0.0.169
This commit is contained in:
parent
e8e00e68aa
commit
c2ef79d4a7
@ -1,7 +1,7 @@
|
||||
[metadata]
|
||||
# replace with your username:
|
||||
name = guan
|
||||
version = 0.0.168
|
||||
version = 0.0.169
|
||||
author = guanjihuan
|
||||
author_email = guanjihuan@163.com
|
||||
description = An open source python package
|
||||
|
@ -1,6 +1,6 @@
|
||||
Metadata-Version: 2.1
|
||||
Name: guan
|
||||
Version: 0.0.168
|
||||
Version: 0.0.169
|
||||
Summary: An open source python package
|
||||
Home-page: https://py.guanjihuan.com
|
||||
Author: guanjihuan
|
||||
|
@ -2,7 +2,7 @@
|
||||
|
||||
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
|
||||
|
||||
# The current version is guan-0.0.168, updated on April 25, 2023.
|
||||
# The current version is guan-0.0.169, updated on June 11, 2023.
|
||||
|
||||
# Installation: pip install --upgrade guan
|
||||
|
||||
@ -30,7 +30,6 @@
|
||||
import numpy as np
|
||||
import math
|
||||
import cmath
|
||||
import copy
|
||||
import guan
|
||||
|
||||
|
||||
@ -1194,6 +1193,7 @@ def local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equa
|
||||
|
||||
# 计算电导
|
||||
def calculate_conductance(fermi_energy, h00, h01, length=100):
|
||||
import copy
|
||||
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
||||
for ix in range(length):
|
||||
if ix == 0:
|
||||
@ -1222,6 +1222,7 @@ def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01,
|
||||
|
||||
# 计算在势垒散射下的电导
|
||||
def calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barrier_length=20, barrier_potential=1):
|
||||
import copy
|
||||
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
||||
dim = np.array(h00).shape[0]
|
||||
for ix in range(length):
|
||||
@ -1242,6 +1243,7 @@ def calculate_conductance_with_barrier(fermi_energy, h00, h01, length=100, barri
|
||||
|
||||
# 计算在无序散射下的电导
|
||||
def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100, calculation_times=1):
|
||||
import copy
|
||||
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
||||
dim = np.array(h00).shape[0]
|
||||
conductance_averaged = 0
|
||||
@ -1267,6 +1269,7 @@ def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensi
|
||||
|
||||
# 计算在无序垂直切片的散射下的电导
|
||||
def calculate_conductance_with_slice_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100):
|
||||
import copy
|
||||
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
||||
dim = np.array(h00).shape[0]
|
||||
for ix in range(length+2):
|
||||
@ -1287,6 +1290,7 @@ def calculate_conductance_with_slice_disorder(fermi_energy, h00, h01, disorder_i
|
||||
|
||||
# 计算在无序水平切片的散射下的电导
|
||||
def calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translational_symmetry(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100):
|
||||
import copy
|
||||
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
||||
dim = np.array(h00).shape[0]
|
||||
disorder = np.zeros((dim, dim))
|
||||
@ -1308,6 +1312,7 @@ def calculate_conductance_with_disorder_inside_unit_cell_which_keeps_translation
|
||||
|
||||
# 计算在随机空位的散射下的电导
|
||||
def calculate_conductance_with_random_vacancy(fermi_energy, h00, h01, vacancy_concentration=0.5, vacancy_potential=1e9, length=100):
|
||||
import copy
|
||||
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
||||
dim = np.array(h00).shape[0]
|
||||
for ix in range(length+2):
|
||||
@ -1459,6 +1464,7 @@ def if_active_channel(k_of_channel):
|
||||
|
||||
# 获取通道的动量和速度,用于计算散射矩阵
|
||||
def get_k_and_velocity_of_channel(fermi_energy, h00, h01):
|
||||
import copy
|
||||
if np.array(h00).shape==():
|
||||
dim = 1
|
||||
else:
|
||||
@ -1541,6 +1547,7 @@ def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01):
|
||||
|
||||
# 计算散射矩阵
|
||||
def calculate_scattering_matrix(fermi_energy, h00, h01, length=100):
|
||||
import copy
|
||||
h01 = np.array(h01)
|
||||
if np.array(h00).shape==():
|
||||
dim = 1
|
||||
@ -1663,7 +1670,6 @@ def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_s
|
||||
# 在无序下,计算散射矩阵
|
||||
def calculate_scattering_matrix_with_disorder(fermi_energy, h00, h01, length=100, disorder_intensity=2.0, disorder_concentration=1.0):
|
||||
import copy
|
||||
import math
|
||||
h01 = np.array(h01)
|
||||
if np.array(h00).shape==():
|
||||
dim = 1
|
||||
|
Loading…
x
Reference in New Issue
Block a user