0.0.113
This commit is contained in:
parent
9e81112614
commit
87ef3a433a
@ -209,6 +209,8 @@ conductance = guan.calculate_conductance(fermi_energy, h00, h01, length=100)
|
|||||||
|
|
||||||
conductance_array = guan.calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100, print_show=0)
|
conductance_array = guan.calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100, print_show=0)
|
||||||
|
|
||||||
|
conductance = guan.calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barrier_length=20, barrier_potential=1)
|
||||||
|
|
||||||
conductance = guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100)
|
conductance = guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100)
|
||||||
|
|
||||||
conductance_array = guan.calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1, print_show=0)
|
conductance_array = guan.calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1, print_show=0)
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
[metadata]
|
[metadata]
|
||||||
# replace with your username:
|
# replace with your username:
|
||||||
name = guan
|
name = guan
|
||||||
version = 0.0.112
|
version = 0.0.113
|
||||||
author = guanjihuan
|
author = guanjihuan
|
||||||
author_email = guanjihuan@163.com
|
author_email = guanjihuan@163.com
|
||||||
description = An open source python package
|
description = An open source python package
|
||||||
|
@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
|
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
|
||||||
|
|
||||||
# The current version is guan-0.0.112, updated on July 20, 2022.
|
# The current version is guan-0.0.113, updated on July 20, 2022.
|
||||||
|
|
||||||
# Installation: pip install --upgrade guan
|
# Installation: pip install --upgrade guan
|
||||||
|
|
||||||
@ -1137,6 +1137,25 @@ def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01,
|
|||||||
i0 += 1
|
i0 += 1
|
||||||
return conductance_array
|
return conductance_array
|
||||||
|
|
||||||
|
def calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barrier_length=20, barrier_potential=1):
|
||||||
|
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
||||||
|
dim = np.array(h00).shape[0]
|
||||||
|
for ix in range(length):
|
||||||
|
if ix == 0:
|
||||||
|
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
|
||||||
|
green_0n_n = copy.deepcopy(green_nn_n)
|
||||||
|
elif int(length/2-barrier_length/2)<=ix<int(length/2+barrier_length/2):
|
||||||
|
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+barrier_potential*np.identity(dim), h01, green_nn_n, broadening=0)
|
||||||
|
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
||||||
|
elif ix != length-1:
|
||||||
|
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)
|
||||||
|
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
||||||
|
else:
|
||||||
|
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
||||||
|
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
||||||
|
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
||||||
|
return conductance
|
||||||
|
|
||||||
def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100):
|
def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100):
|
||||||
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
||||||
dim = np.array(h00).shape[0]
|
dim = np.array(h00).shape[0]
|
||||||
|
Loading…
x
Reference in New Issue
Block a user