version 0.0.51
This commit is contained in:
		| @@ -1,85 +0,0 @@ | ||||
| # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. | ||||
|  | ||||
| # Fourier_transform | ||||
|  | ||||
| import numpy as np | ||||
| import cmath | ||||
|  | ||||
| # Fourier_transform for discrete lattices | ||||
|  | ||||
| def one_dimensional_fourier_transform(k, unit_cell, hopping): | ||||
|     unit_cell = np.array(unit_cell) | ||||
|     hopping = np.array(hopping) | ||||
|     hamiltonian = unit_cell+hopping*cmath.exp(1j*k)+hopping.transpose().conj()*cmath.exp(-1j*k) | ||||
|     return hamiltonian | ||||
|  | ||||
| def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2): | ||||
|     unit_cell = np.array(unit_cell) | ||||
|     hopping_1 = np.array(hopping_1) | ||||
|     hopping_2 = np.array(hopping_2) | ||||
|     hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2) | ||||
|     return hamiltonian | ||||
|  | ||||
| def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3): | ||||
|     unit_cell = np.array(unit_cell) | ||||
|     hopping_1 = np.array(hopping_1) | ||||
|     hopping_2 = np.array(hopping_2) | ||||
|     hopping_3 = np.array(hopping_3) | ||||
|     hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)+hopping_3*cmath.exp(1j*k3)+hopping_3.transpose().conj()*cmath.exp(-1j*k3) | ||||
|     return hamiltonian | ||||
|  | ||||
|  | ||||
| ## calculate reciprocal lattice vectors | ||||
|  | ||||
| def calculate_one_dimensional_reciprocal_lattice_vector(a1): | ||||
|     b1 = 2*np.pi/a1 | ||||
|     return b1 | ||||
|  | ||||
| def calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2): | ||||
|     a1 = np.array(a1) | ||||
|     a2 = np.array(a2) | ||||
|     a1 = np.append(a1, 0) | ||||
|     a2 = np.append(a2, 0) | ||||
|     a3 = np.array([0, 0, 1]) | ||||
|     b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3)) | ||||
|     b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3)) | ||||
|     b1 = np.delete(b1, 2) | ||||
|     b2 = np.delete(b2, 2) | ||||
|     return b1, b2 | ||||
|  | ||||
| def calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3): | ||||
|     a1 = np.array(a1) | ||||
|     a2 = np.array(a2) | ||||
|     a3 = np.array(a3) | ||||
|     b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3)) | ||||
|     b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3)) | ||||
|     b3 = 2*np.pi*np.cross(a1, a2)/np.dot(a1, np.cross(a2, a3)) | ||||
|     return b1, b2, b3 | ||||
|  | ||||
| def calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1): | ||||
|     import sympy | ||||
|     b1 = 2*sympy.pi/a1 | ||||
|     return b1 | ||||
|  | ||||
| def calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2): | ||||
|     import sympy | ||||
|     a1 = sympy.Matrix(1, 3, [a1[0], a1[1], 0]) | ||||
|     a2 = sympy.Matrix(1, 3, [a2[0], a2[1], 0]) | ||||
|     a3 = sympy.Matrix(1, 3, [0, 0, 1]) | ||||
|     cross_a2_a3 = a2.cross(a3) | ||||
|     cross_a3_a1 = a3.cross(a1) | ||||
|     b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3) | ||||
|     b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3) | ||||
|     b1 = sympy.Matrix(1, 2, [b1[0], b1[1]]) | ||||
|     b2 = sympy.Matrix(1, 2, [b2[0], b2[1]]) | ||||
|     return b1, b2 | ||||
|  | ||||
| def calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3): | ||||
|     import sympy | ||||
|     cross_a2_a3 = a2.cross(a3) | ||||
|     cross_a3_a1 = a3.cross(a1) | ||||
|     cross_a1_a2 = a1.cross(a2) | ||||
|     b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3) | ||||
|     b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3) | ||||
|     b3 = 2*sympy.pi*cross_a1_a2/a1.dot(cross_a2_a3) | ||||
|     return b1, b2, b3 | ||||
| @@ -1,110 +0,0 @@ | ||||
| # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. | ||||
|  | ||||
| # Green functions | ||||
|  | ||||
| import numpy as np | ||||
| import guan | ||||
|  | ||||
| def green_function(fermi_energy, hamiltonian, broadening, self_energy=0): | ||||
|     if np.array(hamiltonian).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian).shape[0] | ||||
|     green = np.linalg.inv((fermi_energy+broadening*1j)*np.eye(dim)-hamiltonian-self_energy) | ||||
|     return green | ||||
|  | ||||
| def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0): | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0]    | ||||
|     green_nn_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n_minus), h01)-self_energy) | ||||
|     return green_nn_n | ||||
|  | ||||
| def green_function_in_n(green_in_n_minus, h01, green_nn_n): | ||||
|     green_in_n = np.dot(np.dot(green_in_n_minus, h01), green_nn_n) | ||||
|     return green_in_n | ||||
|  | ||||
| def green_function_ni_n(green_nn_n, h01, green_ni_n_minus): | ||||
|     h01 = np.array(h01) | ||||
|     green_ni_n = np.dot(np.dot(green_nn_n, h01.transpose().conj()), green_ni_n_minus) | ||||
|     return green_ni_n | ||||
|  | ||||
| def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus): | ||||
|     green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus) | ||||
|     return green_ii_n | ||||
|  | ||||
| def transfer_matrix(fermi_energy, h00, h01): | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     transfer = np.zeros((2*dim, 2*dim), dtype=complex) | ||||
