0.1.74
This commit is contained in:
parent
42054690a2
commit
aca7b1ebe5
@ -1,7 +1,7 @@
|
|||||||
[metadata]
|
[metadata]
|
||||||
# replace with your username:
|
# replace with your username:
|
||||||
name = guan
|
name = guan
|
||||||
version = 0.1.73
|
version = 0.1.74
|
||||||
author = guanjihuan
|
author = guanjihuan
|
||||||
author_email = guanjihuan@163.com
|
author_email = guanjihuan@163.com
|
||||||
description = An open source python package
|
description = An open source python package
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
Metadata-Version: 2.1
|
Metadata-Version: 2.1
|
||||||
Name: guan
|
Name: guan
|
||||||
Version: 0.1.73
|
Version: 0.1.74
|
||||||
Summary: An open source python package
|
Summary: An open source python package
|
||||||
Home-page: https://py.guanjihuan.com
|
Home-page: https://py.guanjihuan.com
|
||||||
Author: guanjihuan
|
Author: guanjihuan
|
||||||
|
@ -131,7 +131,6 @@ def train_model(model, x_data, y_data, optimizer='Adam', learning_rate=0.001, cr
|
|||||||
elif criterion == 'CrossEntropyLoss':
|
elif criterion == 'CrossEntropyLoss':
|
||||||
criterion = torch.nn.CrossEntropyLoss()
|
criterion = torch.nn.CrossEntropyLoss()
|
||||||
losses = []
|
losses = []
|
||||||
|
|
||||||
for epoch in range(num_epochs):
|
for epoch in range(num_epochs):
|
||||||
output = model.forward(x_data)
|
output = model.forward(x_data)
|
||||||
loss = criterion(output, y_data)
|
loss = criterion(output, y_data)
|
||||||
@ -141,7 +140,34 @@ def train_model(model, x_data, y_data, optimizer='Adam', learning_rate=0.001, cr
|
|||||||
losses.append(loss.item())
|
losses.append(loss.item())
|
||||||
if print_show == 1:
|
if print_show == 1:
|
||||||
if (epoch + 1) % 100 == 0:
|
if (epoch + 1) % 100 == 0:
|
||||||
print(epoch)
|
print(epoch, loss.item())
|
||||||
|
return model, losses
|
||||||
|
|
||||||
|
# 使用优化器批量训练模型
|
||||||
|
@guan.statistics_decorator
|
||||||
|
def batch_train_model(model, train_loader, optimizer='Adam', learning_rate=0.001, criterion='MSELoss', num_epochs=1000, print_show=1):
|
||||||
|
import torch
|
||||||
|
if optimizer == 'Adam':
|
||||||
|
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||||
|
elif optimizer == 'SGD':
|
||||||
|
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
||||||
|
|
||||||
|
if criterion == 'MSELoss':
|
||||||
|
criterion = torch.nn.MSELoss()
|
||||||
|
elif criterion == 'CrossEntropyLoss':
|
||||||
|
criterion = torch.nn.CrossEntropyLoss()
|
||||||
|
losses = []
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
for batch_x, batch_y in train_loader:
|
||||||
|
output = model.forward(batch_x)
|
||||||
|
loss = criterion(output, batch_y)
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
losses.append(loss.item())
|
||||||
|
if print_show == 1:
|
||||||
|
if (epoch + 1) % 100 == 0:
|
||||||
|
print(epoch, loss.item())
|
||||||
return model, losses
|
return model, losses
|
||||||
|
|
||||||
# 保存模型参数到文件
|
# 保存模型参数到文件
|
||||||
@ -169,3 +195,11 @@ def load_model(filename='./model.pth'):
|
|||||||
import torch
|
import torch
|
||||||
model = torch.load(filename)
|
model = torch.load(filename)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
# 加载训练数据,用于批量加载训练
|
||||||
|
@guan.statistics_decorator
|
||||||
|
def load_train_data(x_train, y_train, batch_size=32):
|
||||||
|
from torch.utils.data import DataLoader, TensorDataset
|
||||||
|
train_dataset = TensorDataset(x_train, y_train)
|
||||||
|
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
|
||||||
|
return train_loader
|
Loading…
x
Reference in New Issue
Block a user