update 0.0.4
This commit is contained in:
		| @@ -1,7 +1,7 @@ | ||||
| [metadata] | ||||
| # replace with your username: | ||||
| name = guan | ||||
| version = 0.0.1 | ||||
| version = 0.0.4 | ||||
| author = guanjihuan | ||||
| author_email = guanjihuan@163.com | ||||
| description = An open source python package | ||||
|   | ||||
							
								
								
									
										25
									
								
								PyPI/src/guan/Fourier_transform.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										25
									
								
								PyPI/src/guan/Fourier_transform.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,25 @@ | ||||
| # Fourier_transform | ||||
|  | ||||
| import numpy as np | ||||
| import cmath | ||||
|  | ||||
| def one_dimensional_fourier_transform(k, unit_cell, hopping): | ||||
|     unit_cell = np.array(unit_cell) | ||||
|     hopping = np.array(hopping) | ||||
|     hamiltonian = unit_cell+hopping*cmath.exp(1j*k)+hopping.transpose().conj()*cmath.exp(-1j*k) | ||||
|     return hamiltonian | ||||
|  | ||||
| def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2): | ||||
|     unit_cell = np.array(unit_cell) | ||||
|     hopping_1 = np.array(hopping_1) | ||||
|     hopping_2 = np.array(hopping_2) | ||||
|     hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2) | ||||
|     return hamiltonian | ||||
|  | ||||
| def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3): | ||||
|     unit_cell = np.array(unit_cell) | ||||
|     hopping_1 = np.array(hopping_1) | ||||
|     hopping_2 = np.array(hopping_2) | ||||
|     hopping_3 = np.array(hopping_3) | ||||
|     hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)+hopping_3*cmath.exp(1j*k3)+hopping_3.transpose().conj()*cmath.exp(-1j*k3) | ||||
|     return hamiltonian | ||||
							
								
								
									
										112
									
								
								PyPI/src/guan/Hamiltonian_of_finite_size.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										112
									
								
								PyPI/src/guan/Hamiltonian_of_finite_size.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,112 @@ | ||||
| # Hamiltonian of finite size | ||||
|  | ||||
| import numpy as np | ||||
|  | ||||
| def finite_size_along_one_direction(N, on_site=0, hopping=1, period=0): | ||||
|     on_site = np.array(on_site) | ||||
|     hopping = np.array(hopping) | ||||
|     if on_site.shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = on_site.shape[0] | ||||
|     hamiltonian = np.zeros((N*dim, N*dim), dtype=complex) | ||||
|     for i0 in range(N): | ||||
|         hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site | ||||
|     for i0 in range(N-1): | ||||
|         hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping | ||||
|         hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj() | ||||
|     if period == 1: | ||||
|         hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping | ||||
|         hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj() | ||||
|     return hamiltonian | ||||
|  | ||||
| def finite_size_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0): | ||||
|     on_site = np.array(on_site) | ||||
|     hopping_1 = np.array(hopping_1) | ||||
|     hopping_2 = np.array(hopping_2) | ||||
|     if on_site.shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = on_site.shape[0] | ||||
|     hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex)     | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2): | ||||
|             hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site | ||||
|     for i1 in range(N1-1): | ||||
|         for i2 in range(N2): | ||||
|             hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1 | ||||
|             hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2-1): | ||||
|             hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2 | ||||
|             hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj() | ||||
|     if period_1 == 1: | ||||
|         for i2 in range(N2): | ||||
|             hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1 | ||||
|             hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() | ||||
|     if period_2 == 1: | ||||
|         for i1 in range(N1): | ||||
|             hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2 | ||||
|             hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj() | ||||
|     return hamiltonian | ||||
|  | ||||
| def finite_size_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0): | ||||
|     on_site = np.array(on_site) | ||||
|     hopping_1 = np.array(hopping_1) | ||||
|     hopping_2 = np.array(hopping_2) | ||||
|     hopping_3 = np.array(hopping_3) | ||||
|     if on_site.shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = on_site.shape[0] | ||||
|     hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex)  | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3): | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site | ||||
|     for i1 in range(N1-1): | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3): | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1 | ||||
|                 hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2-1): | ||||
|             for i3 in range(N3): | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2 | ||||
|                 hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3-1): | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3 | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj() | ||||
|     if period_1 == 1: | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3): | ||||
|                 hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1 | ||||
|                 hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() | ||||
|     if period_2 == 1: | ||||
|         for i1 in range(N1): | ||||
|             for i3 in range(N3): | ||||
|                 hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2 | ||||
|                 hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() | ||||
|     if period_3 == 1: | ||||
|         for i1 in range(N1): | ||||
|             for i2 in range(N2): | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3 | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj() | ||||
|     return hamiltonian | ||||
|  | ||||
| def hopping_along_zigzag_direction_for_graphene(N): | ||||
|     hopping = np.zeros((4*N, 4*N), dtype=complex) | ||||
|     for i0 in range(N): | ||||
|         hopping[4*i0+1, 4*i0+0] = 1 | ||||
|         hopping[4*i0+2, 4*i0+3] = 1 | ||||
|     return hopping | ||||
|  | ||||
| def finite_size_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0): | ||||
|     on_site = finite_size_along_one_direction(4) | ||||
|     hopping_1 = hopping_along_zigzag_direction_for_graphene(1) | ||||
|     hopping_2 = np.zeros((4, 4), dtype=complex) | ||||
|     hopping_2[3, 0] = 1 | ||||
|     hamiltonian = finite_size_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2) | ||||
|     return hamiltonian | ||||
							
								
								
									
										122
									
								
								PyPI/src/guan/Hamiltonian_of_models_in_the_reciprocal_space.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										122
									
