0.0.151
This commit is contained in:
		| @@ -1,7 +1,7 @@ | ||||
| [metadata] | ||||
| # replace with your username: | ||||
| name = guan | ||||
| version = 0.0.150 | ||||
| version = 0.0.151 | ||||
| author = guanjihuan | ||||
| author_email = guanjihuan@163.com | ||||
| description = An open source python package | ||||
|   | ||||
| @@ -1,6 +1,6 @@ | ||||
| Metadata-Version: 2.1 | ||||
| Name: guan | ||||
| Version: 0.0.150 | ||||
| Version: 0.0.151 | ||||
| Summary: An open source python package | ||||
| Home-page: https://py.guanjihuan.com | ||||
| Author: guanjihuan | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
|  | ||||
| # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. | ||||
|  | ||||
| # The current version is guan-0.0.150, updated on December 22, 2022. | ||||
| # The current version is guan-0.0.151, updated on December 25, 2022. | ||||
|  | ||||
| # Installation: pip install --upgrade guan | ||||
|  | ||||
| @@ -1214,6 +1214,26 @@ def calculate_conductance_with_slice_disorder(fermi_energy, h00, h01, disorder_i | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|     return conductance | ||||
|  | ||||
| def calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translational_symmetry(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100): | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
|     dim = np.array(h00).shape[0] | ||||
|     disorder = np.zeros((dim, dim)) | ||||
|     for dim0 in range(dim): | ||||
|         if np.random.uniform(0, 1)<=disorder_concentration: | ||||
|             disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity) | ||||
|     for ix in range(length): | ||||
|         if ix == 0: | ||||
|             green_nn_n = guan.green_function(fermi_energy, h00+disorder, broadening=0, self_energy=left_self_energy) | ||||
|             green_0n_n = copy.deepcopy(green_nn_n) | ||||
|         elif ix != length-1: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|         else: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|     return conductance | ||||
|  | ||||
| def calculate_conductance_with_random_vacancy(fermi_energy, h00, h01, vacancy_concentration=0.5, vacancy_potential=1e9, length=100): | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
|     dim = np.array(h00).shape[0] | ||||
|   | ||||
		Reference in New Issue
	
	Block a user