0.1.110-显式传递参数至局域变量
This commit is contained in:
		| @@ -1,6 +1,6 @@ | ||||
| Metadata-Version: 2.1 | ||||
| Name: guan | ||||
| Version: 0.1.109 | ||||
| Version: 0.1.110 | ||||
| Summary: An open source python package | ||||
| Home-page: https://py.guanjihuan.com | ||||
| Author: guanjihuan | ||||
|   | ||||
| @@ -5,28 +5,29 @@ def fully_connected_neural_network_with_one_hidden_layer(input_size=1, hidden_si | ||||
|     import torch | ||||
|     global model_class_of_fully_connected_neural_network_with_one_hidden_layer | ||||
|     class model_class_of_fully_connected_neural_network_with_one_hidden_layer(torch.nn.Module): | ||||
|         def __init__(self): | ||||
|         def __init__(self, input_size, hidden_size, output_size, activation): | ||||
|             super().__init__() | ||||
|             self.hidden_layer = torch.nn.Linear(input_size, hidden_size) | ||||
|             self.output_layer = torch.nn.Linear(hidden_size, output_size) | ||||
|             self.activation = activation | ||||
|         def forward(self, x): | ||||
|             if activation == 'relu': | ||||
|             if self.activation == 'relu': | ||||
|                 hidden_output = torch.nn.functional.relu(self.hidden_layer(x)) | ||||
|             elif activation == 'leaky_relu': | ||||
|             elif self.activation == 'leaky_relu': | ||||
|                 hidden_output = torch.nn.functional.leaky_relu(self.hidden_layer(x)) | ||||
|             elif activation == 'sigmoid': | ||||
|             elif self.activation == 'sigmoid': | ||||
|                 hidden_output = torch.nn.functional.sigmoid(self.hidden_layer(x)) | ||||
|             elif activation == 'tanh': | ||||
|             elif self.activation == 'tanh': | ||||
|                 hidden_output = torch.nn.functional.tanh(self.hidden_layer(x)) | ||||
|             elif activation == 'gelu': | ||||
|             elif self.activation == 'gelu': | ||||
|                 hidden_output = torch.nn.functional.gelu(self.hidden_layer(x)) | ||||
|             elif activation == 'silu': | ||||
|             elif self.activation == 'silu': | ||||
|                 hidden_output = torch.nn.functional.silu(self.hidden_layer(x)) | ||||
|             else: | ||||
|                 hidden_output = self.hidden_layer(x) | ||||
|             output = self.output_layer(hidden_output) | ||||
|             return output | ||||
|     model = model_class_of_fully_connected_neural_network_with_one_hidden_layer() | ||||
|     model = model_class_of_fully_connected_neural_network_with_one_hidden_layer(input_size, hidden_size, output_size, activation) | ||||
|     return model | ||||
|  | ||||
| # 全连接神经网络模型(包含两个隐藏层)(模型的类定义成全局的) | ||||
| @@ -34,45 +35,47 @@ def fully_connected_neural_network_with_two_hidden_layers(input_size=1, hidden_s | ||||
|     import torch | ||||
|     global model_class_of_fully_connected_neural_network_with_two_hidden_layers | ||||
|     class model_class_of_fully_connected_neural_network_with_two_hidden_layers(torch.nn.Module): | ||||
|         def __init__(self): | ||||
|         def __init__(self, input_size, hidden_size_1, hidden_size_2, output_size, activation_1, activation_2): | ||||
|             super().__init__() | ||||
|             self.hidden_layer_1 = torch.nn.Linear(input_size, hidden_size_1) | ||||
|             self.hidden_layer_2 = torch.nn.Linear(hidden_size_1, hidden_size_2) | ||||
|             self.output_layer = torch.nn.Linear(hidden_size_2, output_size) | ||||
|             self.activation_1 = activation_1 | ||||
|             self.activation_2 = activation_2 | ||||
|         def forward(self, x): | ||||
|             if activation_1 == 'relu': | ||||
|             if self.activation_1 == 'relu': | ||||
|                 hidden_output_1 = torch.nn.functional.relu(self.hidden_layer_1(x)) | ||||
|             elif activation_1 == 'leaky_relu': | ||||
|             elif self.activation_1 == 'leaky_relu': | ||||
|                 hidden_output_1 = torch.nn.functional.leaky_relu(self.hidden_layer_1(x)) | ||||
|             elif activation_1 == 'sigmoid': | ||||