								
								PyPI/src/guan/Hamiltonian_of_models_in_the_reciprocal_space.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,122 @@ | ||||
| # Hamiltonian of models in the reciprocal space | ||||
|  | ||||
| import numpy as np | ||||
| import cmath | ||||
| from math import * | ||||
| from .Fourier_transform import * | ||||
|  | ||||
| def hamiltonian_of_simple_chain(k): | ||||
|     hamiltonian = one_dimensional_fourier_transform(k, unit_cell=0, hopping=1) | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_square_lattice(k1, k2): | ||||
|     hamiltonian = two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1) | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10): | ||||
|     h00 = np.zeros((N, N), dtype=complex)  # hopping in a unit cell | ||||
|     h01 = np.zeros((N, N), dtype=complex)  # hopping between unit cells | ||||
|     for i in range(N-1):    | ||||
|         h00[i, i+1] = 1 | ||||
|         h00[i+1, i] = 1 | ||||
|     for i in range(N):    | ||||
|         h01[i, i] = 1 | ||||
|     hamiltonian = one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)  | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_cubic_lattice(k1, k2, k3): | ||||
|     hamiltonian = three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1) | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_ssh_model(k, v=0.6, w=1): | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
|     hamiltonian[0,1] = v+w*cmath.exp(-1j*k) | ||||
|     hamiltonian[1,0] = v+w*cmath.exp(1j*k) | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_graphene(k1, k2, M=0, t=1, a=1/sqrt(3)): | ||||
|     h0 = np.zeros((2, 2), dtype=complex)  # mass term | ||||
|     h1 = np.zeros((2, 2), dtype=complex)  # nearest hopping | ||||
|     h0[0, 0] = M      | ||||
|     h0[1, 1] = -M | ||||
|     h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a))    | ||||
|     h1[0, 1] = h1[1, 0].conj() | ||||
|     hamiltonian = h0 + h1 | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1): | ||||
|     h00 = np.zeros((4*N, 4*N), dtype=complex)  # hopping in a unit cell | ||||
|     h01 = np.zeros((4*N, 4*N), dtype=complex)  # hopping between unit cells | ||||
|     for i in range(N): | ||||
|         h00[i*4+0, i*4+0] = M | ||||
|         h00[i*4+1, i*4+1] = -M | ||||
|         h00[i*4+2, i*4+2] = M | ||||
|         h00[i*4+3, i*4+3] = -M | ||||
|         h00[i*4+0, i*4+1] = t | ||||
|         h00[i*4+1, i*4+0] = t | ||||
|         h00[i*4+1, i*4+2] = t | ||||
|         h00[i*4+2, i*4+1] = t | ||||
|         h00[i*4+2, i*4+3] = t | ||||
|         h00[i*4+3, i*4+2] = t | ||||
|     for i in range(N-1): | ||||
|         h00[i*4+3, (i+1)*4+0] = t | ||||
|         h00[(i+1)*4+0, i*4+3] = t | ||||
|     for i in range(N): | ||||
|         h01[i*4+1, i*4+0] = t | ||||
|         h01[i*4+2, i*4+3] = t | ||||
|     hamiltonian = one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)  | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi=pi/4, a=1/sqrt(3)): | ||||
|     h0 = np.zeros((2, 2), dtype=complex)  # mass term | ||||
|     h1 = np.zeros((2, 2), dtype=complex)  # nearest hopping | ||||
|     h2 = np.zeros((2, 2), dtype=complex)  # next nearest hopping | ||||
|     h0[0, 0] = M | ||||
|     h0[1, 1] = -M | ||||
|     h1[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a)) | ||||
|     h1[0, 1] = h1[1, 0].conj() | ||||
|     h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*sqrt(3)*k1*a)+cmath.exp(-1j*sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j*3/2*k2*a)) | ||||
|     h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*sqrt(3)*k1*a)+cmath.exp(-1j*sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j*3/2*k2*a)) | ||||
|     hamiltonian = h0 + h1 + h2 + h2.transpose().conj() | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi=pi/4): | ||||
|     h00 = np.zeros((4*N, 4*N), dtype=complex)  # hopping in a unit cell | ||||
|     h01 = np.zeros((4*N, 4*N), dtype=complex)  # hopping between unit cells | ||||
|     for i in range(N): | ||||
|         h00[i*4+0, i*4+0] = M | ||||
|         h00[i*4+1, i*4+1] = -M | ||||
|         h00[i*4+2, i*4+2] = M | ||||
|         h00[i*4+3, i*4+3] = -M | ||||
|         h00[i*4+0, i*4+1] = t1 | ||||
|         h00[i*4+1, i*4+0] = t1 | ||||
|         h00[i*4+1, i*4+2] = t1 | ||||
|         h00[i*4+2, i*4+1] = t1 | ||||
|         h00[i*4+2, i*4+3] = t1 | ||||
|         h00[i*4+3, i*4+2] = t1 | ||||
|         h00[i*4+0, i*4+2] = t2*cmath.exp(-1j*phi) | ||||
|         h00[i*4+2, i*4+0] = h00[i*4+0, i*4+2].conj() | ||||
|         h00[i*4+1, i*4+3] = t2*cmath.exp(-1j*phi) | ||||
|         h00[i*4+3, i*4+1] = h00[i*4+1, i*4+3].conj() | ||||
|     for i in range(N-1): | ||||
|         h00[i*4+3, (i+1)*4+0] = t1 | ||||
|         h00[(i+1)*4+0, i*4+3] = t1 | ||||
|         h00[i*4+2, (i+1)*4+0] = t2*cmath.exp(1j*phi) | ||||
|         h00[(i+1)*4+0, i*4+2] = h00[i*4+2, (i+1)*4+0].conj() | ||||
|         h00[i*4+3, (i+1)*4+1] = t2*cmath.exp(1j*phi) | ||||
|         h00[(i+1)*4+1, i*4+3] = h00[i*4+3, (i+1)*4+1].conj() | ||||
|     for i in range(N): | ||||
|         h01[i*4+1, i*4+0] = t1 | ||||
|         h01[i*4+2, i*4+3] = t1 | ||||
|         h01[i*4+0, i*4+0] = t2*cmath.exp(1j*phi) | ||||
|         h01[i*4+1, i*4+1] = t2*cmath.exp(-1j*phi) | ||||
|         h01[i*4+2, i*4+2] = t2*cmath.exp(1j*phi) | ||||
|         h01[i*4+3, i*4+3] = t2*cmath.exp(-1j*phi) | ||||
|         h01[i*4+1, i*4+3] = t2*cmath.exp(1j*phi) | ||||
|         h01[i*4+2, i*4+0] = t2*cmath.exp(-1j*phi) | ||||
|         if i != 0: | ||||
|             h01[i*4+1, (i-1)*4+3] = t2*cmath.exp(1j*phi) | ||||
|     for i in range(N-1): | ||||
|         h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi) | ||||
|     hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k) | ||||
|     return hamiltonian | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										67
									
								
								PyPI/src/guan/basic_functions.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										67
									
