diff --git a/API_Reference.py b/API_Reference.py index fbe88df..4fb6cf5 100644 --- a/API_Reference.py +++ b/API_Reference.py @@ -103,7 +103,7 @@ hamiltonian = guan.hamiltonian_of_simple_chain(k) hamiltonian = guan.hamiltonian_of_square_lattice(k1, k2) -hamiltonian = guan.hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10) +hamiltonian = guan.hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0) hamiltonian = guan.hamiltonian_of_cubic_lattice(k1, k2, k3) @@ -111,11 +111,11 @@ hamiltonian = guan.hamiltonian_of_ssh_model(k, v=0.6, w=1) hamiltonian = guan.hamiltonian_of_graphene(k1, k2, M=0, t=1, a=1/math.sqrt(3)) -hamiltonian = guan.hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1) +hamiltonian = guan.hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0) hamiltonian = guan.hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi=math.pi/4, a=1/math.sqrt(3)) -hamiltonian = guan.hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi=math.pi/4) +hamiltonian = guan.hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi=math.pi/4, period=0) hamiltonian = guan.hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1) diff --git a/PyPI/setup.cfg b/PyPI/setup.cfg index bc842fb..ecfe498 100644 --- a/PyPI/setup.cfg +++ b/PyPI/setup.cfg @@ -1,7 +1,7 @@ [metadata] # replace with your username: name = guan -version = 0.0.106 +version = 0.0.107 author = guanjihuan author_email = guanjihuan@163.com description = An open source python package diff --git a/PyPI/src/guan/__init__.py b/PyPI/src/guan/__init__.py index dd9a4d7..96c524a 100644 --- a/PyPI/src/guan/__init__.py +++ b/PyPI/src/guan/__init__.py @@ -2,7 +2,7 @@ # With this package, you can calculate band structures, density of states, quantum transport and topological invariant of tight-binding models by invoking the functions you need. Other frequently used functions are also integrated in this package, such as file reading/writing, figure plotting, data processing. -# The current version is guan-0.0.106, updated on July 12, 2022. +# The current version is guan-0.0.107, updated on July 13, 2022. # Installation: pip install --upgrade guan @@ -442,12 +442,15 @@ def hamiltonian_of_square_lattice(k1, k2): hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1) return hamiltonian -def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10): +def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10, period=0): h00 = np.zeros((N, N), dtype=complex) # hopping in a unit cell h01 = np.zeros((N, N), dtype=complex) # hopping between unit cells for i in range(N-1): h00[i, i+1] = 1 h00[i+1, i] = 1 + if period == 1: + h00[N-1, 0] = 1 + h00[0, N-1] = 1 for i in range(N): h01[i, i] = 1 hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01) @@ -473,7 +476,7 @@ def hamiltonian_of_graphene(k1, k2, M=0, t=1, a=1/math.sqrt(3)): hamiltonian = h0 + h1 return hamiltonian -def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1): +def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1, period=0): h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells for i in range(N): @@ -490,6 +493,9 @@ def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1 for i in range(N-1): h00[i*4+3, (i+1)*4+0] = t h00[(i+1)*4+0, i*4+3] = t + if period == 1: + h00[(N-1)*4+3, 0] = t + h00[0, (N-1)*4+3] = t for i in range(N): h01[i*4+1, i*4+0] = t h01[i*4+2, i*4+3] = t @@ -509,7 +515,7 @@ def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi=math.pi/4, a=1 hamiltonian = h0 + h1 + h2 + h2.transpose().conj() return hamiltonian -def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi=math.pi/4): +def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi=math.pi/4, period=0): h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells for i in range(N): @@ -534,6 +540,13 @@ def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2 h00[(i+1)*4+0, i*4+2] = h00[i*4+2, (i+1)*4+0].conj() h00[i*4+3, (i+1)*4+1] = t2*cmath.exp(1j*phi) h00[(i+1)*4+1, i*4+3] = h00[i*4+3, (i+1)*4+1].conj() + if period == 1: + h00[(N-1)*4+3, 0] = t1 + h00[0, (N-1)*4+3] = t1 + h00[(N-1)*4+2, 0] = t2*cmath.exp(1j*phi) + h00[0, (N-1)*4+2] = h00[(N-1)*4+2, 0].conj() + h00[(N-1)*4+3, 1] = t2*cmath.exp(1j*phi) + h00[1, (N-1)*4+3] = h00[(N-1)*4+3, 1].conj() for i in range(N): h01[i*4+1, i*4+0] = t1 h01[i*4+2, i*4+3] = t1