guan-0.0.29
This commit is contained in:
parent
0d76353803
commit
c5906e7e6d
@ -66,6 +66,11 @@ green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus,
|
||||
green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
|
||||
green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
|
||||
green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
|
||||
transfer = guan.transfer_matrix(fermi_energy, h00, h01)
|
||||
right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01)
|
||||
right_self_energy, left_self_energy = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
||||
right_self_energy, left_self_energy = self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR)
|
||||
green, gamma_right, gamma_left = green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian)
|
||||
|
||||
# calculate density of states # Source code: https://py.guanjihuan.com/calculate_density_of_states
|
||||
total_dos = guan.total_density_of_states(fermi_energy, hamiltonian, broadening=0.01)
|
||||
@ -77,9 +82,6 @@ local_dos = guan.local_density_of_states_for_cubic_lattice_using_dyson_equation(
|
||||
local_dos = guan.local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01)
|
||||
|
||||
# calculate conductance # Source code: https://py.guanjihuan.com/calculate_conductance
|
||||
transfer = guan.transfer_matrix(fermi_energy, h00, h01)
|
||||
right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01)
|
||||
right_self_energy, left_self_energy = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
||||
conductance = guan.calculate_conductance(fermi_energy, h00, h01, length=100)
|
||||
conductance_array = guan.calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100)
|
||||
conductance = guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100)
|
||||
@ -109,7 +111,7 @@ guan.plot(x_array, y_array, xlabel='x', ylabel='y', title='', filename='a', show
|
||||
guan.plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', filename='a', show=1, save=0, z_min=None, z_max=None)
|
||||
guan.plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', filename='a', show=1, save=0)
|
||||
|
||||
# others # Source code: https://py.guanjihuan.com/source-code/others
|
||||
# others # Source code: https://py.guanjihuan.com/source-code/others
|
||||
guan.download_with_scihub(address=None, num=1)
|
||||
guan.str_to_audio(str='hello world', rate=125, voice=1, read=1, save=0, print_text=0)
|
||||
guan.txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, print_text=0)
|
||||
|
@ -1,7 +1,7 @@
|
||||
[metadata]
|
||||
# replace with your username:
|
||||
name = guan
|
||||
version = 0.0.28
|
||||
version = 0.0.29
|
||||
author = guanjihuan
|
||||
author_email = guanjihuan@163.com
|
||||
description = An open source python package
|
||||
|
@ -33,3 +33,62 @@ def green_function_ni_n(green_nn_n, h01, green_ni_n_minus):
|
||||
def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus):
|
||||
green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus)
|
||||
return green_ii_n
|
||||
|
||||
def transfer_matrix(fermi_energy, h00, h01):
|
||||
h01 = np.array(h01)
|
||||
if np.array(h00).shape==():
|
||||
dim = 1
|
||||
else:
|
||||
dim = np.array(h00).shape[0]
|
||||
transfer = np.zeros((2*dim, 2*dim), dtype=complex)
|
||||
transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00)
|
||||
transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj())
|
||||
transfer[dim:2*dim, 0:dim] = np.identity(dim)
|
||||
transfer[dim:2*dim, dim:2*dim] = 0
|
||||
return transfer
|
||||
|
||||
def surface_green_function_of_lead(fermi_energy, h00, h01):
|
||||
h01 = np.array(h01)
|
||||
if np.array(h00).shape==():
|
||||
dim = 1
|
||||
else:
|
||||
dim = np.array(h00).shape[0]
|
||||
fermi_energy = fermi_energy+1e-9*1j
|
||||
transfer = transfer_matrix(fermi_energy, h00, h01)
|
||||
eigenvalue, eigenvector = np.linalg.eig(transfer)
|
||||
ind = np.argsort(np.abs(eigenvalue))
|
||||
temp = np.zeros((2*dim, 2*dim), dtype=complex)
|
||||
i0 = 0
|
||||
for ind0 in ind:
|
||||
temp[:, i0] = eigenvector[:, ind0]
|
||||
i0 += 1
|
||||
s1 = temp[dim:2*dim, 0:dim]
|
||||
s2 = temp[0:dim, 0:dim]
|
||||
s3 = temp[dim:2*dim, dim:2*dim]
|
||||
s4 = temp[0:dim, dim:2*dim]
|
||||
right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1)))
|
||||
left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4)))
|
||||
return right_lead_surface, left_lead_surface
|
||||
|
||||
def self_energy_of_lead(fermi_energy, h00, h01):
|
||||
