guan-0.0.29
This commit is contained in:
parent
0d76353803
commit
c5906e7e6d
@ -66,6 +66,11 @@ green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus,
|
|||||||
green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
|
green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
|
||||||
green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
|
green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
|
||||||
green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
|
green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
|
||||||
|
transfer = guan.transfer_matrix(fermi_energy, h00, h01)
|
||||||
|
right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01)
|
||||||
|
right_self_energy, left_self_energy = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
||||||
|
right_self_energy, left_self_energy = self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR)
|
||||||
|
green, gamma_right, gamma_left = green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian)
|
||||||
|
|
||||||
# calculate density of states # Source code: https://py.guanjihuan.com/calculate_density_of_states
|
# calculate density of states # Source code: https://py.guanjihuan.com/calculate_density_of_states
|
||||||
total_dos = guan.total_density_of_states(fermi_energy, hamiltonian, broadening=0.01)
|
total_dos = guan.total_density_of_states(fermi_energy, hamiltonian, broadening=0.01)
|
||||||
@ -77,9 +82,6 @@ local_dos = guan.local_density_of_states_for_cubic_lattice_using_dyson_equation(
|
|||||||
local_dos = guan.local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01)
|
local_dos = guan.local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01)
|
||||||
|
|
||||||
# calculate conductance # Source code: https://py.guanjihuan.com/calculate_conductance
|
# calculate conductance # Source code: https://py.guanjihuan.com/calculate_conductance
|
||||||
transfer = guan.transfer_matrix(fermi_energy, h00, h01)
|
|
||||||
right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01)
|
|
||||||
right_self_energy, left_self_energy = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
|
||||||
conductance = guan.calculate_conductance(fermi_energy, h00, h01, length=100)
|
conductance = guan.calculate_conductance(fermi_energy, h00, h01, length=100)
|
||||||
conductance_array = guan.calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100)
|
conductance_array = guan.calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100)
|
||||||
conductance = guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100)
|
conductance = guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100)
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
[metadata]
|
[metadata]
|
||||||
# replace with your username:
|
# replace with your username:
|
||||||
name = guan
|
name = guan
|
||||||
version = 0.0.28
|
version = 0.0.29
|
||||||
author = guanjihuan
|
author = guanjihuan
|
||||||
author_email = guanjihuan@163.com
|
author_email = guanjihuan@163.com
|
||||||
description = An open source python package
|
description = An open source python package
|
||||||
|
@ -33,3 +33,62 @@ def green_function_ni_n(green_nn_n, h01, green_ni_n_minus):
|
|||||||
def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus):
|
def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus):
|
||||||
green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus)
|
green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus)
|
||||||
return green_ii_n
|
return green_ii_n
|
||||||
|
|
||||||
|
def transfer_matrix(fermi_energy, h00, h01):
|
||||||
|
h01 = np.array(h01)
|
||||||
|
if np.array(h00).shape==():
|
||||||
|
dim = 1
|
||||||
|
else:
|
||||||
|
dim = np.array(h00).shape[0]
|
||||||
|
transfer = np.zeros((2*dim, 2*dim), dtype=complex)
|
||||||
|
transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00)
|
||||||
|
transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj())
|
||||||
|
transfer[dim:2*dim, 0:dim] = np.identity(dim)
|
||||||
|
transfer[dim:2*dim, dim:2*dim] = 0
|
||||||
|
return transfer
|
||||||
|
|
||||||
|
def surface_green_function_of_lead(fermi_energy, h00, h01):
|
||||||
|
h01 = np.array(h01)
|
||||||
|
if np.array(h00).shape==():
|
||||||
|
dim = 1
|
||||||
|
else:
|
||||||
|
dim = np.array(h00).shape[0]
|
||||||
|
fermi_energy = fermi_energy+1e-9*1j
|
||||||
|
transfer = transfer_matrix(fermi_energy, h00, h01)
|
||||||
|
eigenvalue, eigenvector = np.linalg.eig(transfer)
|
||||||
|
ind = np.argsort(np.abs(eigenvalue))
|
||||||
|
temp = np.zeros((2*dim, 2*dim), dtype=complex)
|
||||||
|
i0 = 0
|
||||||
|
for ind0 in ind:
|
||||||
|
temp[:, i0] = eigenvector[:, ind0]
|
||||||
|
i0 += 1
|
||||||
|
s1 = temp[dim:2*dim, 0:dim]
|
||||||
|
s2 = temp[0:dim, 0:dim]
|
||||||
|
s3 = temp[dim:2*dim, dim:2*dim]
|
||||||
|
s4 = temp[0:dim, dim:2*dim]
|
||||||
|
right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1)))
|
||||||
|
left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4)))
|
||||||
|
return right_lead_surface, left_lead_surface
|
||||||
|
|
||||||
|
def self_energy_of_lead(fermi_energy, h00, h01):
|
||||||
|
h01 = np.array(h01)
|
||||||
|
right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01)
|
||||||
|
right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj())
|
||||||
|
