|  |     ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')  | ||||||
|  |     ax.tick_params(labelsize=15)  | ||||||
|  |     labels = ax.get_xticklabels() + ax.get_yticklabels() | ||||||
|  |     [label.set_fontname('Times New Roman') for label in labels]  | ||||||
|  |     cax = plt.axes([0.78, 0.17, 0.08, 0.71]) | ||||||
|  |     cbar = fig.colorbar(contour, cax=cax)  | ||||||
|  |     cbar.ax.tick_params(labelsize=15)  | ||||||
|  |     for l in cbar.ax.yaxis.get_ticklabels(): | ||||||
|  |         l.set_family('Times New Roman') | ||||||
|  |     if save == 1: | ||||||
|  |         plt.savefig(filename+'.jpg', dpi=300)  | ||||||
|  |     if show == 1: | ||||||
|  |         plt.show() | ||||||
|  |     plt.close('all') | ||||||
							
								
								
									
										5
									
								
								README.md
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										5
									
								
								README.md
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,5 @@ | |||||||
|  | ### GJH project: an open source python package. The official website is https://py.guanjihuan.com | ||||||
|  |  | ||||||
|  | ### Installation: pip install --upgrade gjh | ||||||
|  |  | ||||||
|  | ### Usage: import gjh | ||||||
							
								
								
									
										18
									
								
								Tutorial/Chern_number.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										18
									
								
								Tutorial/Chern_number.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,18 @@ | |||||||
|  | import gjh | ||||||
|  | import numpy as np | ||||||
|  | from math import * | ||||||
|  |  | ||||||
|  | def hamiltonian_function(kx, ky):  # one QAH model with chern number 2 | ||||||
|  |     t1 = 1.0 | ||||||
|  |     t2 = 1.0 | ||||||
|  |     t3 = 0.5 | ||||||
|  |     m = -1.0 | ||||||
|  |     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||||
|  |     hamiltonian[0, 1] = 2*t1*cos(kx)-1j*2*t1*cos(ky) | ||||||
|  |     hamiltonian[1, 0] = 2*t1*cos(kx)+1j*2*t1*cos(ky) | ||||||
|  |     hamiltonian[0, 0] = m+2*t3*sin(kx)+2*t3*sin(ky)+2*t2*cos(kx+ky) | ||||||
|  |     hamiltonian[1, 1] = -(m+2*t3*sin(kx)+2*t3*sin(ky)+2*t2*cos(kx+ky)) | ||||||
|  |     return hamiltonian | ||||||
|  |  | ||||||
|  | chern_number = gjh.calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100) | ||||||
|  | print(chern_number) | ||||||
							
								
								
									
										19
									
								
								Tutorial/Fourier_transform_and_band_structures.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										19
									
								
								Tutorial/Fourier_transform_and_band_structures.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,19 @@ | |||||||
|  | import gjh | ||||||
|  | import numpy as np | ||||||
|  | from math import * | ||||||
|  | import functools | ||||||
|  |  | ||||||
|  | x = np.linspace(-pi, pi, 100) | ||||||
|  | y = np.linspace(-pi, pi, 100) | ||||||
|  |  | ||||||
|  | hamiltonian_function = functools.partial(gjh.one_dimensional_fourier_transform, unit_cell=0, hopping=1) | ||||||
|  | eigenvalue_array = gjh.calculate_eigenvalue_with_one_parameter(x, hamiltonian_function) | ||||||
|  | gjh.plot(x, eigenvalue_array, xlabel='k', ylabel='E', type='-o') | ||||||
|  |  | ||||||
|  | hamiltonian_function = functools.partial(gjh.two_dimensional_fourier_transform_for_square_lattice, unit_cell=0, hopping_1=1, hopping_2=1) | ||||||
|  | eigenvalue_array = gjh.calculate_eigenvalue_with_two_parameters(x, y, hamiltonian_function) | ||||||
|  | gjh.plot_3d_surface(x, y, eigenvalue_array, xlabel='kx', ylabel='ky', zlabel='E') | ||||||
|  |  | ||||||
|  | hamiltonian_function = functools.partial(gjh.three_dimensional_fourier_transform_for_cubic_lattice, k3=0, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1) | ||||||
|  | eigenvalue_array = gjh.calculate_eigenvalue_with_two_parameters(x, y, hamiltonian_function) | ||||||
|  | gjh.plot_3d_surface(x, y, eigenvalue_array, xlabel='kx', ylabel='ky', zlabel='E') | ||||||
							