|     transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00) | ||||
|     transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj()) | ||||
|     transfer[dim:2*dim, 0:dim] = np.identity(dim) | ||||
|     transfer[dim:2*dim, dim:2*dim] = 0 | ||||
|     return transfer | ||||
|  | ||||
| def surface_green_function_of_lead(fermi_energy, h00, h01): | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     fermi_energy = fermi_energy+1e-9*1j | ||||
|     transfer = transfer_matrix(fermi_energy, h00, h01) | ||||
|     eigenvalue, eigenvector = np.linalg.eig(transfer) | ||||
|     ind = np.argsort(np.abs(eigenvalue)) | ||||
|     temp = np.zeros((2*dim, 2*dim), dtype=complex) | ||||
|     i0 = 0 | ||||
|     for ind0 in ind: | ||||
|         temp[:, i0] = eigenvector[:, ind0] | ||||
|         i0 += 1 | ||||
|     s1 = temp[dim:2*dim, 0:dim] | ||||
|     s2 = temp[0:dim, 0:dim] | ||||
|     s3 = temp[dim:2*dim, dim:2*dim] | ||||
|     s4 = temp[0:dim, dim:2*dim] | ||||
|     right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1))) | ||||
|     left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4))) | ||||
|     return right_lead_surface, left_lead_surface | ||||
|  | ||||
| def self_energy_of_lead(fermi_energy, h00, h01): | ||||
|     h01 = np.array(h01) | ||||
|     right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
|     right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj()) | ||||
|     left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01) | ||||
|     gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j | ||||
|     gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j | ||||
|     return right_self_energy, left_self_energy, gamma_right, gamma_left | ||||
|  | ||||
| def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR): | ||||
|     h_LC = np.array(h_LC) | ||||
|     h_CR = np.array(h_CR) | ||||
|     right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
|     right_self_energy = np.dot(np.dot(h_CR, right_lead_surface), h_CR.transpose().conj()) | ||||
|     left_self_energy = np.dot(np.dot(h_LC.transpose().conj(), left_lead_surface), h_LC) | ||||
|     gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j | ||||
|     gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j | ||||
|     return right_self_energy, left_self_energy, gamma_right, gamma_left | ||||
|  | ||||
| def self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center): | ||||
|     h_lead_to_center = np.array(h_lead_to_center) | ||||
|     right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) | ||||
|     self_energy = np.dot(np.dot(h_lead_to_center.transpose().conj(), right_lead_surface), h_lead_to_center) | ||||
|     gamma = (self_energy - self_energy.transpose().conj())*1j | ||||
|     return self_energy, gamma | ||||
|  | ||||
| def green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian): | ||||
|     dim = np.array(center_hamiltonian).shape[0] | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) | ||||
|     green = np.linalg.inv(fermi_energy*np.identity(dim)-center_hamiltonian-left_self_energy-right_self_energy) | ||||
|     return green, gamma_right, gamma_left | ||||
|  | ||||
| def electron_correlation_function_green_n_for_local_current(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian): | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) | ||||
|     green = guan.green_function(fermi_energy, center_hamiltonian, broadening=0, self_energy=left_self_energy+right_self_energy) | ||||
|     G_n = np.imag(np.dot(np.dot(green, gamma_left), green.transpose().conj())) | ||||
|     return G_n | ||||
| @@ -1,115 +0,0 @@ | ||||
| # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. | ||||
|  | ||||
| # Hamiltonian of finite size systems | ||||
|  | ||||
| import numpy as np | ||||
| import guan | ||||
|  | ||||
| def finite_size_along_one_direction(N, on_site=0, hopping=1, period=0): | ||||
|     on_site = np.array(on_site) | ||||
|     hopping = np.array(hopping) | ||||
|     if on_site.shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = on_site.shape[0] | ||||
|     hamiltonian = np.zeros((N*dim, N*dim), dtype=complex) | ||||
|     for i0 in range(N): | ||||
|         hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site | ||||
|     for i0 in range(N-1): | ||||
|         hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping | ||||
|         hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj() | ||||
|     if period == 1: | ||||
|         hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping | ||||
|         hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj() | ||||
|     return hamiltonian | ||||
|  | ||||
| def finite_size_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0): | ||||
|     on_site = np.array(on_site) | ||||
|     hopping_1 = np.array(hopping_1) | ||||
|     hopping_2 = np.array(hopping_2) | ||||
|     if on_site.shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = on_site.shape[0] | ||||
|     hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex)     | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2): | ||||
|             hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site | ||||