								
								PyPI/src/guan/basic_functions.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,67 @@ | ||||
| # basic functions | ||||
|  | ||||
| import numpy as np | ||||
|  | ||||
| ## Pauli matrices | ||||
|  | ||||
| def sigma_0(): | ||||
|     return np.eye(2) | ||||
|  | ||||
| def sigma_x(): | ||||
|     return np.array([[0, 1],[1, 0]]) | ||||
|  | ||||
| def sigma_y(): | ||||
|     return np.array([[0, -1j],[1j, 0]]) | ||||
|  | ||||
| def sigma_z(): | ||||
|     return np.array([[1, 0],[0, -1]]) | ||||
|  | ||||
| ## Kronecker product of Pauli matrices | ||||
|  | ||||
| def sigma_00(): | ||||
|     return np.kron(sigma_0(), sigma_0()) | ||||
|  | ||||
| def sigma_0x(): | ||||
|     return np.kron(sigma_0(), sigma_x()) | ||||
|  | ||||
| def sigma_0y(): | ||||
|     return np.kron(sigma_0(), sigma_y()) | ||||
|  | ||||
| def sigma_0z(): | ||||
|     return np.kron(sigma_0(), sigma_z()) | ||||
|  | ||||
| def sigma_x0(): | ||||
|     return np.kron(sigma_x(), sigma_0()) | ||||
|  | ||||
| def sigma_xx(): | ||||
|     return np.kron(sigma_x(), sigma_x()) | ||||
|  | ||||
| def sigma_xy(): | ||||
|     return np.kron(sigma_x(), sigma_y()) | ||||
|  | ||||
| def sigma_xz(): | ||||
|     return np.kron(sigma_x(), sigma_z()) | ||||
|  | ||||
| def sigma_y0(): | ||||
|     return np.kron(sigma_y(), sigma_0()) | ||||
|  | ||||
| def sigma_yx(): | ||||
|     return np.kron(sigma_y(), sigma_x()) | ||||
|  | ||||
| def sigma_yy(): | ||||
|     return np.kron(sigma_y(), sigma_y()) | ||||
|  | ||||
| def sigma_yz(): | ||||
|     return np.kron(sigma_y(), sigma_z()) | ||||
|  | ||||
| def sigma_z0(): | ||||
|     return np.kron(sigma_z(), sigma_0()) | ||||
|  | ||||
| def sigma_zx(): | ||||
|     return np.kron(sigma_z(), sigma_x()) | ||||
|  | ||||
| def sigma_zy(): | ||||
|     return np.kron(sigma_z(), sigma_y()) | ||||
|  | ||||
| def sigma_zz(): | ||||
|     return np.kron(sigma_z(), sigma_z()) | ||||
							
								
								
									
										37
									
								
								PyPI/src/guan/calculate_Chern_number.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										37
									
								
								PyPI/src/guan/calculate_Chern_number.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,37 @@ | ||||
| # calculate Chern number | ||||
|  | ||||
| import numpy as np | ||||
| import cmath | ||||
| from math import * | ||||
| from .calculate_wave_functions import * | ||||
|  | ||||
| def calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100): | ||||
|     if np.array(hamiltonian_function(0, 0)).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian_function(0, 0)).shape[0]    | ||||
|     delta = 2*pi/precision | ||||
|     chern_number = np.zeros(dim, dtype=complex) | ||||
|     for kx in np.arange(-pi, pi, delta): | ||||
|         for ky in np.arange(-pi, pi, delta): | ||||
|             H = hamiltonian_function(kx, ky) | ||||
|             vector = calculate_eigenvector(H) | ||||
|             H_delta_kx = hamiltonian_function(kx+delta, ky)  | ||||
|             vector_delta_kx = calculate_eigenvector(H_delta_kx) | ||||
|             H_delta_ky = hamiltonian_function(kx, ky+delta) | ||||
|             vector_delta_ky = calculate_eigenvector(H_delta_ky) | ||||
|             H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) | ||||
|             vector_delta_kx_ky = calculate_eigenvector(H_delta_kx_ky) | ||||
|             for i in range(dim): | ||||
|                 vector_i = vector[:, i] | ||||
|                 vector_delta_kx_i = vector_delta_kx[:, i] | ||||
|                 vector_delta_ky_i = vector_delta_ky[:, i] | ||||
|                 vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] | ||||
|                 Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) | ||||
|                 Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) | ||||
|                 Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) | ||||
|                 Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) | ||||
|                 F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) | ||||
|                 chern_number[i] = chern_number[i] + F | ||||
|     chern_number = chern_number/(2*pi*1j) | ||||
|     return chern_number | ||||
							
								
								
									
										33
									
								
								PyPI/src/guan/calculate_Green_functions.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										33
									
								
								PyPI/src/guan/calculate_Green_functions.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,33 @@ | ||||
| # calculate Green functions | ||||
|  | ||||
| import numpy as np | ||||
|  | ||||
| def green_function(fermi_energy, hamiltonian, broadening, self_energy=0): | ||||
|     if np.array(hamiltonian).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian).shape[0] | ||||
|     green = np.linalg.inv((fermi_energy+broadening*1j)*np.eye(dim)-hamiltonian-self_energy) | ||||
|     return green | ||||
|  | ||||
| def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0): | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0]    | ||||
|     green_nn_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n_minus), h01)-self_energy) | ||||
|     return green_nn_n | ||||
|  | ||||
| def green_function_in_n(green_in_n_minus, h01, green_nn_n): | ||||
|     green_in_n = np.dot(np.dot(green_in_n_minus, h01), green_nn_n) | ||||
|     return green_in_n | ||||
|  | ||||
| def green_function_ni_n(green_nn_n, h01, green_ni_n_minus): | ||||
|     h01 = np.array(h01) | ||||
|     green_ni_n = np.dot(np.dot(green_nn_n, h01.transpose().conj()), green_ni_n_minus) | ||||
|     return green_ni_n | ||||
|  | ||||
| def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus): | ||||
|     green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus) | ||||
|     return green_ii_n | ||||
							
								
								
									
										22
									
								
								PyPI/src/guan/calculate_Wilson_loop.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										22
									
								
								PyPI/src/guan/calculate_Wilson_loop.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,22 @@ | ||||
| # calculate Wilson loop | ||||
|  | ||||
| import numpy as np | ||||
| from math import * | ||||
| from .calculate_wave_functions import * | ||||
|  | ||||
| def calculate_wilson_loop(hamiltonian_function, k_min=-pi, k_max=pi, precision=100): | ||||
|     k_array = np.linspace(k_min, k_max, precision) | ||||
|     dim = np.array(hamiltonian_function(0)).shape[0] | ||||
|     wilson_loop_array = np.ones(dim, dtype=complex) | ||||
|     for i in range(dim): | ||||
|         eigenvector_array = [] | ||||
|         for k in k_array: | ||||
|             eigenvector  = calculate_eigenvector(hamiltonian_function(k))   | ||||
|             if k != k_max: | ||||
|                 eigenvector_array.append(eigenvector[:, i]) | ||||
|             else: | ||||
|                 eigenvector_array.append(eigenvector_array[0]) | ||||
|         for i0 in range(precision-1): | ||||
|             F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0]) | ||||
|             wilson_loop_array[i] = np.dot(F, wilson_loop_array[i]) | ||||
|     return wilson_loop_array | ||||
							
								
								
									
										57
									
								
								PyPI/src/guan/calculate_band_structures.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										57
									