								
								
									
										5
									
								
								Tutorial/Hamiltonian_of_finite_size.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										5
									
								
								Tutorial/Hamiltonian_of_finite_size.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,5 @@ | |||||||
|  | import gjh | ||||||
|  |  | ||||||
|  | print(gjh.finite_size_along_one_direction(3), '\n') | ||||||
|  | print(gjh.finite_size_along_two_directions_for_square_lattice(2, 2), '\n') | ||||||
|  | print(gjh.finite_size_along_three_directions_for_cubic_lattice(2, 2, 2), '\n') | ||||||
							
								
								
									
										6
									
								
								Tutorial/Pauli_matrix.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										6
									
								
								Tutorial/Pauli_matrix.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,6 @@ | |||||||
|  | import gjh | ||||||
|  |  | ||||||
|  | print('sigma_0:\n', gjh.sigma_0(), '\n') | ||||||
|  | print('sigma_x:\n', gjh.sigma_x(), '\n') | ||||||
|  | print('sigma_y:\n', gjh.sigma_y(), '\n') | ||||||
|  | print('sigma_z:\n', gjh.sigma_z(), '\n') | ||||||
							
								
								
									
										20
									
								
								Tutorial/Wilson_loop.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										20
									
								
								Tutorial/Wilson_loop.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,20 @@ | |||||||
|  | import gjh | ||||||
|  | import numpy as np | ||||||
|  | import cmath | ||||||
|  | from math import * | ||||||
|  |  | ||||||
|  | def hamiltonian_function(k): # SSH model | ||||||
|  |     gamma = 0.5 | ||||||
|  |     lambda0 = 1 | ||||||
|  |     delta = 0 | ||||||
|  |     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||||
|  |     hamiltonian[0,0] = delta | ||||||
|  |     hamiltonian[1,1] = -delta | ||||||
|  |     hamiltonian[0,1] = gamma+lambda0*cmath.exp(-1j*k) | ||||||
|  |     hamiltonian[1,0] = gamma+lambda0*cmath.exp(1j*k) | ||||||
|  |     return hamiltonian | ||||||
|  |  | ||||||
|  | wilson_loop_array = gjh.calculate_wilson_loop(hamiltonian_function) | ||||||
|  | print('wilson loop =', wilson_loop_array) | ||||||
|  | p = np.log(wilson_loop_array)/2/pi/1j | ||||||
|  | print('p =', p, '\n') | ||||||
							
								
								
									
										12
									
								
								Tutorial/bands_of_zigzag_graphene.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										12
									
								
								Tutorial/bands_of_zigzag_graphene.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,12 @@ | |||||||
|  | import gjh | ||||||
|  | import numpy as np | ||||||
|  | from math import * | ||||||
|  | import functools | ||||||
|  |  | ||||||
|  | x = np.linspace(-pi, pi, 100) | ||||||
|  | Ny = 10 | ||||||
|  | unit_cell = gjh.finite_size_along_two_directions_for_graphene(1, Ny) | ||||||
|  | hopping = gjh.hopping_along_zigzag_direction_for_graphene(Ny) | ||||||
|  | hamiltonian_function = functools.partial(gjh.one_dimensional_fourier_transform, unit_cell=unit_cell, hopping=hopping) | ||||||
|  | eigenvalue_array = gjh.calculate_eigenvalue_with_one_parameter(x, hamiltonian_function) | ||||||
|  | gjh.plot(x, eigenvalue_array, xlabel='k', ylabel='E') | ||||||
							
								
								
									
										8
									
								
								Tutorial/conductance.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										8
									
								
								Tutorial/conductance.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,8 @@ | |||||||
|  | import gjh | ||||||
|  | import numpy as np | ||||||
|  |  | ||||||
|  | fermi_energy_array = np.linspace(-5, 5, 400) | ||||||
|  | h00 = gjh.finite_size_along_one_direction(4) | ||||||
|  | h01 = np.identity(4) | ||||||
|  | conductance_array = gjh.calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01) | ||||||
|  | gjh.plot(fermi_energy_array, conductance_array, xlabel='E', ylabel='Conductance', type='-o') | ||||||
							
								
								
									
										28
									
								
								Tutorial/local_density_of_states.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										28
									
