41 gamma
This commit is contained in:
		| @@ -68,8 +68,9 @@ green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus) | ||||
| green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) | ||||
| transfer = guan.transfer_matrix(fermi_energy, h00, h01) | ||||
| right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
| right_self_energy, left_self_energy = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
| right_self_energy, left_self_energy = self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) | ||||
| right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
| right_self_energy, left_self_energy, gamma_right, gamma_left = self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) | ||||
| self_energy, gamma = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center) | ||||
| green, gamma_right, gamma_left = green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian) | ||||
|  | ||||
| # calculate density of states    # Source code: https://py.guanjihuan.com/calculate_density_of_states | ||||
|   | ||||
| @@ -1,7 +1,7 @@ | ||||
| [metadata] | ||||
| # replace with your username: | ||||
| name = guan | ||||
| version = 0.0.39 | ||||
| version = 0.0.41 | ||||
| author = guanjihuan | ||||
| author_email = guanjihuan@163.com | ||||
| description = An open source python package | ||||
|   | ||||
| @@ -75,7 +75,9 @@ def self_energy_of_lead(fermi_energy, h00, h01): | ||||
|     right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
|     right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj()) | ||||
|     left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01) | ||||
|     return right_self_energy, left_self_energy | ||||
|     gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j | ||||
|     gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j | ||||
|     return right_self_energy, left_self_energy, gamma_right, gamma_left | ||||
|  | ||||
| def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR): | ||||
|     h_LC = np.array(h_LC) | ||||
| @@ -83,12 +85,19 @@ def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR): | ||||
|     right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
|     right_self_energy = np.dot(np.dot(h_CR, right_lead_surface), h_CR.transpose().conj()) | ||||
|     left_self_energy = np.dot(np.dot(h_LC.transpose().conj(), left_lead_surface), h_LC) | ||||
|     return right_self_energy, left_self_energy | ||||
|     gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j | ||||
|     gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j | ||||
|     return right_self_energy, left_self_energy, gamma_right, gamma_left | ||||
|  | ||||
| def self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center): | ||||
|     h_lead_to_center = np.array(h_lead_to_center) | ||||
|     right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
|     self_energy = np.dot(np.dot(h_lead_to_center.transpose().conj(), right_lead_surface), h_lead_to_center) | ||||
|     gamma = (self_energy - self_energy.transpose().conj())*1j | ||||
|     return self_energy, gamma | ||||
|  | ||||
| def green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian): | ||||
|     dim = np.array(center_hamiltonian).shape[0] | ||||
|     right_self_energy, left_self_energy = self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) | ||||
|     green = np.linalg.inv(fermi_energy*np.identity(dim)-center_hamiltonian-left_self_energy-right_self_energy) | ||||
|     gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j | ||||
|     gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j | ||||
|     return green, gamma_right, gamma_left | ||||
| @@ -7,7 +7,7 @@ import copy | ||||
| import guan | ||||
|  | ||||
| def calculate_conductance(fermi_energy, h00, h01, length=100): | ||||
|     right_self_energy, left_self_energy = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
|     for ix in range(length): | ||||
|         if ix == 0: | ||||
|             green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) | ||||
| @@ -18,9 +18,7 @@ def calculate_conductance(fermi_energy, h00, h01, length=100): | ||||
|         else: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|     right_self_energy = (right_self_energy - right_self_energy.transpose().conj())*1j | ||||
|     left_self_energy = (left_self_energy - left_self_energy.transpose().conj())*1j | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(left_self_energy, green_0n_n), right_self_energy), green_0n_n.transpose().conj())) | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|     return conductance | ||||
|  | ||||
| def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100): | ||||
| @@ -33,7 +31,7 @@ def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, | ||||
|     return conductance_array | ||||
|  | ||||
| def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100): | ||||
|     right_self_energy, left_self_energy = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
|     dim = np.array(h00).shape[0] | ||||
|     for ix in range(length): | ||||
|         disorder = np.zeros((dim, dim)) | ||||
| @@ -49,9 +47,7 @@ def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensi | ||||
|         else: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|     right_self_energy = (right_self_energy - right_self_energy.transpose().conj())*1j | ||||
|     left_self_energy = (left_self_energy - left_self_energy.transpose().conj())*1j | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(left_self_energy, green_0n_n), right_self_energy), green_0n_n.transpose().conj())) | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|     return conductance | ||||
|  | ||||
| def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1): | ||||
|   | ||||
		Reference in New Issue
	
	Block a user