0.0.127
This commit is contained in:
		| @@ -1,7 +1,7 @@ | ||||
| [metadata] | ||||
| # replace with your username: | ||||
| name = guan | ||||
| version = 0.0.126 | ||||
| version = 0.0.127 | ||||
| author = guanjihuan | ||||
| author_email = guanjihuan@163.com | ||||
| description = An open source python package | ||||
|   | ||||
| @@ -1,6 +1,6 @@ | ||||
| Metadata-Version: 2.1 | ||||
| Name: guan | ||||
| Version: 0.0.126 | ||||
| Version: 0.0.127 | ||||
| Summary: An open source python package | ||||
| Home-page: https://py.guanjihuan.com | ||||
| Author: guanjihuan | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
|  | ||||
| # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. | ||||
|  | ||||
| # The current version is guan-0.0.126, updated on August 28, 2022. | ||||
| # The current version is guan-0.0.127, updated on August 28, 2022. | ||||
|  | ||||
| # Installation: pip install --upgrade guan | ||||
|  | ||||
| @@ -1755,6 +1755,76 @@ def calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min= | ||||
|         i0 += 1 | ||||
|     return k_array, berry_curvature_array | ||||
|  | ||||
| def calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min=-math.pi, k_max=math.pi, precision=100, print_show=0): | ||||
|     delta = (k_max-k_min)/precision | ||||
|     k_array = np.arange(k_min, k_max, delta) | ||||
|     berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0]), dtype=complex) | ||||
|     i00 = 0 | ||||
|     for kx in np.arange(k_min, k_max, delta): | ||||
|         if print_show == 1: | ||||
|             print(kx) | ||||
|         j00 = 0 | ||||
|         for ky in np.arange(k_min, k_max, delta): | ||||
|             H = hamiltonian_function(kx, ky) | ||||
|             eigenvalue, vector = np.linalg.eigh(H)  | ||||
|             H_delta_kx = hamiltonian_function(kx+delta, ky)  | ||||
|             eigenvalue, vector_delta_kx = np.linalg.eigh(H_delta_kx)  | ||||
|             H_delta_ky = hamiltonian_function(kx, ky+delta) | ||||
|             eigenvalue, vector_delta_ky = np.linalg.eigh(H_delta_ky)  | ||||
|             H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) | ||||
|             eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky) | ||||
|             dim = len(index_of_bands) | ||||
|             det_value = 1 | ||||
|             # first dot | ||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|             i0 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 j0 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix[dim1, dim2] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2]) | ||||
|                     j0 += 1 | ||||
|                 i0 += 1 | ||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||
|             det_value = det_value*dot_matrix | ||||
|             # second dot | ||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|             i0 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 j0 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2]) | ||||
|                     j0 += 1 | ||||
|                 i0 += 1 | ||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||
|             det_value = det_value*dot_matrix | ||||
|             # third dot | ||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|             i0 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 j0 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2]) | ||||
|                     j0 += 1 | ||||
|                 i0 += 1 | ||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||
|             det_value = det_value*dot_matrix | ||||
|             # four dot | ||||
|             dot_matrix = np.zeros((dim , dim), dtype=complex) | ||||
|             i0 = 0 | ||||
|             for dim1 in index_of_bands: | ||||
|                 j0 = 0 | ||||
|                 for dim2 in index_of_bands: | ||||
|                     dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2]) | ||||
|                     j0 += 1 | ||||
|                 i0 += 1 | ||||
|             dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix)) | ||||
|             det_value= det_value*dot_matrix | ||||
|             berry_curvature = cmath.log(det_value)/delta/delta*1j | ||||
|             berry_curvature_array[j00, i00] = berry_curvature | ||||
|             j00 += 1 | ||||
|         i00 += 1 | ||||
|     return k_array, berry_curvature_array | ||||
|  | ||||
| def calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min=-math.pi, k_max=math.pi, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0): | ||||
|     if np.array(hamiltonian_function(0, 0)).shape==(): | ||||
|         dim = 1 | ||||
|   | ||||
		Reference in New Issue
	
	Block a user