0.0.94
This commit is contained in:
		| @@ -2,7 +2,7 @@ | ||||
|  | ||||
| # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. | ||||
|  | ||||
| # The current version is guan-0.0.93, updated on June 13, 2022. | ||||
| # The current version is guan-0.0.94, updated on June 24, 2022. | ||||
|  | ||||
| # Installation: pip install --upgrade guan | ||||
|  | ||||
| @@ -253,6 +253,8 @@ k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left | ||||
|  | ||||
| transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=100) | ||||
|  | ||||
| number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(fermi_energy, h00, h01, length=100) | ||||
|  | ||||
| guan.print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', format='txt') | ||||
|  | ||||
|  | ||||
| @@ -1667,53 +1669,69 @@ def calculate_scattering_matrix(fermi_energy, h00, h01, length=100): | ||||
|             print('Error Alert: scattering matrix is not normalized!') | ||||
|     return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active | ||||
|  | ||||
| def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', format='txt'): | ||||
| def information_of_scattering_matrix(fermi_energy, h00, h01, length=100): | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length) | ||||
|     number_of_active_channels = ind_right_active | ||||
|     number_of_evanescent_channels = dim-ind_right_active | ||||
|     k_of_right_moving_active_channels = np.real(k_right[0:ind_right_active]) | ||||
|     k_of_left_moving_active_channels = np.real(k_left[0:ind_right_active]) | ||||
|     velocity_of_right_moving_active_channels = np.real(velocity_right[0:ind_right_active]) | ||||
|     velocity_of_left_moving_active_channels = np.real(velocity_left[0:ind_right_active]) | ||||
|     transmission_matrix_for_active_channels = np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])) | ||||
|     reflection_matrix_for_active_channels = np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])) | ||||
|     total_transmission_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) | ||||
|     total_conductance = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))) | ||||
|     total_reflection_of_channels = np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) | ||||
|     sum_of_transmission_and_reflection_of_channels = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) | ||||
|     return number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels | ||||
|  | ||||
| def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', format='txt'): | ||||
|     number_of_active_channels, number_of_evanescent_channels, k_of_right_moving_active_channels, k_of_left_moving_active_channels, velocity_of_right_moving_active_channels, velocity_of_left_moving_active_channels, transmission_matrix_for_active_channels, reflection_matrix_for_active_channels, total_transmission_of_channels, total_conductance, total_reflection_of_channels, sum_of_transmission_and_reflection_of_channels = guan.information_of_scattering_matrix(fermi_energy, h00, h01, length) | ||||
|     if print_show == 1: | ||||
|         print('\nActive channel (left or right) = ', ind_right_active) | ||||
|         print('Evanescent channel (left or right) = ', dim-ind_right_active, '\n') | ||||
|         print('K of right-moving active channels:\n', np.real(k_right[0:ind_right_active])) | ||||
|         print('K of left-moving active channels:\n', np.real(k_left[0:ind_right_active]), '\n') | ||||
|         print('Velocity of right-moving active channels:\n', np.real(velocity_right[0:ind_right_active])) | ||||
|         print('Velocity of left-moving active channels:\n', np.real(velocity_left[0:ind_right_active]), '\n') | ||||
|         print('Transmission matrix:\n', np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))) | ||||
|         print('Reflection matrix:\n', np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), '\n') | ||||
|         print('Total transmission of channels:\n', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) | ||||
|         print('Total reflection of channels:\n',np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) | ||||
|         print('Sum of transmission and reflection of channels:\n', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) | ||||
|         print('Total conductance = ', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))), '\n') | ||||
|         print('\nActive channel (left or right) = ', number_of_active_channels) | ||||
|         print('Evanescent channel (left or right) = ', number_of_evanescent_channels, '\n') | ||||
