guan-0.0.29
This commit is contained in:
		| @@ -32,4 +32,63 @@ def green_function_ni_n(green_nn_n, h01, green_ni_n_minus): | ||||
|  | ||||
| def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus): | ||||
|     green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus) | ||||
|     return green_ii_n | ||||
|     return green_ii_n | ||||
|  | ||||
| def transfer_matrix(fermi_energy, h00, h01): | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     transfer = np.zeros((2*dim, 2*dim), dtype=complex) | ||||
|     transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00) | ||||
|     transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj()) | ||||
|     transfer[dim:2*dim, 0:dim] = np.identity(dim) | ||||
|     transfer[dim:2*dim, dim:2*dim] = 0 | ||||
|     return transfer | ||||
|  | ||||
| def surface_green_function_of_lead(fermi_energy, h00, h01): | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     fermi_energy = fermi_energy+1e-9*1j | ||||
|     transfer = transfer_matrix(fermi_energy, h00, h01) | ||||
|     eigenvalue, eigenvector = np.linalg.eig(transfer) | ||||
|     ind = np.argsort(np.abs(eigenvalue)) | ||||
|     temp = np.zeros((2*dim, 2*dim), dtype=complex) | ||||
|     i0 = 0 | ||||
|     for ind0 in ind: | ||||
|         temp[:, i0] = eigenvector[:, ind0] | ||||
|         i0 += 1 | ||||
|     s1 = temp[dim:2*dim, 0:dim] | ||||
|     s2 = temp[0:dim, 0:dim] | ||||
|     s3 = temp[dim:2*dim, dim:2*dim] | ||||
|     s4 = temp[0:dim, dim:2*dim] | ||||
|     right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1))) | ||||
|     left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4))) | ||||
|     return right_lead_surface, left_lead_surface | ||||
|  | ||||
| def self_energy_of_lead(fermi_energy, h00, h01): | ||||
|     h01 = np.array(h01) | ||||
|     right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
|     right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj()) | ||||
|     left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01) | ||||
|     return right_self_energy, left_self_energy | ||||
|  | ||||
| def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR): | ||||
|     h_LC = np.array(h_LC) | ||||
|     h_CR = np.array(h_CR) | ||||
|     right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
|     right_self_energy = np.dot(np.dot(h_CR, right_lead_surface), h_CR.transpose().conj()) | ||||
|     left_self_energy = np.dot(np.dot(h_LC.transpose().conj(), left_lead_surface), h_LC) | ||||
|     return right_self_energy, left_self_energy | ||||
|  | ||||
| def green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian): | ||||
|     dim = np.array(center_hamiltonian).shape[0] | ||||
|     right_self_energy, left_self_energy = self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) | ||||
|     green = np.linalg.inv(fermi_energy*np.identity(dim)-center_hamiltonian-left_self_energy-right_self_energy) | ||||
|     gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j | ||||
|     gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j | ||||
|     return green, gamma_right, gamma_left | ||||
| @@ -11,8 +11,7 @@ def calculate_eigenvalue(hamiltonian): | ||||
|     if np.array(hamiltonian).shape==(): | ||||
|         eigenvalue = np.real(hamiltonian) | ||||
|     else: | ||||
|         eigenvalue, eigenvector = np.linalg.eig(hamiltonian) | ||||
|         eigenvalue = np.sort(np.real(eigenvalue)) | ||||
|         eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) | ||||
|     return eigenvalue | ||||
|  | ||||
| def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function): | ||||
| @@ -64,8 +63,7 @@ def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_funct | ||||
| ## calculate wave functions | ||||
|  | ||||
| def calculate_eigenvector(hamiltonian): | ||||
|     eigenvalue, eigenvector = np.linalg.eig(hamiltonian)  | ||||
|     eigenvector = eigenvector[:, np.argsort(np.real(eigenvalue))]  | ||||
|     eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)  | ||||
|     return eigenvector | ||||
|  | ||||
| ## find vector with the same gauge | ||||
|   | ||||
| @@ -6,49 +6,6 @@ import numpy as np | ||||
| import copy | ||||
| from .calculate_Green_functions import * | ||||
|  | ||||
| def transfer_matrix(fermi_energy, h00, h01): | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     transfer = np.zeros((2*dim, 2*dim), dtype=complex) | ||||
|     transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00) | ||||
|     transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj()) | ||||
|     transfer[dim:2*dim, 0:dim] = np.identity(dim) | ||||
|     transfer[dim:2*dim, dim:2*dim] = 0 | ||||
|     return transfer | ||||
|  | ||||
| def surface_green_function_of_lead(fermi_energy, h00, h01): | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     fermi_energy = fermi_energy+1e-9*1j | ||||
|     transfer = transfer_matrix(fermi_energy, h00, h01) | ||||
|     eigenvalue, eigenvector = np.linalg.eig(transfer) | ||||
|     ind = np.argsort(np.abs(eigenvalue)) | ||||
|     temp = np.zeros((2*dim, 2*dim), dtype=complex) | ||||
|     i0 = 0 | ||||
|     for ind0 in ind: | ||||
|         temp[:, i0] = eigenvector[:, ind0] | ||||
|         i0 += 1 | ||||
|     s1 = temp[dim:2*dim, 0:dim] | ||||
|     s2 = temp[0:dim, 0:dim] | ||||
|     s3 = temp[dim:2*dim, dim:2*dim] | ||||
|     s4 = temp[0:dim, dim:2*dim] | ||||
|     right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1))) | ||||
|     left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4))) | ||||
|     return right_lead_surface, left_lead_surface | ||||
|  | ||||
| def self_energy_of_lead(fermi_energy, h00, h01): | ||||
|     h01 = np.array(h01) | ||||
|     right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
|     right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj()) | ||||
|     left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01) | ||||
|     return right_self_energy, left_self_energy | ||||
|  | ||||
| def calculate_conductance(fermi_energy, h00, h01, length=100): | ||||
|     right_self_energy, left_self_energy = self_energy_of_lead(fermi_energy, h00, h01) | ||||
|     for ix in range(length): | ||||
|   | ||||
| @@ -5,8 +5,6 @@ | ||||
| import numpy as np | ||||
| import copy | ||||
| from .calculate_Green_functions import * | ||||
| from .calculate_conductance import * | ||||
|  | ||||
|  | ||||
| def if_active_channel(k_of_channel): | ||||
|     if np.abs(np.imag(k_of_channel))<1e-6: | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 guanjihuan
					guanjihuan