0.1.97
This commit is contained in:
parent
194b90a0d8
commit
9b7540e445
@ -1,7 +1,7 @@
|
||||
[metadata]
|
||||
# replace with your username:
|
||||
name = guan
|
||||
version = 0.1.96
|
||||
version = 0.1.97
|
||||
author = guanjihuan
|
||||
author_email = guanjihuan@163.com
|
||||
description = An open source python package
|
||||
|
@ -1,6 +1,6 @@
|
||||
Metadata-Version: 2.1
|
||||
Name: guan
|
||||
Version: 0.1.96
|
||||
Version: 0.1.97
|
||||
Summary: An open source python package
|
||||
Home-page: https://py.guanjihuan.com
|
||||
Author: guanjihuan
|
||||
|
@ -49,8 +49,12 @@ def transfer_matrix(fermi_energy, h00, h01):
|
||||
else:
|
||||
dim = np.array(h00).shape[0]
|
||||
transfer = np.zeros((2*dim, 2*dim), dtype=complex)
|
||||
transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00)
|
||||
transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj())
|
||||
if dim == 1:
|
||||
transfer[0:dim, 0:dim] = np.dot(1/h01, fermi_energy*np.identity(dim)-h00)
|
||||
transfer[0:dim, dim:2*dim] = np.dot(-1/h01, h01.transpose().conj())
|
||||
else:
|
||||
transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00)
|
||||
transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj())
|
||||
transfer[dim:2*dim, 0:dim] = np.identity(dim)
|
||||
transfer[dim:2*dim, dim:2*dim] = 0
|
||||
return transfer
|
||||
|
@ -15,6 +15,12 @@ def preprocess_for_parallel_calculations(parameter_array_all, task_num=1, task_i
|
||||
parameter_array = parameter_array_all[task_index*num_parameter:num_all]
|
||||
return parameter_array
|
||||
|
||||
# 判断一个数是否接近于整数
|
||||
def close_to_integer(value, abs_tol=1e-3):
|
||||
import math
|
||||
result = math.isclose(value, round(value), abs_tol=abs_tol)
|
||||
return result
|
||||
|
||||
# 根据子数组的第index个元素对子数组进行排序(index从0开始)
|
||||
def sort_array_by_index_element(original_array, index):
|
||||
sorted_array = sorted(original_array, key=lambda x: x[index])
|
||||
|
@ -16,7 +16,11 @@ def calculate_conductance(fermi_energy, h00, h01, length=100):
|
||||
else:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
||||
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
||||
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
||||
dim = np.array(h00).shape[0]
|
||||
if dim == 1:
|
||||
conductance = np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())
|
||||
else:
|
||||
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
||||
return conductance
|
||||
|
||||
# 计算不同费米能下的电导
|
||||
@ -53,7 +57,10 @@ def calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barri
|
||||
else:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
||||
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
||||
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
||||
if dim == 1:
|
||||
conductance = np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())
|
||||
else:
|
||||
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
||||
return conductance
|
||||
|
||||
# 计算在无序散射下的电导
|
||||
@ -79,7 +86,10 @@ def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensi
|
||||
else:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
||||
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
||||
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
||||
if dim == 1:
|
||||
conductance = np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())
|
||||
else:
|
||||
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
||||
conductance_averaged += conductance
|
||||
conductance_averaged = conductance_averaged/calculation_times
|
||||
return conductance_averaged
|
||||
@ -104,7 +114,10 @@ def calculate_conductance_with_disorder_array(fermi_energy, h00, h01, disorder_a
|
||||
else:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
||||
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
||||
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
||||
if dim == 1:
|
||||
conductance = np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())
|
||||
else:
|
||||
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
||||
return conductance
|
||||
|
||||
# 计算在无序垂直切片的散射下的电导
|
||||
@ -127,7 +140,10 @@ def calculate_conductance_with_slice_disorder(fermi_energy, h00, h01, disorder_i
|
||||
else:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
||||
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
||||
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
||||
if dim == 1:
|
||||
conductance = np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())
|
||||
else:
|
||||
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
||||
return conductance
|
||||
|
||||
# 计算在无序水平切片的散射下的电导
|
||||
@ -151,7 +167,10 @@ def calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translation
|
||||
else:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
||||
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
||||
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
||||
if dim == 1:
|
||||
conductance = np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())
|
||||
else:
|
||||
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
||||
return conductance
|
||||
|
||||
# 计算在随机空位的散射下的电导
|
||||
@ -175,7 +194,10 @@ def calculate_conductance_with_random_vacancy(fermi_energy, h00, h01, vacancy_co
|
||||
else:
|
||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
||||
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
||||
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
||||
if dim == 1:
|
||||
conductance = np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())
|
||||
else:
|
||||
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
||||
return conductance
|
||||
|
||||
# 计算在不同无序散射强度下的电导
|
||||
|
Loading…
x
Reference in New Issue
Block a user