|         print('K of right-moving active channels:\n', k_of_right_moving_active_channels) | ||||
|         print('K of left-moving active channels:\n', k_of_left_moving_active_channels, '\n') | ||||
|         print('Velocity of right-moving active channels:\n', velocity_of_right_moving_active_channels) | ||||
|         print('Velocity of left-moving active channels:\n', velocity_of_left_moving_active_channels, '\n') | ||||
|         print('Transmission matrix:\n', transmission_matrix_for_active_channels) | ||||
|         print('Reflection matrix:\n', reflection_matrix_for_active_channels, '\n') | ||||
|         print('Total transmission of channels:\n', total_transmission_of_channels) | ||||
|         print('Total conductance = ', total_conductance, '\n') | ||||
|         print('Total reflection of channels:\n', total_reflection_of_channels) | ||||
|         print('Sum of transmission and reflection of channels:\n', sum_of_transmission_and_reflection_of_channels, '\n') | ||||
|     if write_file == 1: | ||||
|         with open(filename+'.'+format, 'w') as f: | ||||
|             f.write('Active channel (left or right) = ' + str(ind_right_active) + '\n') | ||||
|             f.write('Evanescent channel (left or right) = ' + str(dim - ind_right_active) + '\n\n') | ||||
|             f.write('Active channel (left or right) = ' + str(number_of_active_channels) + '\n') | ||||
|             f.write('Evanescent channel (left or right) = ' + str(number_of_evanescent_channels) + '\n\n') | ||||
|             f.write('Channel               K                                     Velocity\n') | ||||
|             for ind0 in range(ind_right_active): | ||||
|                 f.write('   '+str(ind0 + 1) + '   |    '+str(np.real(k_right[ind0]))+'            ' + str(np.real(velocity_right[ind0]))+'\n') | ||||
|             for ind0 in range(number_of_active_channels): | ||||
|                 f.write('   '+str(ind0 + 1) + '   |    '+str(k_of_right_moving_active_channels[ind0])+'            ' + str(velocity_of_right_moving_active_channels[ind0])+'\n') | ||||
|             f.write('\n') | ||||
|             for ind0 in range(ind_right_active): | ||||
|                 f.write('  -' + str(ind0 + 1) + '   |    ' + str(np.real(k_left[ind0])) + '            ' + str(np.real(velocity_left[ind0])) + '\n') | ||||
|             for ind0 in range(number_of_active_channels): | ||||
|                 f.write('  -' + str(ind0 + 1) + '   |    ' + str(k_of_left_moving_active_channels[ind0]) + '            ' + str(velocity_of_left_moving_active_channels[ind0]) + '\n') | ||||
|             f.write('\nScattering matrix:\n              ') | ||||
|             for ind0 in range(ind_right_active): | ||||
|             for ind0 in range(number_of_active_channels): | ||||
|                 f.write(str(ind0+1)+'               ') | ||||
|             f.write('\n') | ||||
|             for ind1 in range(ind_right_active): | ||||
|             for ind1 in range(number_of_active_channels): | ||||
|                 f.write('  '+str(ind1+1)+'    ') | ||||
|                 for ind2 in range(ind_right_active): | ||||
|                     f.write('%f' % np.square(np.abs(transmission_matrix[ind1, ind2]))+'    ') | ||||
|                 for ind2 in range(number_of_active_channels): | ||||
|                     f.write('%f' % transmission_matrix_for_active_channels[ind1, ind2]+'    ') | ||||
|                 f.write('\n') | ||||
|             f.write('\n') | ||||
|             for ind1 in range(ind_right_active): | ||||
|             for ind1 in range(number_of_active_channels): | ||||
|                 f.write(' -'+str(ind1+1)+'    ') | ||||
|                 for ind2 in range(ind_right_active): | ||||
|                     f.write('%f' % np.square(np.abs(reflection_matrix[ind1, ind2]))+'    ') | ||||
|                 for ind2 in range(number_of_active_channels): | ||||
|                     f.write('%f' % reflection_matrix_for_active_channels[ind1, ind2]+'    ') | ||||
|                 f.write('\n') | ||||
|             f.write('\n') | ||||
|             f.write('Total transmission of channels:\n'+str(np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0))+'\n') | ||||
|             f.write('Total conductance = '+str(np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))))+'\n') | ||||
|             f.write('Total transmission of channels:\n'+str(total_transmission_of_channels)+'\n') | ||||
|             f.write('Total conductance = '+str(total_conductance)+'\n') | ||||
|  | ||||
|  | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user