|     for i1 in range(N1-1): | ||||
|         for i2 in range(N2): | ||||
|             hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1 | ||||
|             hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2-1): | ||||
|             hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2 | ||||
|             hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj() | ||||
|     if period_1 == 1: | ||||
|         for i2 in range(N2): | ||||
|             hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1 | ||||
|             hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj() | ||||
|     if period_2 == 1: | ||||
|         for i1 in range(N1): | ||||
|             hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2 | ||||
|             hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj() | ||||
|     return hamiltonian | ||||
|  | ||||
| def finite_size_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0): | ||||
|     on_site = np.array(on_site) | ||||
|     hopping_1 = np.array(hopping_1) | ||||
|     hopping_2 = np.array(hopping_2) | ||||
|     hopping_3 = np.array(hopping_3) | ||||
|     if on_site.shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = on_site.shape[0] | ||||
|     hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex)  | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3): | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site | ||||
|     for i1 in range(N1-1): | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3): | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1 | ||||
|                 hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2-1): | ||||
|             for i3 in range(N3): | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2 | ||||
|                 hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3-1): | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3 | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj() | ||||
|     if period_1 == 1: | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3): | ||||
|                 hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1 | ||||
|                 hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj() | ||||
|     if period_2 == 1: | ||||
|         for i1 in range(N1): | ||||
|             for i3 in range(N3): | ||||
|                 hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2 | ||||
|                 hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj() | ||||
|     if period_3 == 1: | ||||
|         for i1 in range(N1): | ||||
|             for i2 in range(N2): | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3 | ||||
|                 hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj() | ||||
|     return hamiltonian | ||||
|  | ||||
| def hopping_along_zigzag_direction_for_graphene(N): | ||||
|     hopping = np.zeros((4*N, 4*N), dtype=complex) | ||||
|     for i0 in range(N): | ||||
|         hopping[4*i0+1, 4*i0+0] = 1 | ||||
|         hopping[4*i0+2, 4*i0+3] = 1 | ||||
|     return hopping | ||||
|  | ||||
| def finite_size_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0): | ||||
|     on_site = guan.finite_size_along_one_direction(4) | ||||
|     hopping_1 = guan.hopping_along_zigzag_direction_for_graphene(1) | ||||
|     hopping_2 = np.zeros((4, 4), dtype=complex) | ||||
|     hopping_2[3, 0] = 1 | ||||
|     hamiltonian = guan.finite_size_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2) | ||||
|     return hamiltonian | ||||
| @@ -1,124 +0,0 @@ | ||||
| # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. | ||||
|  | ||||
| # Hamiltonian of models in the reciprocal space | ||||
|  | ||||
| import numpy as np | ||||
| import cmath | ||||
| from math import * | ||||
| import guan | ||||
|  | ||||
| def hamiltonian_of_simple_chain(k): | ||||
|     hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1) | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_square_lattice(k1, k2): | ||||
|     hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1) | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10): | ||||
|     h00 = np.zeros((N, N), dtype=complex)  # hopping in a unit cell | ||||
|     h01 = np.zeros((N, N), dtype=complex)  # hopping between unit cells | ||||
|     for i in range(N-1):    | ||||
|         h00[i, i+1] = 1 | ||||
|         h00[i+1, i] = 1 | ||||
|     for i in range(N):    | ||||
|         h01[i, i] = 1 | ||||
|     hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)  | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_cubic_lattice(k1, k2, k3): | ||||
|     hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1) | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_ssh_model(k, v=0.6, w=1): | ||||
|     hamiltonian = np.zeros((2, 2), dtype=complex) | ||||
|     hamiltonian[0,1] = v+w*cmath.exp(-1j*k) | ||||
|     hamiltonian[1,0] = v+w*cmath.exp(1j*k) | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_graphene(k1, k2, M=0, t=1, a=1/sqrt(3)): | ||||
|     h0 = np.zeros((2, 2), dtype=complex)  # mass term | ||||
|     h1 = np.zeros((2, 2), dtype=complex)  # nearest hopping | ||||
|     h0[0, 0] = M      | ||||
|     h0[1, 1] = -M | ||||
|     h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a))    | ||||
