version 0.0.52
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
[metadata]
|
||||
# replace with your username:
|
||||
name = guan
|
||||
version = 0.0.51
|
||||
version = 0.0.52
|
||||
author = guanjihuan
|
||||
author_email = guanjihuan@163.com
|
||||
description = An open source python package
|
||||
|
@@ -929,6 +929,73 @@ def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, l
|
||||
conductance_array = conductance_array/calculation_times
|
||||
return conductance_array
|
||||
|
||||
## multi-terminal transmission
|
||||
|
||||
def calculate_six_terminal_transmission_matrix(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10):
|
||||
# ---------------- Geometry ----------------
|
||||
# lead2 lead3
|
||||
# lead1(L) lead4(R)
|
||||
# lead6 lead5
|
||||
|
||||
# h00 and h01 in leads
|
||||
h00_for_lead_1 = h00_for_lead_4
|
||||
h00_for_lead_2 = h00_for_lead_2
|
||||
h00_for_lead_3 = h00_for_lead_2
|
||||
h00_for_lead_5 = h00_for_lead_2
|
||||
h00_for_lead_6 = h00_for_lead_2
|
||||
h00_for_lead_4 = h00_for_lead_4
|
||||
h01_for_lead_1 = h01_for_lead_4.transpose().conj()
|
||||
h01_for_lead_2 = h01_for_lead_2
|
||||
h01_for_lead_3 = h01_for_lead_2
|
||||
h01_for_lead_4 = h01_for_lead_4
|
||||
h01_for_lead_5 = h01_for_lead_2.transpose().conj()
|
||||
h01_for_lead_6 = h01_for_lead_2.transpose().conj()
|
||||
# hopping matrix from lead to center
|
||||
h_lead1_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
|
||||
h_lead2_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
|
||||
h_lead3_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
|
||||
h_lead4_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
|
||||
h_lead5_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
|
||||
h_lead6_to_center = np.zeros((internal_degree*width, internal_degree*width*length), dtype=complex)
|
||||
move = moving_step_of_leads # the step of leads 2,3,6,5 moving to center
|
||||
h_lead1_to_center[0:internal_degree*width, 0:internal_degree*width] = h01_for_lead_1.transpose().conj()
|
||||
h_lead4_to_center[0:internal_degree*width, internal_degree*width*(length-1):internal_degree*width*length] = h01_for_lead_4.transpose().conj()
|
||||
for i0 in range(width):
|
||||
begin_index = internal_degree*i0+0
|
||||
end_index = internal_degree*i0+internal_degree
|
||||
h_lead2_to_center[begin_index:end_index, internal_degree*(width*(move+i0)+(width-1))+0:internal_degree*(width*(move+i0)+(width-1))+internal_degree] = h01_for_lead_2.transpose().conj()[begin_index:end_index, begin_index:end_index]
|
||||
h_lead3_to_center[begin_index:end_index, internal_degree*(width*(length-move-1-i0)+(width-1))+0:internal_degree*(width*(length-move-1-i0)+(width-1))+internal_degree] = h01_for_lead_3.transpose().conj()[begin_index:end_index, begin_index:end_index]
|
||||
h_lead5_to_center[begin_index:end_index, internal_degree*(width*(length-move-1-i0)+0)+0:internal_degree*(width*(length-move-1-i0)+0)+internal_degree] = h01_for_lead_5.transpose().conj()[begin_index:end_index, begin_index:end_index]
|
||||
h_lead6_to_center[begin_index:end_index, internal_degree*(width*(i0+move)+0)+0:internal_degree*(width*(i0+move)+0)+internal_degree] = h01_for_lead_6.transpose().conj()[begin_index:end_index, begin_index:end_index]
|
||||
# self energy
|
||||
self_energy1, gamma1 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_1, h01_for_lead_1, h_lead1_to_center)
|
||||
self_energy2, gamma2 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_2, h01_for_lead_1, h_lead2_to_center)
|
||||
self_energy3, gamma3 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_3, h01_for_lead_1, h_lead3_to_center)
|
||||
self_energy4, gamma4 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_4, h01_for_lead_1, h_lead4_to_center)
|
||||
self_energy5, gamma5 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_5, h01_for_lead_1, h_lead5_to_center)
|
||||
self_energy6, gamma6 = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00_for_lead_6, h01_for_lead_1, h_lead6_to_center)
|
||||
gamma_array = [gamma1, gamma2, gamma3, gamma4, gamma5, gamma6]
|
||||
# Green function
|
||||
green = np.linalg.inv(fermi_energy*np.eye(internal_degree*width*length)-center_hamiltonian-self_energy1-self_energy2-self_energy3-self_energy4-self_energy5-self_energy6)
|
||||
# Transmission
|
||||
transmission_matrix = np.zeros((6, 6), dtype=complex)
|
||||
channel_lead_4 = guan.calculate_conductance(fermi_energy, h00_for_lead_4, h01_for_lead_4, length=3)
|
||||
channel_lead_2 = guan.calculate_conductance(fermi_energy, h00_for_lead_2, h01_for_lead_2, length=3)
|
||||
for i0 in range(6):
|
||||
for j0 in range(6):
|
||||
if j0!=i0:
|
||||
transmission_matrix[i0, j0] = np.trace(np.dot(np.dot(np.dot(gamma_array[i0], green), gamma_array[j0]), green.transpose().conj()))
|
||||
for i0 in range(6):
|
||||
if i0 == 0 or i0 == 3:
|
||||
transmission_matrix[i0, i0] = channel_lead_4
|
||||
else:
|
||||
transmission_matrix[i0, i0] = channel_lead_2
|
||||
for i0 in range(6):
|
||||
for j0 in range(6):
|
||||
if j0!=i0:
|
||||
transmission_matrix[i0, i0] = transmission_matrix[i0, i0]-transmission_matrix[i0, j0]
|
||||
transmission_matrix = np.real(transmission_matrix)
|
||||
return transmission_matrix
|
||||
|
||||
## scattering matrix
|
||||
|
||||
|
Reference in New Issue
Block a user