0.0.127
This commit is contained in:
parent
a015561026
commit
c89c19242b
@ -254,6 +254,8 @@ chern_number = guan.calculate_chern_number_for_square_lattice_with_wilson_loop_f
|
|||||||
|
|
||||||
k_array, berry_curvature_array = guan.calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min=-math.pi, k_max=math.pi, precision=100, print_show=0)
|
k_array, berry_curvature_array = guan.calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min=-math.pi, k_max=math.pi, precision=100, print_show=0)
|
||||||
|
|
||||||
|
k_array, berry_curvature_array = guan.calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min=-math.pi, k_max=math.pi, precision=100, print_show=0)
|
||||||
|
|
||||||
k_array, berry_curvature_array = guan.calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min=-math.pi, k_max=math.pi, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0)
|
k_array, berry_curvature_array = guan.calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min=-math.pi, k_max=math.pi, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0)
|
||||||
|
|
||||||
k_array, berry_curvature_array = guan.calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min=-math.pi, k_max=math.pi, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0)
|
k_array, berry_curvature_array = guan.calculate_berry_curvature_with_wilson_loop_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min=-math.pi, k_max=math.pi, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0)
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
[metadata]
|
[metadata]
|
||||||
# replace with your username:
|
# replace with your username:
|
||||||
name = guan
|
name = guan
|
||||||
version = 0.0.126
|
version = 0.0.127
|
||||||
author = guanjihuan
|
author = guanjihuan
|
||||||
author_email = guanjihuan@163.com
|
author_email = guanjihuan@163.com
|
||||||
description = An open source python package
|
description = An open source python package
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
Metadata-Version: 2.1
|
Metadata-Version: 2.1
|
||||||
Name: guan
|
Name: guan
|
||||||
Version: 0.0.126
|
Version: 0.0.127
|
||||||
Summary: An open source python package
|
Summary: An open source python package
|
||||||
Home-page: https://py.guanjihuan.com
|
Home-page: https://py.guanjihuan.com
|
||||||
Author: guanjihuan
|
Author: guanjihuan
|
||||||
|
@ -2,7 +2,7 @@
|
|||||||
|
|
||||||
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
|
# With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing.
|
||||||
|
|
||||||
# The current version is guan-0.0.126, updated on August 28, 2022.
|
# The current version is guan-0.0.127, updated on August 28, 2022.
|
||||||
|
|
||||||
# Installation: pip install --upgrade guan
|
# Installation: pip install --upgrade guan
|
||||||
|
|
||||||
@ -1755,6 +1755,76 @@ def calculate_berry_curvature_with_efficient_method(hamiltonian_function, k_min=
|
|||||||
i0 += 1
|
i0 += 1
|
||||||
return k_array, berry_curvature_array
|
return k_array, berry_curvature_array
|
||||||
|
|
||||||
|
def calculate_berry_curvature_with_efficient_method_for_degenerate_case(hamiltonian_function, index_of_bands=[0, 1], k_min=-math.pi, k_max=math.pi, precision=100, print_show=0):
|
||||||
|
delta = (k_max-k_min)/precision
|
||||||
|
k_array = np.arange(k_min, k_max, delta)
|
||||||
|
berry_curvature_array = np.zeros((k_array.shape[0], k_array.shape[0]), dtype=complex)
|
||||||
|
i00 = 0
|
||||||
|
for kx in np.arange(k_min, k_max, delta):
|
||||||
|
if print_show == 1:
|
||||||
|
print(kx)
|
||||||
|
j00 = 0
|
||||||
|
for ky in np.arange(k_min, k_max, delta):
|
||||||
|
H = hamiltonian_function(kx, ky)
|
||||||
|
eigenvalue, vector = np.linalg.eigh(H)
|
||||||
|
H_delta_kx = hamiltonian_function(kx+delta, ky)
|
||||||
|
eigenvalue, vector_delta_kx = np.linalg.eigh(H_delta_kx)
|
||||||
|
H_delta_ky = hamiltonian_function(kx, ky+delta)
|
||||||
|
eigenvalue, vector_delta_ky = np.linalg.eigh(H_delta_ky)
|
||||||
|
H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta)
|
||||||
|
eigenvalue, vector_delta_kx_ky = np.linalg.eigh(H_delta_kx_ky)
|
||||||
|
dim = len(index_of_bands)
|
||||||
|
det_value = 1
|
||||||
|
# first dot
|
||||||
|
dot_matrix = np.zeros((dim , dim), dtype=complex)
|
||||||
|
i0 = 0
|
||||||
|
for dim1 in index_of_bands:
|
||||||
|
j0 = 0
|
||||||
|
for dim2 in index_of_bands:
|
||||||
|
dot_matrix[dim1, dim2] = np.dot(np.conj(vector[:, dim1]), vector_delta_kx[:, dim2])
|
||||||
|
j0 += 1
|
||||||
|
i0 += 1
|
||||||
|
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
|
||||||
|
det_value = det_value*dot_matrix
|
||||||
|
# second dot
|
||||||
|
dot_matrix = np.zeros((dim , dim), dtype=complex)
|
||||||
|
i0 = 0
|
||||||
|
for dim1 in index_of_bands:
|
||||||
|
j0 = 0
|
||||||
|
for dim2 in index_of_bands:
|
||||||
|
dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx[:, dim1]), vector_delta_kx_ky[:, dim2])
|
||||||
|
j0 += 1
|
||||||
|
i0 += 1
|
||||||
|
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
|
||||||
|
det_value = det_value*dot_matrix
|
||||||
|
# third dot
|
||||||
|
dot_matrix = np.zeros((dim , dim), dtype=complex)
|
||||||
|
i0 = 0
|
||||||
|
for dim1 in index_of_bands:
|
||||||
|
j0 = 0
|
||||||
|
for dim2 in index_of_bands:
|
||||||
|
dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_kx_ky[:, dim1]), vector_delta_ky[:, dim2])
|
||||||
|
j0 += 1
|
||||||
|
i0 += 1
|
||||||
|
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
|
||||||
|
det_value = det_value*dot_matrix
|
||||||
|
# four dot
|
||||||
|
dot_matrix = np.zeros((dim , dim), dtype=complex)
|
||||||
|
i0 = 0
|
||||||
|
for dim1 in index_of_bands:
|
||||||
|
j0 = 0
|
||||||
|
for dim2 in index_of_bands:
|
||||||
|
dot_matrix[dim1, dim2] = np.dot(np.conj(vector_delta_ky[:, dim1]), vector[:, dim2])
|
||||||
|
j0 += 1
|
||||||
|
i0 += 1
|
||||||
|
dot_matrix = np.linalg.det(dot_matrix)/abs(np.linalg.det(dot_matrix))
|
||||||
|
det_value= det_value*dot_matrix
|
||||||
|
berry_curvature = cmath.log(det_value)/delta/delta*1j
|
||||||
|
berry_curvature_array[j00, i00] = berry_curvature
|
||||||
|
j00 += 1
|
||||||
|
i00 += 1
|
||||||
|
return k_array, berry_curvature_array
|
||||||
|
|
||||||
def calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min=-math.pi, k_max=math.pi, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
|
def calculate_berry_curvature_with_wilson_loop(hamiltonian_function, k_min=-math.pi, k_max=math.pi, precision_of_plaquettes=20, precision_of_wilson_loop=5, print_show=0):
|
||||||
if np.array(hamiltonian_function(0, 0)).shape==():
|
if np.array(hamiltonian_function(0, 0)).shape==():
|
||||||
dim = 1
|
dim = 1
|
||||||
|
Loading…
x
Reference in New Issue
Block a user