|     h1[0, 1] = h1[1, 0].conj() | ||||
|     hamiltonian = h0 + h1 | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1): | ||||
|     h00 = np.zeros((4*N, 4*N), dtype=complex)  # hopping in a unit cell | ||||
|     h01 = np.zeros((4*N, 4*N), dtype=complex)  # hopping between unit cells | ||||
|     for i in range(N): | ||||
|         h00[i*4+0, i*4+0] = M | ||||
|         h00[i*4+1, i*4+1] = -M | ||||
|         h00[i*4+2, i*4+2] = M | ||||
|         h00[i*4+3, i*4+3] = -M | ||||
|         h00[i*4+0, i*4+1] = t | ||||
|         h00[i*4+1, i*4+0] = t | ||||
|         h00[i*4+1, i*4+2] = t | ||||
|         h00[i*4+2, i*4+1] = t | ||||
|         h00[i*4+2, i*4+3] = t | ||||
|         h00[i*4+3, i*4+2] = t | ||||
|     for i in range(N-1): | ||||
|         h00[i*4+3, (i+1)*4+0] = t | ||||
|         h00[(i+1)*4+0, i*4+3] = t | ||||
|     for i in range(N): | ||||
|         h01[i*4+1, i*4+0] = t | ||||
|         h01[i*4+2, i*4+3] = t | ||||
|     hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)  | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi=pi/4, a=1/sqrt(3)): | ||||
|     h0 = np.zeros((2, 2), dtype=complex)  # mass term | ||||
|     h1 = np.zeros((2, 2), dtype=complex)  # nearest hopping | ||||
|     h2 = np.zeros((2, 2), dtype=complex)  # next nearest hopping | ||||
|     h0[0, 0] = M | ||||
|     h0[1, 1] = -M | ||||
|     h1[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a)) | ||||
|     h1[0, 1] = h1[1, 0].conj() | ||||
|     h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*sqrt(3)*k1*a)+cmath.exp(-1j*sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j*3/2*k2*a)) | ||||
|     h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*sqrt(3)*k1*a)+cmath.exp(-1j*sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j*3/2*k2*a)) | ||||
|     hamiltonian = h0 + h1 + h2 + h2.transpose().conj() | ||||
|     return hamiltonian | ||||
|  | ||||
| def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi=pi/4): | ||||
|     h00 = np.zeros((4*N, 4*N), dtype=complex)  # hopping in a unit cell | ||||
|     h01 = np.zeros((4*N, 4*N), dtype=complex)  # hopping between unit cells | ||||
|     for i in range(N): | ||||
|         h00[i*4+0, i*4+0] = M | ||||
|         h00[i*4+1, i*4+1] = -M | ||||
|         h00[i*4+2, i*4+2] = M | ||||
|         h00[i*4+3, i*4+3] = -M | ||||
|         h00[i*4+0, i*4+1] = t1 | ||||
|         h00[i*4+1, i*4+0] = t1 | ||||
|         h00[i*4+1, i*4+2] = t1 | ||||
|         h00[i*4+2, i*4+1] = t1 | ||||
|         h00[i*4+2, i*4+3] = t1 | ||||
|         h00[i*4+3, i*4+2] = t1 | ||||
|         h00[i*4+0, i*4+2] = t2*cmath.exp(-1j*phi) | ||||
|         h00[i*4+2, i*4+0] = h00[i*4+0, i*4+2].conj() | ||||
|         h00[i*4+1, i*4+3] = t2*cmath.exp(-1j*phi) | ||||
|         h00[i*4+3, i*4+1] = h00[i*4+1, i*4+3].conj() | ||||
|     for i in range(N-1): | ||||
|         h00[i*4+3, (i+1)*4+0] = t1 | ||||
|         h00[(i+1)*4+0, i*4+3] = t1 | ||||
|         h00[i*4+2, (i+1)*4+0] = t2*cmath.exp(1j*phi) | ||||
|         h00[(i+1)*4+0, i*4+2] = h00[i*4+2, (i+1)*4+0].conj() | ||||
|         h00[i*4+3, (i+1)*4+1] = t2*cmath.exp(1j*phi) | ||||
|         h00[(i+1)*4+1, i*4+3] = h00[i*4+3, (i+1)*4+1].conj() | ||||
|     for i in range(N): | ||||
|         h01[i*4+1, i*4+0] = t1 | ||||
|         h01[i*4+2, i*4+3] = t1 | ||||
|         h01[i*4+0, i*4+0] = t2*cmath.exp(1j*phi) | ||||
|         h01[i*4+1, i*4+1] = t2*cmath.exp(-1j*phi) | ||||
|         h01[i*4+2, i*4+2] = t2*cmath.exp(1j*phi) | ||||
|         h01[i*4+3, i*4+3] = t2*cmath.exp(-1j*phi) | ||||
|         h01[i*4+1, i*4+3] = t2*cmath.exp(1j*phi) | ||||
|         h01[i*4+2, i*4+0] = t2*cmath.exp(-1j*phi) | ||||
|         if i != 0: | ||||
|             h01[i*4+1, (i-1)*4+3] = t2*cmath.exp(1j*phi) | ||||
|     for i in range(N-1): | ||||
|         h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi) | ||||
|     hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k) | ||||
|     return hamiltonian | ||||
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							| @@ -1,125 +0,0 @@ | ||||
| # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. | ||||
|  | ||||
| # band_structures_and_wave_functions | ||||
|  | ||||
| ## band structures | ||||
|  | ||||
| import numpy as np | ||||
| import cmath | ||||
|  | ||||
| def calculate_eigenvalue(hamiltonian): | ||||
|     if np.array(hamiltonian).shape==(): | ||||
|         eigenvalue = np.real(hamiltonian) | ||||
|     else: | ||||
|         eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) | ||||
|     return eigenvalue | ||||
|  | ||||
| def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0): | ||||
|     dim_x = np.array(x_array).shape[0] | ||||
|     i0 = 0 | ||||
|     if np.array(hamiltonian_function(0)).shape==(): | ||||
|         eigenvalue_array = np.zeros((dim_x, 1)) | ||||
|         for x0 in x_array: | ||||
|             hamiltonian = hamiltonian_function(x0) | ||||
|             eigenvalue_array[i0, 0] = np.real(hamiltonian) | ||||
|             i0 += 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian_function(0)).shape[0] | ||||
|         eigenvalue_array = np.zeros((dim_x, dim)) | ||||
|         for x0 in x_array: | ||||
|             if print_show==1: | ||||
|                 print(x0) | ||||
