|  |  |  | @@ -2,7 +2,7 @@ | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | # The current version is guan-0.0.150, updated on December 22, 2022. | 
		
	
		
			
				|  |  |  |  | # The current version is guan-0.0.151, updated on December 25, 2022. | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | # Installation: pip install --upgrade guan | 
		
	
		
			
				|  |  |  |  |  | 
		
	
	
		
			
				
					
					|  |  |  | @@ -1214,6 +1214,26 @@ def calculate_conductance_with_slice_disorder(fermi_energy, h00, h01, disorder_i | 
		
	
		
			
				|  |  |  |  |     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | 
		
	
		
			
				|  |  |  |  |     return conductance | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | def calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translational_symmetry(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100): | 
		
	
		
			
				|  |  |  |  |     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | 
		
	
		
			
				|  |  |  |  |     dim = np.array(h00).shape[0] | 
		
	
		
			
				|  |  |  |  |     disorder = np.zeros((dim, dim)) | 
		
	
		
			
				|  |  |  |  |     for dim0 in range(dim): | 
		
	
		
			
				|  |  |  |  |         if np.random.uniform(0, 1)<=disorder_concentration: | 
		
	
		
			
				|  |  |  |  |             disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity) | 
		
	
		
			
				|  |  |  |  |     for ix in range(length): | 
		
	
		
			
				|  |  |  |  |         if ix == 0: | 
		
	
		
			
				|  |  |  |  |             green_nn_n = guan.green_function(fermi_energy, h00+disorder, broadening=0, self_energy=left_self_energy) | 
		
	
		
			
				|  |  |  |  |             green_0n_n = copy.deepcopy(green_nn_n) | 
		
	
		
			
				|  |  |  |  |         elif ix != length-1: | 
		
	
		
			
				|  |  |  |  |             green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0) | 
		
	
		
			
				|  |  |  |  |             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | 
		
	
		
			
				|  |  |  |  |         else: | 
		
	
		
			
				|  |  |  |  |             green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | 
		
	
		
			
				|  |  |  |  |             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | 
		
	
		
			
				|  |  |  |  |     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | 
		
	
		
			
				|  |  |  |  |     return conductance | 
		
	
		
			
				|  |  |  |  |  | 
		
	
		
			
				|  |  |  |  | def calculate_conductance_with_random_vacancy(fermi_energy, h00, h01, vacancy_concentration=0.5, vacancy_potential=1e9, length=100): | 
		
	
		
			
				|  |  |  |  |     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | 
		
	
		
			
				|  |  |  |  |     dim = np.array(h00).shape[0] | 
		
	
	
		
			
				
					
					|  |  |  |   |