h01 = np.array(h01)
|
||||
right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01)
|
||||
right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj())
|
||||
left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01)
|
||||
return right_self_energy, left_self_energy
|
||||
|
||||
def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR):
|
||||
h_LC = np.array(h_LC)
|
||||
h_CR = np.array(h_CR)
|
||||
right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01)
|
||||
right_self_energy = np.dot(np.dot(h_CR, right_lead_surface), h_CR.transpose().conj())
|
||||
left_self_energy = np.dot(np.dot(h_LC.transpose().conj(), left_lead_surface), h_LC)
|
||||
return right_self_energy, left_self_energy
|
||||
|
||||
def green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian):
|
||||
dim = np.array(center_hamiltonian).shape[0]
|
||||
right_self_energy, left_self_energy = self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR)
|
||||
green = np.linalg.inv(fermi_energy*np.identity(dim)-center_hamiltonian-left_self_energy-right_self_energy)
|
||||
gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j
|
||||
gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j
|
||||
return green, gamma_right, gamma_left
|
@ -11,8 +11,7 @@ def calculate_eigenvalue(hamiltonian):
|
||||
if np.array(hamiltonian).shape==():
|
||||
eigenvalue = np.real(hamiltonian)
|
||||
else:
|
||||
eigenvalue, eigenvector = np.linalg.eig(hamiltonian)
|
||||
eigenvalue = np.sort(np.real(eigenvalue))
|
||||
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
|
||||
return eigenvalue
|
||||
|
||||
def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function):
|
||||
@ -64,8 +63,7 @@ def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_funct
|
||||
## calculate wave functions
|
||||
|
||||
def calculate_eigenvector(hamiltonian):
|
||||
eigenvalue, eigenvector = np.linalg.eig(hamiltonian)
|
||||
eigenvector = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
||||
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
|
||||
return eigenvector
|
||||
|
||||
## find vector with the same gauge
|
||||
|
@ -6,49 +6,6 @@ import numpy as np
|
||||
import copy
|
||||
from .calculate_Green_functions import *
|
||||
|
||||
def transfer_matrix(fermi_energy, h00, h01):
|
||||
h01 = np.array(h01)
|
||||
if np.array(h00).shape==():
|
||||
dim = 1
|
||||
else:
|
||||
dim = np.array(h00).shape[0]
|
||||
transfer = np.zeros((2*dim, 2*dim), dtype=complex)
|
||||
transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00)
|
||||
transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj())
|
||||
transfer[dim:2*dim, 0:dim] = np.identity(dim)
|
||||
transfer[dim:2*dim, dim:2*dim] = 0
|
||||
return transfer
|
||||
|
||||
def surface_green_function_of_lead(fermi_energy, h00, h01):
|
||||
h01 = np.array(h01)
|
||||
if np.array(h00).shape==():
|
||||
dim = 1
|
||||
else:
|
||||
dim = np.array(h00).shape[0]
|
||||
fermi_energy = fermi_energy+1e-9*1j
|
||||
transfer = transfer_matrix(fermi_energy, h00, h01)
|
||||
eigenvalue, eigenvector = np.linalg.eig(transfer)
|
||||
ind = np.argsort(np.abs(eigenvalue))
|
||||
temp = np.zeros((2*dim, 2*dim), dtype=complex)
|
||||
i0 = 0
|
||||
for ind0 in ind:
|
||||
temp[:, i0] = eigenvector[:, ind0]
|
||||
i0 += 1
|
||||
s1 = temp[dim:2*dim, 0:dim]
|
||||
s2 = temp[0:dim, 0:dim]
|
||||
s3 = temp[dim:2*dim, dim:2*dim]
|
||||
s4 = temp[0:dim, dim:2*dim]
|
||||
right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1)))
|
||||
left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4)))
|
||||
return right_lead_surface, left_lead_surface
|
||||
|
||||
def self_energy_of_lead(fermi_energy, h00, h01):
|
||||
h01 = np.array(h01)
|
||||
right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01)
|
||||
right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj())
|
||||
left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01)
|
||||
return right_self_energy, left_self_energy
|
||||
|
||||
def calculate_conductance(fermi_energy, h00, h01, length=100):
|
||||
right_self_energy, left_self_energy = self_energy_of_lead(fermi_energy, h00, h01)
|
||||
for ix in range(length):
|
||||
|
@ -5,8 +5,6 @@
|
||||
import numpy as np
|
||||
import copy
|
||||
from .calculate_Green_functions import *
|
||||
from .calculate_conductance import *
|
||||
|
||||
|
||||
def if_active_channel(k_of_channel):
|
||||
if np.abs(np.imag(k_of_channel))<1e-6:
|
||||
|
Loading…
x
Reference in New Issue
Block a user