								
								PyPI/src/guan/calculate_band_structures.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,57 @@ | ||||
| # calculate band structures | ||||
|  | ||||
| import numpy as np | ||||
|  | ||||
| def calculate_eigenvalue(hamiltonian): | ||||
|     if np.array(hamiltonian).shape==(): | ||||
|         eigenvalue = np.real(hamiltonian) | ||||
|     else: | ||||
|         eigenvalue, eigenvector = np.linalg.eig(hamiltonian) | ||||
|         eigenvalue = np.sort(np.real(eigenvalue)) | ||||
|     return eigenvalue | ||||
|  | ||||
| def calculate_eigenvalue_with_one_parameter(x, hamiltonian_function): | ||||
|     dim_x = np.array(x).shape[0] | ||||
|     i0 = 0 | ||||
|     if np.array(hamiltonian_function(0)).shape==(): | ||||
|         eigenvalue_array = np.zeros((dim_x, 1)) | ||||
|         for x0 in x: | ||||
|             hamiltonian = hamiltonian_function(x0) | ||||
|             eigenvalue_array[i0, 0] = np.real(hamiltonian) | ||||
|             i0 += 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian_function(0)).shape[0] | ||||
|         eigenvalue_array = np.zeros((dim_x, dim)) | ||||
|         for x0 in x: | ||||
|             hamiltonian = hamiltonian_function(x0) | ||||
|             eigenvalue, eigenvector = np.linalg.eig(hamiltonian) | ||||
|             eigenvalue_array[i0, :] = np.sort(np.real(eigenvalue[:])) | ||||
|             i0 += 1 | ||||
|     return eigenvalue_array | ||||
|  | ||||
| def calculate_eigenvalue_with_two_parameters(x, y, hamiltonian_function):   | ||||
|     dim_x = np.array(x).shape[0] | ||||
|     dim_y = np.array(y).shape[0] | ||||
|     if np.array(hamiltonian_function(0,0)).shape==(): | ||||
|         eigenvalue_array = np.zeros((dim_y, dim_x, 1)) | ||||
|         i0 = 0 | ||||
|         for y0 in y: | ||||
|             j0 = 0 | ||||
|             for x0 in x: | ||||
|                 hamiltonian = hamiltonian_function(x0, y0) | ||||
|                 eigenvalue_array[i0, j0, 0] = np.real(hamiltonian) | ||||
|                 j0 += 1 | ||||
|             i0 += 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian_function(0, 0)).shape[0] | ||||
|         eigenvalue_array = np.zeros((dim_y, dim_x, dim)) | ||||
|         i0 = 0 | ||||
|         for y0 in y: | ||||
|             j0 = 0 | ||||
|             for x0 in x: | ||||
|                 hamiltonian = hamiltonian_function(x0, y0) | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(hamiltonian) | ||||
|                 eigenvalue_array[i0, j0, :] = np.sort(np.real(eigenvalue[:])) | ||||
|                 j0 += 1 | ||||
|             i0 += 1 | ||||
|     return eigenvalue_array | ||||
							
								
								
									
										74
									
								
								PyPI/src/guan/calculate_conductance.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										74
									
								
								PyPI/src/guan/calculate_conductance.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,74 @@ | ||||
| # calculate conductance | ||||
|  | ||||
| import numpy as np | ||||
| import copy | ||||
| from .calculate_Green_functions import * | ||||
|  | ||||
| def transfer_matrix(fermi_energy, h00, h01): | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     transfer = np.zeros((2*dim, 2*dim), dtype=complex) | ||||
|     transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00) | ||||
|     transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj()) | ||||
|     transfer[dim:2*dim, 0:dim] = np.identity(dim) | ||||
|     transfer[dim:2*dim, dim:2*dim] = 0 | ||||
|     return transfer | ||||
|  | ||||
| def surface_green_function_of_lead(fermi_energy, h00, h01): | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     fermi_energy = fermi_energy+1e-9*1j | ||||
|     transfer = transfer_matrix(fermi_energy, h00, h01) | ||||
|     eigenvalue, eigenvector = np.linalg.eig(transfer) | ||||
|     ind = np.argsort(np.abs(eigenvalue)) | ||||
|     temp = np.zeros((2*dim, 2*dim), dtype=complex) | ||||
|     i0 = 0 | ||||
|     for ind0 in ind: | ||||
|         temp[:, i0] = eigenvector[:, ind0] | ||||
|         i0 += 1 | ||||
|     s1 = temp[dim:2*dim, 0:dim] | ||||
|     s2 = temp[0:dim, 0:dim] | ||||
|     s3 = temp[dim:2*dim, dim:2*dim] | ||||
|     s4 = temp[0:dim, dim:2*dim] | ||||
|     right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1))) | ||||
|     left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4))) | ||||
|     return right_lead_surface, left_lead_surface | ||||
|  | ||||
| def self_energy_of_lead(fermi_energy, h00, h01): | ||||
|     h01 = np.array(h01) | ||||
|     right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
|     right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj()) | ||||
|     left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01) | ||||
|     return right_self_energy, left_self_energy | ||||
|  | ||||
| def calculate_conductance(fermi_energy, h00, h01, length=100): | ||||
|     right_self_energy, left_self_energy = self_energy_of_lead(fermi_energy, h00, h01) | ||||
|     for ix in range(length): | ||||
|         if ix == 0: | ||||
|             green_nn_n = green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) | ||||
|             green_0n_n = copy.deepcopy(green_nn_n) | ||||
|         elif ix != length-1: | ||||
|             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0) | ||||
|             green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|         else: | ||||
|             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|             green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|     right_self_energy = (right_self_energy - right_self_energy.transpose().conj())*(0+1j) | ||||
|     left_self_energy = (left_self_energy - left_self_energy.transpose().conj())*(0+1j) | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(left_self_energy, green_0n_n), right_self_energy), green_0n_n.transpose().conj())) | ||||
|     return conductance | ||||
|  | ||||
| def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100): | ||||
|     dim = np.array(fermi_energy_array).shape[0] | ||||
|     conductance_array = np.zeros(dim) | ||||
|     i0 = 0 | ||||
|     for fermi_energy_0 in fermi_energy_array: | ||||
|         conductance_array[i0] = np.real(calculate_conductance(fermi_energy_0, h00, h01, length)) | ||||
|         i0 += 1 | ||||
|     return conductance_array | ||||
							
								
								
									
										101
									
								
								PyPI/src/guan/calculate_density_of_states.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										101
									