|             elif self.activation_1 == 'sigmoid': | ||||
|                 hidden_output_1 = torch.nn.functional.sigmoid(self.hidden_layer_1(x)) | ||||
|             elif activation_1 == 'tanh': | ||||
|             elif self.activation_1 == 'tanh': | ||||
|                 hidden_output_1 = torch.nn.functional.tanh(self.hidden_layer_1(x)) | ||||
|             elif activation_1 == 'gelu': | ||||
|             elif self.activation_1 == 'gelu': | ||||
|                 hidden_output_1 = torch.nn.functional.gelu(self.hidden_layer_1(x)) | ||||
|             elif activation_1 == 'silu': | ||||
|             elif self.activation_1 == 'silu': | ||||
|                 hidden_output_1 = torch.nn.functional.silu(self.hidden_layer_1(x)) | ||||
|             else: | ||||
|                 hidden_output_1 = self.hidden_layer_1(x) | ||||
|              | ||||
|             if activation_2 == 'relu': | ||||
|             if self.activation_2 == 'relu': | ||||
|                 hidden_output_2 = torch.nn.functional.relu(self.hidden_layer_2(hidden_output_1)) | ||||
|             elif activation_2 == 'leaky_relu': | ||||
|             elif self.activation_2 == 'leaky_relu': | ||||
|                 hidden_output_2 = torch.nn.functional.leaky_relu(self.hidden_layer_2(hidden_output_1)) | ||||
|             elif activation_2 == 'sigmoid': | ||||
|             elif self.activation_2 == 'sigmoid': | ||||
|                 hidden_output_2 = torch.nn.functional.sigmoid(self.hidden_layer_2(hidden_output_1)) | ||||
|             elif activation_2 == 'tanh': | ||||
|             elif self.activation_2 == 'tanh': | ||||
|                 hidden_output_2 = torch.nn.functional.tanh(self.hidden_layer_2(hidden_output_1)) | ||||
|             elif activation_2 == 'gelu': | ||||
|             elif self.activation_2 == 'gelu': | ||||
|                 hidden_output_2 = torch.nn.functional.gelu(self.hidden_layer_2(hidden_output_1)) | ||||
|             elif activation_2 == 'silu': | ||||
|             elif self.activation_2 == 'silu': | ||||
|                 hidden_output_2 = torch.nn.functional.silu(self.hidden_layer_2(hidden_output_1)) | ||||
|             else: | ||||
|                 hidden_output_2 = self.hidden_layer_2(hidden_output_1) | ||||
|              | ||||
|             output = self.output_layer(hidden_output_2) | ||||
|             return output | ||||
|     model = model_class_of_fully_connected_neural_network_with_two_hidden_layers() | ||||
|     model = model_class_of_fully_connected_neural_network_with_two_hidden_layers(input_size, hidden_size_1, hidden_size_2, output_size, activation_1, activation_2) | ||||
|     return model | ||||
|  | ||||
| # 全连接神经网络模型(包含三个隐藏层)(模型的类定义成全局的) | ||||
| @@ -80,61 +83,64 @@ def fully_connected_neural_network_with_three_hidden_layers(input_size=1, hidden | ||||
|     import torch | ||||
|     global model_class_of_fully_connected_neural_network_with_three_hidden_layers | ||||
|     class model_class_of_fully_connected_neural_network_with_three_hidden_layers(torch.nn.Module): | ||||
|         def __init__(self): | ||||
|         def __init__(self, input_size, hidden_size_1, hidden_size_2, hidden_size_3, output_size, activation_1, activation_2, activation_3): | ||||
|             super().__init__() | ||||
|             self.hidden_layer_1 = torch.nn.Linear(input_size, hidden_size_1) | ||||
|             self.hidden_layer_2 = torch.nn.Linear(hidden_size_1, hidden_size_2) | ||||
|             self.hidden_layer_3 = torch.nn.Linear(hidden_size_2, hidden_size_3) | ||||
|             self.output_layer = torch.nn.Linear(hidden_size_3, output_size) | ||||
|             self.activation_1 = activation_1 | ||||
|             self.activation_2 = activation_2 | ||||
|             self.activation_3 = activation_3 | ||||
|         def forward(self, x): | ||||
|             if activation_1 == 'relu': | ||||
|             if self.activation_1 == 'relu': | ||||
|                 hidden_output_1 = torch.nn.functional.relu(self.hidden_layer_1(x)) | ||||
|             elif activation_1 == 'leaky_relu': | ||||