left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01)
|
||||||
|
return right_self_energy, left_self_energy
|
||||||
|
|
||||||
|
def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR):
|
||||||
|
h_LC = np.array(h_LC)
|
||||||
|
h_CR = np.array(h_CR)
|
||||||
|
right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01)
|
||||||
|
right_self_energy = np.dot(np.dot(h_CR, right_lead_surface), h_CR.transpose().conj())
|
||||||
|
left_self_energy = np.dot(np.dot(h_LC.transpose().conj(), left_lead_surface), h_LC)
|
||||||
|
return right_self_energy, left_self_energy
|
||||||
|
|
||||||
|
def green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian):
|
||||||
|
dim = np.array(center_hamiltonian).shape[0]
|
||||||
|
right_self_energy, left_self_energy = self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR)
|
||||||
|
green = np.linalg.inv(fermi_energy*np.identity(dim)-center_hamiltonian-left_self_energy-right_self_energy)
|
||||||
|
gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j
|
||||||
|
gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j
|
||||||
|
return green, gamma_right, gamma_left
|
@ -11,8 +11,7 @@ def calculate_eigenvalue(hamiltonian):
|
|||||||
if np.array(hamiltonian).shape==():
|
if np.array(hamiltonian).shape==():
|
||||||
eigenvalue = np.real(hamiltonian)
|
eigenvalue = np.real(hamiltonian)
|
||||||
else:
|
else:
|
||||||
eigenvalue, eigenvector = np.linalg.eig(hamiltonian)
|
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
|
||||||
eigenvalue = np.sort(np.real(eigenvalue))
|
|
||||||
return eigenvalue
|
return eigenvalue
|
||||||
|
|
||||||
def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function):
|
def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function):
|
||||||
@ -64,8 +63,7 @@ def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_funct
|
|||||||
## calculate wave functions
|
## calculate wave functions
|
||||||
|
|
||||||
def calculate_eigenvector(hamiltonian):
|
def calculate_eigenvector(hamiltonian):
|
||||||
eigenvalue, eigenvector = np.linalg.eig(hamiltonian)
|
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
|
||||||
eigenvector = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
|
||||||
return eigenvector
|
return eigenvector
|
||||||
|
|
||||||
## find vector with the same gauge
|
## find vector with the same gauge
|
||||||
|
@ -6,49 +6,6 @@ import numpy as np
|
|||||||
import copy
|
import copy
|
||||||
from .calculate_Green_functions import *
|
from .calculate_Green_functions import *
|
||||||
|
|
||||||
def transfer_matrix(fermi_energy, h00, h01):
|
|
||||||
h01 = np.array(h01)
|
|
||||||
if np.array(h00).shape==():
|
|
||||||
dim = 1
|
|
||||||
else:
|
|
||||||
dim = np.array(h00).shape[0]
|
|
||||||
transfer = np.zeros((2*dim, 2*dim), dtype=complex)
|
|
||||||
transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00)
|
|
||||||
transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj())
|
|
||||||
transfer[dim:2*dim, 0:dim] = np.identity(dim)
|
|
||||||
transfer[dim:2*dim, dim:2*dim] = 0
|
|
||||||
return transfer
|
|
||||||
|
|
||||||
def surface_green_function_of_lead(fermi_energy, h00, h01):
|
|
||||||
h01 = np.array(h01)
|
|
||||||
if np.array(h00).shape==():
|
|
||||||
dim = 1
|
|
||||||
else:
|
|
||||||
dim = np.array(h00).shape[0]
|
|
||||||
fermi_energy = fermi_energy+1e-9*1j
|
|
||||||
transfer = transfer_matrix(fermi_energy, h00, h01)
|
|
||||||
eigenvalue, eigenvector = np.linalg.eig(transfer)
|
|
||||||
ind = np.argsort(np.abs(eigenvalue))
|
|
||||||
temp = np.zeros((2*dim, 2*dim), dtype=complex)
|
|
||||||
i0 = 0
|
|
||||||
for ind0 in ind:
|
|
||||||
temp[:, i0] = eigenvector[:, ind0]
|
|
||||||
i0 += 1
|
|
||||||
s1 = temp[dim:2*dim, 0:dim]
|
|
||||||
s2 = temp[0:dim, 0:dim]
|
|
||||||
s3 = temp[dim:2*dim, dim:2*dim]
|
|
||||||
s4 = temp[0:dim, dim:2*dim]
|
|
||||||
right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1)))
|
|
||||||
left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4)))
|
|
||||||
return right_lead_surface, left_lead_surface
|
|
||||||
|
|
||||||
def self_energy_of_lead(fermi_energy, h00, h01):
|
|
||||||
h01 = np.array(h01)
|
|
||||||
right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01)
|
|
||||||
right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj())
|
|
||||||
left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01)
|
|
||||||
return right_self_energy, left_self_energy
|
|
||||||
|
|
||||||
def calculate_conductance(fermi_energy, h00, h01, length=100):
|
def calculate_conductance(fermi_energy, h00, h01, length=100):
|
||||||
right_self_energy, left_self_energy = self_energy_of_lead(fermi_energy, h00, h01)
|
right_self_energy, left_self_energy = self_energy_of_lead(fermi_energy, h00, h01)
|
||||||
for ix in range(length):
|
for ix in range(length):
|
||||||
|
@ -5,8 +5,6 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import copy
|
import copy
|
||||||
from .calculate_Green_functions import *
|
from .calculate_Green_functions import *
|
||||||
from .calculate_conductance import *
|
|
||||||
|
|
||||||
|
|
||||||
def if_active_channel(k_of_channel):
|
def if_active_channel(k_of_channel):
|
||||||
if np.abs(np.imag(k_of_channel))<1e-6:
|
if np.abs(np.imag(k_of_channel))<1e-6:
|
||||||
|
Loading…
x
Reference in New Issue
Block a user