								
								PyPI/src/guan/calculate_density_of_states.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,101 @@ | ||||
| # calculate density of states | ||||
|  | ||||
| import numpy as np | ||||
| from math import * | ||||
| from .calculate_Green_functions import * | ||||
|  | ||||
| def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01): | ||||
|     green = green_function(fermi_energy, hamiltonian, broadening) | ||||
|     total_dos = -np.trace(np.imag(green))/pi | ||||
|     return total_dos | ||||
|  | ||||
| def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01): | ||||
|     dim = np.array(fermi_energy_array).shape[0] | ||||
|     total_dos_array = np.zeros(dim) | ||||
|     i0 = 0 | ||||
|     for fermi_energy in fermi_energy_array: | ||||
|         total_dos_array[i0] = total_density_of_states(fermi_energy, hamiltonian, broadening) | ||||
|         i0 += 1 | ||||
|     return total_dos_array | ||||
|  | ||||
| def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01): | ||||
|     # dim_hamiltonian = N1*N2*internal_degree | ||||
|     green = green_function(fermi_energy, hamiltonian, broadening) | ||||
|     local_dos = np.zeros((N2, N1)) | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2): | ||||
|             for i in range(internal_degree):  | ||||
|                 local_dos[i2, i1] = local_dos[i2, i1]-np.imag(green[i1*N2*internal_degree+i2*internal_degree+i, i1*N2*internal_degree+i2*internal_degree+i])/pi | ||||
|     return local_dos | ||||
|  | ||||
| def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01): | ||||
|     # dim_hamiltonian = N1*N2*N3*internal_degree | ||||
|     green = green_function(fermi_energy, hamiltonian, broadening) | ||||
|     local_dos = np.zeros((N3, N2, N1)) | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3): | ||||
|                 for i in range(internal_degree):  | ||||
|                     local_dos[i3, i2, i1] = local_dos[i3, i2, i1]-np.imag(green[i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i, i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i])/pi | ||||
|     return local_dos | ||||
|  | ||||
| def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01): | ||||
|     # dim_h00 = N2*internal_degree | ||||
|     local_dos = np.zeros((N2, N1)) | ||||
|     green_11_1 = green_function(fermi_energy, h00, broadening) | ||||
|     for i1 in range(N1): | ||||
|         green_nn_n_minus = green_11_1 | ||||
|         green_in_n_minus = green_11_1 | ||||
|         green_ni_n_minus = green_11_1 | ||||
|         green_ii_n_minus = green_11_1 | ||||
|         for i2_0 in range(i1): | ||||
|             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||
|             green_nn_n_minus = green_nn_n | ||||
|         if i1!=0: | ||||
|             green_in_n_minus = green_nn_n | ||||
|             green_ni_n_minus = green_nn_n | ||||
|             green_ii_n_minus = green_nn_n | ||||
|         for size_0 in range(N1-1-i1): | ||||
|             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||
|             green_nn_n_minus = green_nn_n | ||||
|             green_ii_n = green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) | ||||
|             green_ii_n_minus = green_ii_n | ||||
|             green_in_n = green_function_in_n(green_in_n_minus, h01, green_nn_n) | ||||
|             green_in_n_minus = green_in_n | ||||
|             green_ni_n = green_function_ni_n(green_nn_n, h01, green_ni_n_minus) | ||||
|             green_ni_n_minus = green_ni_n | ||||
|         for i2 in range(N2): | ||||
|             for i in range(internal_degree): | ||||
|                 local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/pi | ||||
|     return local_dos | ||||
|  | ||||
| def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01): | ||||
|     # dim_h00 = N2*N3*internal_degree | ||||
|     local_dos = np.zeros((N3, N2, N1)) | ||||
|     green_11_1 = green_function(fermi_energy, h00, broadening) | ||||
|     for i1 in range(N1): | ||||
|         green_nn_n_minus = green_11_1 | ||||
|         green_in_n_minus = green_11_1 | ||||
|         green_ni_n_minus = green_11_1 | ||||
|         green_ii_n_minus = green_11_1 | ||||
|         for i1_0 in range(i1): | ||||
|             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||
|             green_nn_n_minus = green_nn_n | ||||
|         if i1!=0: | ||||
|             green_in_n_minus = green_nn_n | ||||
|             green_ni_n_minus = green_nn_n | ||||
|             green_ii_n_minus = green_nn_n | ||||
|         for size_0 in range(N1-1-i1): | ||||
|             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||
|             green_nn_n_minus = green_nn_n | ||||
|             green_ii_n = green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) | ||||
|             green_ii_n_minus = green_ii_n | ||||
|             green_in_n = green_function_in_n(green_in_n_minus, h01, green_nn_n) | ||||
|             green_in_n_minus = green_in_n | ||||
|             green_ni_n = green_function_ni_n(green_nn_n, h01, green_ni_n_minus) | ||||
|             green_ni_n_minus = green_ni_n | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3): | ||||
|                 for i in range(internal_degree): | ||||
|                     local_dos[i3, i2, i1] = local_dos[i3, i2, i1] -np.imag(green_ii_n_minus[i2*N3*internal_degree+i3*internal_degree+i, i2*N3*internal_degree+i3*internal_degree+i])/pi        | ||||
|     return local_dos | ||||
							
								
								
									
										182
									
								
								PyPI/src/guan/calculate_scattering_matrix.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										182
									