|             elif self.activation_1 == 'leaky_relu': | ||||
|                 hidden_output_1 = torch.nn.functional.leaky_relu(self.hidden_layer_1(x)) | ||||
|             elif activation_1 == 'sigmoid': | ||||
|             elif self.activation_1 == 'sigmoid': | ||||
|                 hidden_output_1 = torch.nn.functional.sigmoid(self.hidden_layer_1(x)) | ||||
|             elif activation_1 == 'tanh': | ||||
|             elif self.activation_1 == 'tanh': | ||||
|                 hidden_output_1 = torch.nn.functional.tanh(self.hidden_layer_1(x)) | ||||
|             elif activation_1 == 'gelu': | ||||
|             elif self.activation_1 == 'gelu': | ||||
|                 hidden_output_1 = torch.nn.functional.gelu(self.hidden_layer_1(x)) | ||||
|             elif activation_1 == 'silu': | ||||
|             elif self.activation_1 == 'silu': | ||||
|                 hidden_output_1 = torch.nn.functional.silu(self.hidden_layer_1(x)) | ||||
|             else: | ||||
|                 hidden_output_1 = self.hidden_layer_1(x) | ||||
|              | ||||
|             if activation_2 == 'relu': | ||||
|             if self.activation_2 == 'relu': | ||||
|                 hidden_output_2 = torch.nn.functional.relu(self.hidden_layer_2(hidden_output_1)) | ||||
|             elif activation_2 == 'leaky_relu': | ||||
|             elif self.activation_2 == 'leaky_relu': | ||||
|                 hidden_output_2 = torch.nn.functional.leaky_relu(self.hidden_layer_2(hidden_output_1)) | ||||
|             elif activation_2 == 'sigmoid': | ||||
|             elif self.activation_2 == 'sigmoid': | ||||
|                 hidden_output_2 = torch.nn.functional.sigmoid(self.hidden_layer_2(hidden_output_1)) | ||||
|             elif activation_2 == 'tanh': | ||||
|             elif self.activation_2 == 'tanh': | ||||
|                 hidden_output_2 = torch.nn.functional.tanh(self.hidden_layer_2(hidden_output_1)) | ||||
|             elif activation_2 == 'gelu': | ||||
|             elif self.activation_2 == 'gelu': | ||||
|                 hidden_output_2 = torch.nn.functional.gelu(self.hidden_layer_2(hidden_output_1)) | ||||
|             elif activation_2 == 'silu': | ||||
|             elif self.activation_2 == 'silu': | ||||
|                 hidden_output_2 = torch.nn.functional.silu(self.hidden_layer_2(hidden_output_1)) | ||||
|             else: | ||||
|                 hidden_output_2 = self.hidden_layer_2(hidden_output_1) | ||||
|  | ||||
|             if activation_3 == 'relu': | ||||
|             if self.activation_3 == 'relu': | ||||
|                 hidden_output_3 = torch.nn.functional.relu(self.hidden_layer_3(hidden_output_2)) | ||||
|             elif activation_3 == 'leaky_relu': | ||||
|             elif self.activation_3 == 'leaky_relu': | ||||
|                 hidden_output_3 = torch.nn.functional.leaky_relu(self.hidden_layer_3(hidden_output_2)) | ||||
|             elif activation_3 == 'sigmoid': | ||||
|             elif self.activation_3 == 'sigmoid': | ||||
|                 hidden_output_3 = torch.nn.functional.sigmoid(self.hidden_layer_3(hidden_output_2)) | ||||
|             elif activation_3 == 'tanh': | ||||
|             elif self.activation_3 == 'tanh': | ||||
|                 hidden_output_3 = torch.nn.functional.tanh(self.hidden_layer_3(hidden_output_2)) | ||||
|             elif activation_3 == 'gelu': | ||||
|             elif self.activation_3 == 'gelu': | ||||
|                 hidden_output_3 = torch.nn.functional.gelu(self.hidden_layer_3(hidden_output_2)) | ||||
|             elif activation_3 == 'silu': | ||||
|             elif self.activation_3 == 'silu': | ||||
|                 hidden_output_3 = torch.nn.functional.silu(self.hidden_layer_3(hidden_output_2)) | ||||
|             else: | ||||
|                 hidden_output_3 = self.hidden_layer_3(hidden_output_2) | ||||
|              | ||||
|             output = self.output_layer(hidden_output_3) | ||||
|             return output | ||||
|     model = model_class_of_fully_connected_neural_network_with_three_hidden_layers() | ||||