|             hamiltonian = hamiltonian_function(x0) | ||||
|             eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) | ||||
|             eigenvalue_array[i0, :] = eigenvalue | ||||
|             i0 += 1 | ||||
|     return eigenvalue_array | ||||
|  | ||||
| def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0):   | ||||
|     dim_x = np.array(x_array).shape[0] | ||||
|     dim_y = np.array(y_array).shape[0] | ||||
|     if np.array(hamiltonian_function(0,0)).shape==(): | ||||
|         eigenvalue_array = np.zeros((dim_y, dim_x, 1)) | ||||
|         i0 = 0 | ||||
|         for y0 in y_array: | ||||
|             j0 = 0 | ||||
|             for x0 in x_array: | ||||
|                 hamiltonian = hamiltonian_function(x0, y0) | ||||
|                 eigenvalue_array[i0, j0, 0] = np.real(hamiltonian) | ||||
|                 j0 += 1 | ||||
|             i0 += 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian_function(0, 0)).shape[0] | ||||
|         eigenvalue_array = np.zeros((dim_y, dim_x, dim)) | ||||
|         i0 = 0 | ||||
|         for y0 in y_array: | ||||
|             j0 = 0 | ||||
|             if print_show==1: | ||||
|                 print(y0) | ||||
|             for x0 in x_array: | ||||
|                 if print_show_more==1: | ||||
|                     print(x0) | ||||
|                 hamiltonian = hamiltonian_function(x0, y0) | ||||
|                 eigenvalue, eigenvector = np.linalg.eigh(hamiltonian) | ||||
|                 eigenvalue_array[i0, j0, :] = eigenvalue | ||||
|                 j0 += 1 | ||||
|             i0 += 1 | ||||
|     return eigenvalue_array | ||||
|  | ||||
| ## wave functions | ||||
|  | ||||
| def calculate_eigenvector(hamiltonian): | ||||
|     eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)  | ||||
|     return eigenvector | ||||
|  | ||||
| ## find vector with the same gauge | ||||
|  | ||||
| def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=10001, precision=1e-6): | ||||
|     phase_1_pre = 0 | ||||
|     phase_2_pre = np.pi | ||||
|     for i0 in range(n_test): | ||||
|         test_1 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_1_pre) - vector_ref)) | ||||
|         test_2 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_2_pre) - vector_ref)) | ||||
|         if test_1 < precision: | ||||
|             phase = phase_1_pre | ||||
|             if show_times==1: | ||||
|                 print('Binary search times=', i0) | ||||
|             break | ||||
|         if i0 == n_test-1: | ||||
|             phase = phase_1_pre | ||||
|             if show_error==1: | ||||
|                 print('Gauge not found with binary search times=', i0) | ||||
|         if test_1 < test_2: | ||||
|             if i0 == 0: | ||||
|                 phase_1 = phase_1_pre-(phase_2_pre-phase_1_pre)/2 | ||||
|                 phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2 | ||||
|             else: | ||||
|                 phase_1 = phase_1_pre | ||||
|                 phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2 | ||||
|         else: | ||||
|             if i0 == 0: | ||||
|                 phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2 | ||||
|                 phase_2 = phase_2_pre+(phase_2_pre-phase_1_pre)/2 | ||||
|             else: | ||||
|                 phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2 | ||||
|                 phase_2 = phase_2_pre  | ||||
|         phase_1_pre = phase_1 | ||||
|         phase_2_pre = phase_2 | ||||
|     vector_target = vector_target*cmath.exp(1j*phase) | ||||
|     if show_phase==1: | ||||
|         print('Phase=', phase)    | ||||
|     return vector_target | ||||
|  | ||||
| def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None): | ||||
|     if index == None: | ||||
|         index = np.argmax(np.abs(vector)) | ||||
|     sign_pre = np.sign(np.imag(vector[index])) | ||||
|     for phase in np.arange(0, 2*np.pi, precision): | ||||
|         sign =  np.sign(np.imag(vector[index]*cmath.exp(1j*phase))) | ||||
|         if np.abs(np.imag(vector[index]*cmath.exp(1j*phase))) < 1e-9 or sign == -sign_pre: | ||||
|             break | ||||
|         sign_pre = sign | ||||
|     vector = vector*cmath.exp(1j*phase) | ||||
|     if np.real(vector[index]) < 0: | ||||
|         vector = -vector | ||||
|     return vector  | ||||
| @@ -1,74 +0,0 @@ | ||||
| # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. | ||||
|  | ||||
| # basic functions | ||||
|  | ||||
| import numpy as np | ||||
|  | ||||
| ## test | ||||
|  | ||||
| def test(): | ||||
|     print('\nSuccess in the installation of Guan package!\n') | ||||
|  | ||||
| ## Pauli matrices | ||||
|  | ||||
| def sigma_0(): | ||||
|     return np.eye(2) | ||||
|  | ||||
| def sigma_x(): | ||||
|     return np.array([[0, 1],[1, 0]]) | ||||
|  | ||||
| def sigma_y(): | ||||
|     return np.array([[0, -1j],[1j, 0]]) | ||||
|  | ||||
| def sigma_z(): | ||||
|     return np.array([[1, 0],[0, -1]]) | ||||
|  | ||||
| ## Kronecker product of Pauli matrices | ||||
|  | ||||
| def sigma_00(): | ||||
|     return np.kron(sigma_0(), sigma_0()) | ||||
|  | ||||
| def sigma_0x(): | ||||
|     return np.kron(sigma_0(), sigma_x()) | ||||