								
								PyPI/src/guan/calculate_scattering_matrix.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,182 @@ | ||||
| # calculate scattering matrix | ||||
|  | ||||
| import numpy as np | ||||
| import copy | ||||
| from .calculate_Green_functions import * | ||||
| from .calculate_conductance import * | ||||
|  | ||||
|  | ||||
| def if_active_channel(k_of_channel): | ||||
|     if np.abs(np.imag(k_of_channel))<1e-6: | ||||
|         if_active = 1 | ||||
|     else: | ||||
|         if_active = 0 | ||||
|     return if_active | ||||
|  | ||||
| def get_k_and_velocity_of_channel(fermi_energy, h00, h01): | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     transfer = transfer_matrix(fermi_energy, h00, h01) | ||||
|     eigenvalue, eigenvector = np.linalg.eig(transfer) | ||||
|     k_of_channel = np.log(eigenvalue)/1j | ||||
|     ind = np.argsort(np.real(k_of_channel)) | ||||
|     k_of_channel = np.sort(k_of_channel) | ||||
|     temp = np.zeros((2*dim, 2*dim), dtype=complex) | ||||
|     temp2 = np.zeros((2*dim), dtype=complex) | ||||
|     i0 = 0 | ||||
|     for ind0 in ind: | ||||
|         temp[:, i0] = eigenvector[:, ind0] | ||||
|         temp2[i0] = eigenvalue[ind0] | ||||
|         i0 += 1 | ||||
|     eigenvalue = copy.deepcopy(temp2) | ||||
|     temp = temp[0:dim, :] | ||||
|     factor = np.zeros(2*dim, dtype=complex) | ||||
|     for dim0 in range(dim): | ||||
|         factor = factor+np.square(np.abs(temp[dim0, :])) | ||||
|     for dim0 in range(2*dim): | ||||
|         temp[:, dim0] = temp[:, dim0]/np.sqrt(factor[dim0]) | ||||
|     velocity_of_channel = np.zeros((2*dim), dtype=complex) | ||||
|     for dim0 in range(2*dim): | ||||
|         velocity_of_channel[dim0] = eigenvalue[dim0]*np.dot(np.dot(temp[0:dim, :].transpose().conj(), h01),temp[0:dim, :])[dim0, dim0] | ||||
|     velocity_of_channel = -2*np.imag(velocity_of_channel) | ||||
|     eigenvector = copy.deepcopy(temp)  | ||||
|     return k_of_channel, velocity_of_channel, eigenvalue, eigenvector | ||||
|  | ||||
| def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01): | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     k_of_channel, velocity_of_channel, eigenvalue, eigenvector = get_k_and_velocity_of_channel(fermi_energy, h00, h01) | ||||
|     ind_right_active = 0; ind_right_evanescent = 0; ind_left_active = 0; ind_left_evanescent = 0 | ||||
|     k_right = np.zeros(dim, dtype=complex); k_left = np.zeros(dim, dtype=complex) | ||||
|     velocity_right = np.zeros(dim, dtype=complex); velocity_left = np.zeros(dim, dtype=complex) | ||||
|     lambda_right = np.zeros(dim, dtype=complex); lambda_left = np.zeros(dim, dtype=complex) | ||||
|     u_right = np.zeros((dim, dim), dtype=complex); u_left = np.zeros((dim, dim), dtype=complex) | ||||
|     for dim0 in range(2*dim): | ||||
|         if_active = if_active_channel(k_of_channel[dim0]) | ||||
|         if if_active_channel(k_of_channel[dim0]) == 1: | ||||
|             direction = np.sign(velocity_of_channel[dim0]) | ||||
|         else: | ||||
|             direction = np.sign(np.imag(k_of_channel[dim0])) | ||||
|         if direction == 1: | ||||
|             if if_active == 1:  # right-moving active channel | ||||
|                 k_right[ind_right_active] = k_of_channel[dim0] | ||||
|                 velocity_right[ind_right_active] = velocity_of_channel[dim0] | ||||
|                 lambda_right[ind_right_active] = eigenvalue[dim0] | ||||
|                 u_right[:, ind_right_active] = eigenvector[:, dim0] | ||||
|                 ind_right_active += 1 | ||||
|             else:               # right-moving evanescent channel | ||||
|                 k_right[dim-1-ind_right_evanescent] = k_of_channel[dim0] | ||||
|                 velocity_right[dim-1-ind_right_evanescent] = velocity_of_channel[dim0] | ||||
|                 lambda_right[dim-1-ind_right_evanescent] = eigenvalue[dim0] | ||||
|                 u_right[:, dim-1-ind_right_evanescent] = eigenvector[:, dim0] | ||||
|                 ind_right_evanescent += 1 | ||||
|         else: | ||||
|             if if_active == 1:  # left-moving active channel | ||||
|                 k_left[ind_left_active] = k_of_channel[dim0] | ||||
|                 velocity_left[ind_left_active] = velocity_of_channel[dim0] | ||||
|                 lambda_left[ind_left_active] = eigenvalue[dim0] | ||||
|                 u_left[:, ind_left_active] = eigenvector[:, dim0] | ||||
|                 ind_left_active += 1 | ||||
|             else:               # left-moving evanescent channel | ||||
|                 k_left[dim-1-ind_left_evanescent] = k_of_channel[dim0] | ||||
|                 velocity_left[dim-1-ind_left_evanescent] = velocity_of_channel[dim0] | ||||
|                 lambda_left[dim-1-ind_left_evanescent] = eigenvalue[dim0] | ||||
|                 u_left[:, dim-1-ind_left_evanescent] = eigenvector[:, dim0] | ||||
|                 ind_left_evanescent += 1 | ||||
|     lambda_matrix_right = np.diag(lambda_right) | ||||
|     lambda_matrix_left = np.diag(lambda_left) | ||||
|     f_right = np.dot(np.dot(u_right, lambda_matrix_right), np.linalg.inv(u_right)) | ||||
|     f_left = np.dot(np.dot(u_left, lambda_matrix_left), np.linalg.inv(u_left)) | ||||
|     return k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active | ||||
|  | ||||
| def calculate_scattering_matrix(fermi_energy, h00, h01, length=100): | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = get_classified_k_velocity_u_and_f(fermi_energy, h00, h01) | ||||
|     right_self_energy = np.dot(h01, f_right) | ||||
|     left_self_energy = np.dot(h01.transpose().conj(), np.linalg.inv(f_left)) | ||||
|     for i0 in range(length): | ||||
|         if i0 == 0: | ||||
|             green_nn_n = green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) | ||||
|             green_00_n = copy.deepcopy(green_nn_n) | ||||
|             green_0n_n = copy.deepcopy(green_nn_n) | ||||
|             green_n0_n = copy.deepcopy(green_nn_n) | ||||
|         elif i0 != length-1:  | ||||
|             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)  | ||||
|         else: | ||||
|             green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|         green_00_n = green_function_ii_n(green_00_n, green_0n_n, h01, green_nn_n, green_n0_n) | ||||
|         green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|         green_n0_n = green_function_ni_n(green_nn_n, h01, green_n0_n) | ||||
|     temp = np.dot(h01.transpose().conj(), np.linalg.inv(f_right)-np.linalg.inv(f_left)) | ||||
|     transmission_matrix = np.dot(np.dot(np.linalg.inv(u_right), np.dot(green_n0_n, temp)), u_right)  | ||||
|     reflection_matrix = np.dot(np.dot(np.linalg.inv(u_left), np.dot(green_00_n, temp)-np.identity(dim)), u_right) | ||||
|     for dim0 in range(dim): | ||||
|         for dim1 in range(dim): | ||||
|             if_active = if_active_channel(k_right[dim0])*if_active_channel(k_right[dim1]) | ||||
|             if if_active == 1: | ||||
|                 transmission_matrix[dim0, dim1] = np.sqrt(np.abs(velocity_right[dim0]/velocity_right[dim1])) * transmission_matrix[dim0, dim1] | ||||
|                 reflection_matrix[dim0, dim1] = np.sqrt(np.abs(velocity_left[dim0]/velocity_right[dim1]))*reflection_matrix[dim0, dim1] | ||||
|             else: | ||||
|                 transmission_matrix[dim0, dim1] = 0 | ||||
|                 reflection_matrix[dim0, dim1] = 0 | ||||
|     sum_of_tran_refl_array = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)+np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) | ||||
|     for sum_of_tran_refl in sum_of_tran_refl_array: | ||||
|         if sum_of_tran_refl > 1.001: | ||||
|             print('Error Alert: scattering matrix is not normalized!') | ||||
|     return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active | ||||
|  | ||||
| def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, on_print=1, on_write=0): | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = calculate_scattering_matrix(fermi_energy, h00, h01, length) | ||||
|     if on_print == 1: | ||||
|         print('\nActive channel (left or right) = ', ind_right_active) | ||||
|         print('Evanescent channel (left or right) = ', dim-ind_right_active, '\n') | ||||
|         print('K of right-moving active channels:\n', np.real(k_right[0:ind_right_active])) | ||||
|         print('K of left-moving active channels:\n', np.real(k_left[0:ind_right_active]), '\n') | ||||
|         print('Velocity of right-moving active channels:\n', np.real(velocity_right[0:ind_right_active])) | ||||
|         print('Velocity of left-moving active channels:\n', np.real(velocity_left[0:ind_right_active]), '\n') | ||||
|         print('Transmission matrix:\n', np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))) | ||||
|         print('Reflection matrix:\n', np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), '\n') | ||||
|         print('Total transmission of channels:\n', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) | ||||
|         print('Total reflection of channels:\n',np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) | ||||
|         print('Sum of transmission and reflection of channels:\n', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) | ||||
|         print('Total conductance = ', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))), '\n') | ||||
|     if on_write == 1: | ||||
|         with open('a.txt', 'w') as f: | ||||
|             f.write('Active channel (left or right) = ' + str(ind_right_active) + '\n') | ||||
|             f.write('Evanescent channel (left or right) = ' + str(dim - ind_right_active) + '\n\n') | ||||
|             f.write('Channel               K                                     Velocity\n') | ||||
|             for ind0 in range(ind_right_active): | ||||
|                 f.write('   '+str(ind0 + 1) + '   |    '+str(np.real(k_right[ind0]))+'            ' + str(np.real(velocity_right[ind0]))+'\n') | ||||
|             f.write('\n') | ||||
|             for ind0 in range(ind_right_active): | ||||
|                 f.write('  -' + str(ind0 + 1) + '   |    ' + str(np.real(k_left[ind0])) + '            ' + str(np.real(velocity_left[ind0])) + '\n') | ||||
|             f.write('\nScattering matrix:\n              ') | ||||
|             for ind0 in range(ind_right_active): | ||||
|                 f.write(str(ind0+1)+'               ') | ||||
|             f.write('\n') | ||||
|             for ind1 in range(ind_right_active): | ||||
|                 f.write('  '+str(ind1+1)+'    ') | ||||
|                 for ind2 in range(ind_right_active): | ||||
|                     f.write('%f' % np.square(np.abs(transmission_matrix[ind1, ind2]))+'    ') | ||||
|                 f.write('\n') | ||||
|             f.write('\n') | ||||
|             for ind1 in range(ind_right_active): | ||||
|                 f.write(' -'+str(ind1+1)+'    ') | ||||
|                 for ind2 in range(ind_right_active): | ||||
|                     f.write('%f' % np.square(np.abs(reflection_matrix[ind1, ind2]))+'    ') | ||||
|                 f.write('\n') | ||||
|             f.write('\n') | ||||
|             f.write('Total transmission of channels:\n'+str(np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0))+'\n') | ||||
|             f.write('Total conductance = '+str(np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))))+'\n') | ||||
							