|     model = model_class_of_fully_connected_neural_network_with_three_hidden_layers(input_size, hidden_size_1, hidden_size_2, hidden_size_3, output_size, activation_1, activation_2, activation_3) | ||||
|     return model | ||||
|  | ||||
| # 卷积神经网络模型(包含两个卷积层和两个全连接层)(模型的类定义成全局的) | ||||
| @@ -142,7 +148,7 @@ def convolutional_neural_network_with_two_convolutional_layers_and_two_fully_con | ||||
|     import torch | ||||
|     global model_class_of_convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers | ||||
|     class model_class_of_convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers(torch.nn.Module): | ||||
|         def __init__(self): | ||||
|         def __init__(self, in_channels, out_channels_1, out_channels_2, kernel_size_1, kernel_size_2, stride_1, stride_2, padding_1, padding_2, pooling, pooling_kernel_size, pooling_stride, input_size, hidden_size_1, hidden_size_2, output_size): | ||||
|             super().__init__() | ||||
|             self.convolutional_layer_1 = torch.nn.Conv2d(in_channels=in_channels, out_channels=out_channels_1, kernel_size=kernel_size_1, stride=stride_1, padding=padding_1) | ||||
|             self.convolutional_layer_2 = torch.nn.Conv2d(in_channels=out_channels_1, out_channels=out_channels_2, kernel_size=kernel_size_2, stride=stride_2, padding=padding_2) | ||||
| @@ -150,8 +156,9 @@ def convolutional_neural_network_with_two_convolutional_layers_and_two_fully_con | ||||
|             self.hidden_layer_1 = torch.nn.Linear(input_size, hidden_size_1) | ||||
|             self.hidden_layer_2 = torch.nn.Linear(hidden_size_1, hidden_size_2) | ||||
|             self.output_layer = torch.nn.Linear(hidden_size_2, output_size) | ||||
|             self.pooling = pooling | ||||
|         def forward(self, x): | ||||
|             if pooling == 1: | ||||
|             if self.pooling == 1: | ||||
|                 channel_output_1 = torch.nn.functional.relu(self.pooling_layer(self.convolutional_layer_1(x)))  | ||||
|                 channel_output_2 = torch.nn.functional.relu(self.pooling_layer(self.convolutional_layer_2(channel_output_1))) | ||||
|             else: | ||||
| @@ -162,7 +169,7 @@ def convolutional_neural_network_with_two_convolutional_layers_and_two_fully_con | ||||
|             hidden_output_2 = torch.nn.functional.relu(self.hidden_layer_2(hidden_output_1)) | ||||
|             output = self.output_layer(hidden_output_2) | ||||
|             return output | ||||
|     model = model_class_of_convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers() | ||||
|     model = model_class_of_convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers(in_channels, out_channels_1, out_channels_2, kernel_size_1, kernel_size_2, stride_1, stride_2, padding_1, padding_2, pooling, pooling_kernel_size, pooling_stride, input_size, hidden_size_1, hidden_size_2, output_size) | ||||
|     return model | ||||
|  | ||||
| # 从损失函数的变化情况中获取是否停止训练的信号 | ||||
| @@ -260,7 +267,7 @@ def save_model_with_torch_jit_script(model, filename='model_scripted_with_torch_ | ||||
|     scripted_model = torch.jit.script(model) | ||||
|     scripted_model.save(filename) | ||||
|  | ||||
| # 以字典的形式保存模型的所有信息到文件(保存时需要模型的类可访问,此外还要输入模型的实例化函数) | ||||
| # 以字典的形式保存模型的所有信息到文件(保存时需要模型的类可访问,此外还要输入模型的实例化函数。需要注意的是:该方法要求类和实例化函数都是独立可直接运行的模块) | ||||
| def save_model_with_all_information(model, model_class, model_instantiation, note='', filename='./model_with_all_information.pth'): | ||||
|     import torch | ||||
|     import guan | ||||
| @@ -293,7 +300,7 @@ def load_model_with_torch_jit_script(filename='model_scripted_with_torch_jit.pth | ||||
|     scripted_model = torch.jit.load(filename) | ||||
|     return scripted_model | ||||
|  | ||||
| # 加载包含所有信息的模型(包含了模型的类和实例化函数等,返回的是模型对象) | ||||
| # 加载包含所有信息的模型(包含了模型的类和实例化函数等,返回的是模型对象。需要注意的是:该方法要求类和实例化函数都是独立可直接运行的模块) | ||||
| def load_model_with_all_information(filename='./model_with_all_information.pth', note_print=0): | ||||
|     import torch | ||||
|     checkpoint = torch.load(filename) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user