|  | ||||
| def sigma_0y(): | ||||
|     return np.kron(sigma_0(), sigma_y()) | ||||
|  | ||||
| def sigma_0z(): | ||||
|     return np.kron(sigma_0(), sigma_z()) | ||||
|  | ||||
| def sigma_x0(): | ||||
|     return np.kron(sigma_x(), sigma_0()) | ||||
|  | ||||
| def sigma_xx(): | ||||
|     return np.kron(sigma_x(), sigma_x()) | ||||
|  | ||||
| def sigma_xy(): | ||||
|     return np.kron(sigma_x(), sigma_y()) | ||||
|  | ||||
| def sigma_xz(): | ||||
|     return np.kron(sigma_x(), sigma_z()) | ||||
|  | ||||
| def sigma_y0(): | ||||
|     return np.kron(sigma_y(), sigma_0()) | ||||
|  | ||||
| def sigma_yx(): | ||||
|     return np.kron(sigma_y(), sigma_x()) | ||||
|  | ||||
| def sigma_yy(): | ||||
|     return np.kron(sigma_y(), sigma_y()) | ||||
|  | ||||
| def sigma_yz(): | ||||
|     return np.kron(sigma_y(), sigma_z()) | ||||
|  | ||||
| def sigma_z0(): | ||||
|     return np.kron(sigma_z(), sigma_0()) | ||||
|  | ||||
| def sigma_zx(): | ||||
|     return np.kron(sigma_z(), sigma_x()) | ||||
|  | ||||
| def sigma_zy(): | ||||
|     return np.kron(sigma_z(), sigma_y()) | ||||
|  | ||||
| def sigma_zz(): | ||||
|     return np.kron(sigma_z(), sigma_z()) | ||||
| @@ -1,139 +0,0 @@ | ||||
| # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. | ||||
|  | ||||
| # density of states | ||||
|  | ||||
| import numpy as np | ||||
| from math import * | ||||
| import guan | ||||
|  | ||||
| def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01): | ||||
|     green = guan.green_function(fermi_energy, hamiltonian, broadening) | ||||
|     total_dos = -np.trace(np.imag(green))/pi | ||||
|     return total_dos | ||||
|  | ||||
| def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01): | ||||
|     dim = np.array(fermi_energy_array).shape[0] | ||||
|     total_dos_array = np.zeros(dim) | ||||
|     i0 = 0 | ||||
|     for fermi_energy in fermi_energy_array: | ||||
|         total_dos_array[i0] = total_density_of_states(fermi_energy, hamiltonian, broadening) | ||||
|         i0 += 1 | ||||
|     return total_dos_array | ||||
|  | ||||
| def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01): | ||||
|     # dim_hamiltonian = N1*N2*internal_degree | ||||
|     green = guan.green_function(fermi_energy, hamiltonian, broadening) | ||||
|     local_dos = np.zeros((N2, N1)) | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2): | ||||
|             for i in range(internal_degree):  | ||||
|                 local_dos[i2, i1] = local_dos[i2, i1]-np.imag(green[i1*N2*internal_degree+i2*internal_degree+i, i1*N2*internal_degree+i2*internal_degree+i])/pi | ||||
|     return local_dos | ||||
|  | ||||
| def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01): | ||||
|     # dim_hamiltonian = N1*N2*N3*internal_degree | ||||
|     green = guan.green_function(fermi_energy, hamiltonian, broadening) | ||||
|     local_dos = np.zeros((N3, N2, N1)) | ||||
|     for i1 in range(N1): | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3): | ||||
|                 for i in range(internal_degree):  | ||||
|                     local_dos[i3, i2, i1] = local_dos[i3, i2, i1]-np.imag(green[i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i, i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i])/pi | ||||
|     return local_dos | ||||
|  | ||||
| def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01): | ||||
|     # dim_h00 = N2*internal_degree | ||||
|     local_dos = np.zeros((N2, N1)) | ||||
|     green_11_1 = guan.green_function(fermi_energy, h00, broadening) | ||||
|     for i1 in range(N1): | ||||
|         green_nn_n_minus = green_11_1 | ||||
|         green_in_n_minus = green_11_1 | ||||
|         green_ni_n_minus = green_11_1 | ||||
|         green_ii_n_minus = green_11_1 | ||||
|         for i2_0 in range(i1): | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||
|             green_nn_n_minus = green_nn_n | ||||
|         if i1!=0: | ||||
|             green_in_n_minus = green_nn_n | ||||
|             green_ni_n_minus = green_nn_n | ||||
|             green_ii_n_minus = green_nn_n | ||||
|         for size_0 in range(N1-1-i1): | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||
|             green_nn_n_minus = green_nn_n | ||||
|             green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) | ||||
|             green_ii_n_minus = green_ii_n | ||||
|             green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n) | ||||
|             green_in_n_minus = green_in_n | ||||
|             green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus) | ||||
|             green_ni_n_minus = green_ni_n | ||||
|         for i2 in range(N2): | ||||
|             for i in range(internal_degree): | ||||
|                 local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/pi | ||||
|     return local_dos | ||||
|  | ||||
| def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01): | ||||
|     # dim_h00 = N2*N3*internal_degree | ||||
|     local_dos = np.zeros((N3, N2, N1)) | ||||
|     green_11_1 = guan.green_function(fermi_energy, h00, broadening) | ||||
|     for i1 in range(N1): | ||||
|         green_nn_n_minus = green_11_1 | ||||
|         green_in_n_minus = green_11_1 | ||||
|         green_ni_n_minus = green_11_1 | ||||