								
								
									
										8
									
								
								PyPI/src/guan/calculate_wave_functions.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										8
									
								
								PyPI/src/guan/calculate_wave_functions.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,8 @@ | ||||
| # calculate wave functions | ||||
|  | ||||
| import numpy as np | ||||
|  | ||||
| def calculate_eigenvector(hamiltonian): | ||||
|     eigenvalue, eigenvector = np.linalg.eig(hamiltonian)  | ||||
|     eigenvector = eigenvector[:, np.argsort(np.real(eigenvalue))]  | ||||
|     return eigenvector | ||||
							
								
								
									
										36
									
								
								PyPI/src/guan/download.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										36
									
								
								PyPI/src/guan/download.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,36 @@ | ||||
| # download | ||||
|  | ||||
| def download_with_scihub(address=None, num=1): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import re | ||||
|     import requests | ||||
|     import os | ||||
|     if num==1 and address!=None: | ||||
|         address_array = [address] | ||||
|     else: | ||||
|         address_array = [] | ||||
|         for i in range(num): | ||||
|             address = input('\nInput:') | ||||
|             address_array.append(address) | ||||
|     for address in address_array: | ||||
|         r = requests.post('https://sci-hub.st/', data={'request': address}) | ||||
|         print('\nResponse:', r) | ||||
|         print('Address:', r.url) | ||||
|         soup = BeautifulSoup(r.text, features='lxml') | ||||
|         pdf_URL = soup.iframe['src'] | ||||
|         if re.search(re.compile('^https:'), pdf_URL): | ||||
|             pass | ||||
|         else: | ||||
|             pdf_URL = 'https:'+pdf_URL | ||||
|         print('PDF address:', pdf_URL) | ||||
|         name = re.search(re.compile('fdp.*?/'),pdf_URL[::-1]).group()[::-1][1::] | ||||
|         print('PDF name:', name) | ||||
|         print('Directory:', os.getcwd()) | ||||
|         print('\nDownloading...') | ||||
|         r = requests.get(pdf_URL, stream=True) | ||||
|         with open(name, 'wb') as f: | ||||
|             for chunk in r.iter_content(chunk_size=32): | ||||
|                 f.write(chunk) | ||||
|         print('Completed!\n') | ||||
|     if num != 1: | ||||
|         print('All completed!\n') | ||||
							
								
								
									
										89
									
								
								PyPI/src/guan/plot_figures.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										89
									
