0.1.95
This commit is contained in:
		| @@ -1,7 +1,7 @@ | ||||
| [metadata] | ||||
| # replace with your username: | ||||
| name = guan | ||||
| version = 0.1.94 | ||||
| version = 0.1.95 | ||||
| author = guanjihuan | ||||
| author_email = guanjihuan@163.com | ||||
| description = An open source python package | ||||
|   | ||||
| @@ -1,6 +1,6 @@ | ||||
| Metadata-Version: 2.1 | ||||
| Name: guan | ||||
| Version: 0.1.94 | ||||
| Version: 0.1.95 | ||||
| Summary: An open source python package | ||||
| Home-page: https://py.guanjihuan.com | ||||
| Author: guanjihuan | ||||
|   | ||||
| @@ -113,6 +113,34 @@ def fully_connected_neural_network_with_three_hidden_layers(input_size=1, hidden | ||||
|     model = model_class_of_fully_connected_neural_network_with_three_hidden_layers() | ||||
|     return model | ||||
|  | ||||
| # 卷积神经网络模型(包含两个卷积层和两个全连接层)(模型的类定义成全局的) | ||||
| def convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers(in_channels=1, out_channels_1=10, out_channels_2=10, kernel_size_1=3, kernel_size_2=3, stride_1=1, stride_2=1, padding_1=0, padding_2=0, pooling=1, pooling_kernel_size=2, pooling_stride=2, input_size=1, hidden_size_1=10, hidden_size_2=10, output_size=1): | ||||
|     import torch | ||||
|     global model_class_of_convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers | ||||
|     class model_class_of_convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers(torch.nn.Module): | ||||
|         def __init__(self): | ||||
|             super().__init__() | ||||
|             self.convolutional_layer_1 = torch.nn.Conv2d(in_channels=in_channels, out_channels=out_channels_1, kernel_size=kernel_size_1, stride=stride_1, padding=padding_1) | ||||
|             self.convolutional_layer_2 = torch.nn.Conv2d(in_channels=out_channels_1, out_channels=out_channels_2, kernel_size=kernel_size_2, stride=stride_2, padding=padding_2) | ||||
|             self.pooling_layer = torch.nn.MaxPool2d(kernel_size=pooling_kernel_size, stride=pooling_stride) | ||||
|             self.hidden_layer_1 = torch.nn.Linear(input_size, hidden_size_1) | ||||
|             self.hidden_layer_2 = torch.nn.Linear(hidden_size_1, hidden_size_2) | ||||
|             self.output_layer = torch.nn.Linear(hidden_size_2, output_size) | ||||
|         def forward(self, x): | ||||
|             if pooling == 1: | ||||
|                 channel_output_1 = torch.nn.functional.relu(self.pooling_layer(self.convolutional_layer_1(x)))  | ||||
|                 channel_output_2 = torch.nn.functional.relu(self.pooling_layer(self.convolutional_layer_2(channel_output_1))) | ||||
|             else: | ||||
|                 channel_output_1 = torch.nn.functional.relu(self.convolutional_layer_1(x))  | ||||
|                 channel_output_2 = torch.nn.functional.relu(self.convolutional_layer_2(channel_output_1)) | ||||
|             channel_output_2 = torch.flatten(channel_output_2, 1) | ||||
|             hidden_output_1 = torch.nn.functional.relu(self.hidden_layer_1(channel_output_2)) | ||||
|             hidden_output_2 = torch.nn.functional.relu(self.hidden_layer_2(hidden_output_1)) | ||||
|             output = self.output_layer(hidden_output_2) | ||||
|             return output | ||||
|     model = model_class_of_convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers() | ||||
|     return model | ||||
|  | ||||
| # 使用优化器训练模型 | ||||
| def train_model(model, x_data, y_data, optimizer='Adam', learning_rate=0.001, criterion='MSELoss', num_epochs=1000, print_show=1): | ||||
|     import torch | ||||
|   | ||||
		Reference in New Issue
	
	Block a user