|         green_ii_n_minus = green_11_1 | ||||
|         for i1_0 in range(i1): | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||
|             green_nn_n_minus = green_nn_n | ||||
|         if i1!=0: | ||||
|             green_in_n_minus = green_nn_n | ||||
|             green_ni_n_minus = green_nn_n | ||||
|             green_ii_n_minus = green_nn_n | ||||
|         for size_0 in range(N1-1-i1): | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||
|             green_nn_n_minus = green_nn_n | ||||
|             green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) | ||||
|             green_ii_n_minus = green_ii_n | ||||
|             green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n) | ||||
|             green_in_n_minus = green_in_n | ||||
|             green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus) | ||||
|             green_ni_n_minus = green_ni_n | ||||
|         for i2 in range(N2): | ||||
|             for i3 in range(N3): | ||||
|                 for i in range(internal_degree): | ||||
|                     local_dos[i3, i2, i1] = local_dos[i3, i2, i1] -np.imag(green_ii_n_minus[i2*N3*internal_degree+i3*internal_degree+i, i2*N3*internal_degree+i3*internal_degree+i])/pi        | ||||
|     return local_dos | ||||
|  | ||||
| def local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01): | ||||
|     # dim_h00 = N2*internal_degree | ||||
|     local_dos = np.zeros((N2, N1)) | ||||
|     green_11_1 = guan.green_function(fermi_energy, h00+left_self_energy, broadening) | ||||
|     for i1 in range(N1): | ||||
|         green_nn_n_minus = green_11_1 | ||||
|         green_in_n_minus = green_11_1 | ||||
|         green_ni_n_minus = green_11_1 | ||||
|         green_ii_n_minus = green_11_1 | ||||
|         for i2_0 in range(i1): | ||||
|             if i2_0 == N1-1-1: | ||||
|                 green_nn_n = guan.green_function_nn_n(fermi_energy, h00+right_self_energy, h01, green_nn_n_minus, broadening) | ||||
|             else: | ||||
|                 green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||
|             green_nn_n_minus = green_nn_n | ||||
|         if i1!=0: | ||||
|             green_in_n_minus = green_nn_n | ||||
|             green_ni_n_minus = green_nn_n | ||||
|             green_ii_n_minus = green_nn_n | ||||
|         for size_0 in range(N1-1-i1): | ||||
|             if size_0 == N1-1-i1-1: | ||||
|                 green_nn_n = guan.green_function_nn_n(fermi_energy, h00+right_self_energy, h01, green_nn_n_minus, broadening) | ||||
|             else: | ||||
|                 green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening) | ||||
|             green_nn_n_minus = green_nn_n | ||||
|             green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) | ||||
|             green_ii_n_minus = green_ii_n | ||||
|             green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n) | ||||
|             green_in_n_minus = green_in_n | ||||
|             green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus) | ||||
|             green_ni_n_minus = green_ni_n | ||||
|         for i2 in range(N2): | ||||
|             for i in range(internal_degree): | ||||
|                 local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/pi | ||||
|     return local_dos | ||||
| @@ -1,130 +0,0 @@ | ||||
| # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. | ||||
|  | ||||
| # others | ||||
|  | ||||
| import guan | ||||
|  | ||||
| ## download | ||||
|  | ||||
| def download_with_scihub(address=None, num=1): | ||||
|     from bs4 import BeautifulSoup | ||||
|     import re | ||||
|     import requests | ||||
|     import os | ||||
|     if num==1 and address!=None: | ||||
|         address_array = [address] | ||||
|     else: | ||||
|         address_array = [] | ||||
|         for i in range(num): | ||||
|             address = input('\nInput:') | ||||
|             address_array.append(address) | ||||
|     for address in address_array: | ||||
|         r = requests.post('https://sci-hub.st/', data={'request': address}) | ||||
|         print('\nResponse:', r) | ||||
|         print('Address:', r.url) | ||||
|         soup = BeautifulSoup(r.text, features='lxml') | ||||
|         pdf_URL = soup.iframe['src'] | ||||
|         if re.search(re.compile('^https:'), pdf_URL): | ||||
|             pass | ||||
|         else: | ||||
|             pdf_URL = 'https:'+pdf_URL | ||||
|         print('PDF address:', pdf_URL) | ||||
|         name = re.search(re.compile('fdp.*?/'),pdf_URL[::-1]).group()[::-1][1::] | ||||
|         print('PDF name:', name) | ||||
|         print('Directory:', os.getcwd()) | ||||
|         print('\nDownloading...') | ||||
|         r = requests.get(pdf_URL, stream=True) | ||||
|         with open(name, 'wb') as f: | ||||
|             for chunk in r.iter_content(chunk_size=32): | ||||
|                 f.write(chunk) | ||||
|         print('Completed!\n') | ||||
|     if num != 1: | ||||
|         print('All completed!\n') | ||||
|  | ||||
| ## audio | ||||
|  | ||||
| def str_to_audio(str='hello world', rate=125, voice=1, read=1, save=0, print_text=0): | ||||
|     import pyttsx3 | ||||
|     if print_text==1: | ||||