								
								PyPI/src/guan/plot_figures.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,89 @@ | ||||
| # plot figures | ||||
|  | ||||
| import numpy as np | ||||
|  | ||||
| def plot(x, y, xlabel='x', ylabel='y', title='', filename='a', show=1, save=0, type='', y_min=None, y_max=None):  | ||||
|     import matplotlib.pyplot as plt | ||||
|     fig, ax = plt.subplots() | ||||
|     plt.subplots_adjust(bottom=0.20, left=0.18)  | ||||
|     ax.plot(x, y, type) | ||||
|     ax.grid() | ||||
|     ax.set_title(title, fontsize=20, fontfamily='Times New Roman') | ||||
|     ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')  | ||||
|     ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')  | ||||
|     if y_min!=None or y_max!=None: | ||||
|         if y_min==None: | ||||
|             y_min=min(y) | ||||
|         if y_max==None: | ||||
|             y_max=max(y) | ||||
|         ax.set_ylim(y_min, y_max) | ||||
|     ax.tick_params(labelsize=20)  | ||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() | ||||
|     [label.set_fontname('Times New Roman') for label in labels] | ||||
|     if save == 1: | ||||
|         plt.savefig(filename+'.jpg', dpi=300)  | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|  | ||||
| def plot_3d_surface(x, y, matrix, xlabel='x', ylabel='y', zlabel='z', title='', filename='a', show=1, save=0, z_min=None, z_max=None):  | ||||
|     import matplotlib.pyplot as plt | ||||
|     from matplotlib import cm | ||||
|     from matplotlib.ticker import LinearLocator | ||||
|     matrix = np.array(matrix) | ||||
|     fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) | ||||
|     plt.subplots_adjust(bottom=0.1, right=0.65)  | ||||
|     x, y = np.meshgrid(x, y) | ||||
|     if len(matrix.shape) == 2: | ||||
|         surf = ax.plot_surface(x, y, matrix, cmap=cm.coolwarm, linewidth=0, antialiased=False)  | ||||
|     elif len(matrix.shape) == 3: | ||||
|         for i0 in range(matrix.shape[2]): | ||||
|             surf = ax.plot_surface(x, y, matrix[:,:,i0], cmap=cm.coolwarm, linewidth=0, antialiased=False)  | ||||
|     ax.set_title(title, fontsize=20, fontfamily='Times New Roman') | ||||
|     ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')  | ||||
|     ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')  | ||||
|     ax.set_zlabel(zlabel, fontsize=20, fontfamily='Times New Roman')  | ||||
|     ax.zaxis.set_major_locator(LinearLocator(5))  | ||||
|     ax.zaxis.set_major_formatter('{x:.2f}')   | ||||
|     if z_min!=None or z_max!=None: | ||||
|         if z_min==None: | ||||
|             z_min=matrix.min() | ||||
|         if z_max==None: | ||||
|             z_max=matrix.max() | ||||
|         ax.set_zlim(z_min, z_max) | ||||
|     ax.tick_params(labelsize=15)  | ||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels() | ||||
|     [label.set_fontname('Times New Roman') for label in labels]  | ||||
|     cax = plt.axes([0.80, 0.15, 0.05, 0.75])  | ||||
|     cbar = fig.colorbar(surf, cax=cax)   | ||||
|     cbar.ax.tick_params(labelsize=15) | ||||
|     for l in cbar.ax.yaxis.get_ticklabels(): | ||||
|         l.set_family('Times New Roman') | ||||
|     if save == 1: | ||||
|         plt.savefig(filename+'.jpg', dpi=300)  | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|  | ||||
| def plot_contour(x, y, matrix, xlabel='x', ylabel='y', title='', filename='a', show=1, save=0):   | ||||
|     import matplotlib.pyplot as plt | ||||
|     fig, ax = plt.subplots() | ||||
|     plt.subplots_adjust(bottom=0.2, right=0.75, left = 0.16)  | ||||
|     x, y = np.meshgrid(x, y) | ||||
|     contour = ax.contourf(x,y,matrix,cmap='jet')  | ||||
|     ax.set_title(title, fontsize=20, fontfamily='Times New Roman') | ||||
|     ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')  | ||||
|     ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')  | ||||
|     ax.tick_params(labelsize=15)  | ||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() | ||||
|     [label.set_fontname('Times New Roman') for label in labels]  | ||||
|     cax = plt.axes([0.78, 0.17, 0.08, 0.71]) | ||||
|     cbar = fig.colorbar(contour, cax=cax)  | ||||
|     cbar.ax.tick_params(labelsize=15)  | ||||
|     for l in cbar.ax.yaxis.get_ticklabels(): | ||||
|         l.set_family('Times New Roman') | ||||
|     if save == 1: | ||||
|         plt.savefig(filename+'.jpg', dpi=300)  | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
							
								
								
									
										80
									
								
								PyPI/src/guan/read_and_write.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										80
									
								
								PyPI/src/guan/read_and_write.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,80 @@ | ||||
| # read and write | ||||
|  | ||||
| import numpy as np | ||||
|  | ||||
| def read_one_dimensional_data(filename='a'):  | ||||
|     f = open(filename+'.txt', 'r') | ||||
|     text = f.read() | ||||
|     f.close() | ||||
|     row_list = np.array(text.split('\n'))  | ||||
|     dim_column = np.array(row_list[0].split()).shape[0]  | ||||
|     x = np.array([]) | ||||
|     y = np.array([]) | ||||
|     for row in row_list: | ||||
|         column = np.array(row.split())  | ||||
|         if column.shape[0] != 0:   | ||||
|             x = np.append(x, [float(column[0])], axis=0)   | ||||
|             y_row = np.zeros(dim_column-1) | ||||
|             for dim0 in range(dim_column-1): | ||||
|                 y_row[dim0] = float(column[dim0+1]) | ||||
|             if np.array(y).shape[0] == 0: | ||||
|                 y = [y_row] | ||||
|             else: | ||||
|                 y = np.append(y, [y_row], axis=0) | ||||
|     return x, y | ||||
|  | ||||
| def read_two_dimensional_data(filename='a'):  | ||||
|     f = open(filename+'.txt', 'r') | ||||
|     text = f.read() | ||||
|     f.close() | ||||
|     row_list = np.array(text.split('\n'))  | ||||
|     dim_column = np.array(row_list[0].split()).shape[0]  | ||||
|     x = np.array([]) | ||||
|     y = np.array([]) | ||||
|     matrix = np.array([]) | ||||
|     for i0 in range(row_list.shape[0]): | ||||
|         column = np.array(row_list[i0].split())  | ||||
|         if i0 == 0: | ||||
|             x_str = column[1::]  | ||||
|             x = np.zeros(x_str.shape[0]) | ||||
|             for i00 in range(x_str.shape[0]): | ||||
|                 x[i00] = float(x_str[i00])  | ||||
|         elif column.shape[0] != 0:  | ||||
|             y = np.append(y, [float(column[0])], axis=0)   | ||||
|             matrix_row = np.zeros(dim_column-1) | ||||
|             for dim0 in range(dim_column-1): | ||||
|                 matrix_row[dim0] = float(column[dim0+1]) | ||||
|             if np.array(matrix).shape[0] == 0: | ||||
|                 matrix = [matrix_row] | ||||
|             else: | ||||
|                 matrix = np.append(matrix, [matrix_row], axis=0) | ||||
|     return x, y, matrix | ||||
|  | ||||
| def write_one_dimensional_data(x, y, filename='a'):  | ||||
|     with open(filename+'.txt', 'w') as f: | ||||
|         i0 = 0 | ||||
|         for x0 in x: | ||||
|             f.write(str(x0)+'   ') | ||||
|             if len(y.shape) == 1: | ||||
|                 f.write(str(y[i0])+'\n') | ||||
|             elif len(y.shape) == 2: | ||||
|                 for j0 in range(y.shape[1]): | ||||
|                     f.write(str(y[i0, j0])+'   ') | ||||
|                 f.write('\n') | ||||
|             i0 += 1 | ||||
|  | ||||
| def write_two_dimensional_data(x, y, matrix, filename='a'):  | ||||
|     with open(filename+'.txt', 'w') as f: | ||||
|         f.write('0   ') | ||||
|         for x0 in x: | ||||
|             f.write(str(x0)+'   ') | ||||
|         f.write('\n') | ||||
|         i0 = 0 | ||||
|         for y0 in y: | ||||
|             f.write(str(y0)) | ||||
|             j0 = 0 | ||||
|             for x0 in x: | ||||
|                 f.write('   '+str(matrix[i0, j0])+'   ') | ||||
|                 j0 += 1 | ||||
|             f.write('\n') | ||||
|             i0 += 1 | ||||
							
								
								
									
										4
									
								
								PyPI/src/guan/test.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								PyPI/src/guan/test.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,4 @@ | ||||
| # test | ||||
|  | ||||
| def test(): | ||||
|     print('\nSuccess in the installation of GUAN package!\n') | ||||
		Reference in New Issue
	
	Block a user
	 guanjihuan
					guanjihuan