								
								Tutorial/local_density_of_states.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,28 @@ | |||||||
|  | import gjh | ||||||
|  | import numpy as np | ||||||
|  |  | ||||||
|  | fermi_energy = 0 | ||||||
|  | N1 = 3 | ||||||
|  | N2 = 4 | ||||||
|  | hamiltonian = gjh.finite_size_along_two_directions_for_square_lattice(N1,N2) | ||||||
|  | LDOS = gjh.local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1=N1, N2=N2) | ||||||
|  | print('square lattice:\n', LDOS, '\n') | ||||||
|  |  | ||||||
|  | h00 = gjh.finite_size_along_one_direction(N2) | ||||||
|  | h01 = np.identity(N2) | ||||||
|  | LDOS = gjh.local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00=h00, h01=h01, N2=N2, N1=N1) | ||||||
|  | print(LDOS, '\n\n') | ||||||
|  | gjh.plot_contour(range(N1), range(N2), LDOS) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | N1 = 3 | ||||||
|  | N2 = 4 | ||||||
|  | N3 = 5 | ||||||
|  | hamiltonian = gjh.finite_size_along_three_directions_for_cubic_lattice(N1, N2, N3) | ||||||
|  | LDOS = gjh.local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1=N1, N2=N2, N3=N3) | ||||||
|  | print('cubic lattice:\n', LDOS, '\n') | ||||||
|  |  | ||||||
|  | h00 = gjh.finite_size_along_two_directions_for_square_lattice(N2, N3) | ||||||
|  | h01 = np.identity(N2*N3) | ||||||
|  | LDOS = gjh.local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3=N3, N2=N2, N1=N1) | ||||||
|  | print(LDOS) | ||||||
							
								
								
									
										20
									
								
								Tutorial/read_and_write.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										20
									
								
								Tutorial/read_and_write.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,20 @@ | |||||||
|  | import gjh | ||||||
|  | import numpy as np | ||||||
|  |  | ||||||
|  | x = np.array([1, 2, 3]) | ||||||
|  | y = np.array([5, 6, 7]) | ||||||
|  | gjh.write_one_dimensional_data(x, y, filename='one_dimensional_data') | ||||||
|  |  | ||||||
|  | matrix = np.zeros((3, 3)) | ||||||
|  | matrix[0, 1] = 11 | ||||||
|  | gjh.write_two_dimensional_data(x, y, matrix, filename='two_dimensional_data') | ||||||
|  |  | ||||||
|  |  | ||||||
|  | x_read, y_read = gjh.read_one_dimensional_data('one_dimensional_data') | ||||||
|  | print(x_read, '\n') | ||||||
|  | print(y_read, '\n\n') | ||||||
|  |  | ||||||
|  | x_read, y_read, matrix_read = gjh.read_two_dimensional_data('two_dimensional_data') | ||||||
|  | print(x_read, '\n') | ||||||
|  | print(y_read, '\n') | ||||||
|  | print(matrix_read) | ||||||
							
								
								
									
										7
									
								
								Tutorial/scattering_matrix.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										7
									
								
								Tutorial/scattering_matrix.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,7 @@ | |||||||
|  | import gjh | ||||||
|  | import numpy as np | ||||||
|  |  | ||||||
|  | fermi_energy = 0 | ||||||
|  | h00 = gjh.finite_size_along_one_direction(4) | ||||||
|  | h01 = np.identity(4) | ||||||
|  | gjh.print_or_write_scattering_matrix(fermi_energy, h00, h01) | ||||||
							
								
								
									
										3
									
								
								Tutorial/test.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										3
									
								
								Tutorial/test.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,3 @@ | |||||||
|  | import gjh | ||||||
|  |  | ||||||
|  | gjh.test() | ||||||
							
								
								
									
										7
									
								
								Tutorial/total_density_of_states.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										7
									
								
								Tutorial/total_density_of_states.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,7 @@ | |||||||
|  | import gjh | ||||||
|  | import numpy as np | ||||||
|  |  | ||||||
|  | hamiltonian = gjh.finite_size_along_two_directions_for_square_lattice(2,2) | ||||||
|  | fermi_energy_array = np.linspace(-4, 4, 400) | ||||||
|  | total_dos_array = gjh.total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.1) | ||||||
|  | gjh.plot(fermi_energy_array, total_dos_array, xlabel='E', ylabel='Total DOS', type='-o') | ||||||
		Reference in New Issue
	
	Block a user