|         print(str) | ||||
|     engine = pyttsx3.init() | ||||
|     voices = engine.getProperty('voices')   | ||||
|     engine.setProperty('voice', voices[voice].id) | ||||
|     engine.setProperty("rate", rate) | ||||
|     if save==1: | ||||
|         engine.save_to_file(str, 'str.mp3') | ||||
|         engine.runAndWait() | ||||
|         print('MP3 file saved!') | ||||
|     if read==1: | ||||
|         engine.say(str) | ||||
|         engine.runAndWait() | ||||
|  | ||||
| def txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, print_text=0): | ||||
|     import pyttsx3 | ||||
|     f = open(txt_path, 'r', encoding ='utf-8') | ||||
|     text = f.read() | ||||
|     if print_text==1: | ||||
|         print(text) | ||||
|     engine = pyttsx3.init() | ||||
|     voices = engine.getProperty('voices')   | ||||
|     engine.setProperty('voice', voices[voice].id) | ||||
|     engine.setProperty("rate", rate) | ||||
|     if save==1: | ||||
|         import re | ||||
|         file_name = re.split('[/,\\\]', txt_path)[-1][:-4] | ||||
|         engine.save_to_file(text, file_name+'.mp3') | ||||
|         engine.runAndWait() | ||||
|         print('MP3 file saved!') | ||||
|     if read==1: | ||||
|         engine.say(text) | ||||
|         engine.runAndWait() | ||||
|  | ||||
| def pdf_to_text(pdf_path): | ||||
|     from pdfminer.pdfparser import PDFParser, PDFDocument | ||||
|     from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter | ||||
|     from pdfminer.converter import PDFPageAggregator | ||||
|     from pdfminer.layout import LAParams, LTTextBox | ||||
|     from pdfminer.pdfinterp import PDFTextExtractionNotAllowed | ||||
|     import logging  | ||||
|     logging.Logger.propagate = False  | ||||
|     logging.getLogger().setLevel(logging.ERROR)  | ||||
|     praser = PDFParser(open(pdf_path, 'rb')) | ||||
|     doc = PDFDocument() | ||||
|     praser.set_document(doc) | ||||
|     doc.set_parser(praser) | ||||
|     doc.initialize() | ||||
|     if not doc.is_extractable: | ||||
|         raise PDFTextExtractionNotAllowed | ||||
|     else: | ||||
|         rsrcmgr = PDFResourceManager() | ||||
|         laparams = LAParams() | ||||
|         device = PDFPageAggregator(rsrcmgr, laparams=laparams) | ||||
|         interpreter = PDFPageInterpreter(rsrcmgr, device) | ||||
|         content = '' | ||||
|         for page in doc.get_pages(): | ||||
|             interpreter.process_page(page)                         | ||||
|             layout = device.get_result()                      | ||||
|             for x in layout: | ||||
|                 if isinstance(x, LTTextBox): | ||||
|                     content  = content + x.get_text().strip() | ||||
|     return content | ||||
|  | ||||
| def pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, print_text=0): | ||||
|     import pyttsx3 | ||||
|     text = guan.pdf_to_text(pdf_path) | ||||
|     text = text.replace('\n', ' ') | ||||
|     if print_text==1: | ||||
|         print(text) | ||||
|     engine = pyttsx3.init() | ||||
|     voices = engine.getProperty('voices')   | ||||
|     engine.setProperty('voice', voices[voice].id) | ||||
|     engine.setProperty("rate", rate) | ||||
|     if save==1: | ||||
|         import re | ||||
|         file_name = re.split('[/,\\\]', pdf_path)[-1][:-4] | ||||
|         engine.save_to_file(text, file_name+'.mp3') | ||||
|         engine.runAndWait() | ||||
|         print('MP3 file saved!') | ||||
|     if read==1: | ||||
|         engine.say(text) | ||||
|         engine.runAndWait() | ||||
| @@ -1,91 +0,0 @@ | ||||
| # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. | ||||
|  | ||||
| # plot figures | ||||
|  | ||||
| import numpy as np | ||||
|  | ||||
| def plot(x_array, y_array, xlabel='x', ylabel='y', title='', show=1, save=0, filename='a', format='jpg', dpi=300, type='', y_min=None, y_max=None, linewidth=None, markersize=None):  | ||||
|     import matplotlib.pyplot as plt | ||||
|     fig, ax = plt.subplots() | ||||
|     plt.subplots_adjust(bottom=0.20, left=0.18)  | ||||
|     ax.plot(x_array, y_array, type, linewidth=linewidth, markersize=markersize) | ||||
|     ax.grid() | ||||
|     ax.set_title(title, fontsize=20, fontfamily='Times New Roman') | ||||
|     ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')  | ||||
|     ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')  | ||||
|     if y_min!=None or y_max!=None: | ||||
|         if y_min==None: | ||||
|             y_min=min(y_array) | ||||
|         if y_max==None: | ||||
|             y_max=max(y_array) | ||||
|         ax.set_ylim(y_min, y_max) | ||||
|     ax.tick_params(labelsize=20)  | ||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() | ||||
|     [label.set_fontname('Times New Roman') for label in labels] | ||||
|     if save == 1: | ||||
|         plt.savefig(filename+'.'+format, dpi=dpi)  | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|  | ||||
| def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', show=1, save=0, filename='a', format='jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100):  | ||||
|     import matplotlib.pyplot as plt | ||||
|     from matplotlib import cm | ||||
|     from matplotlib.ticker import LinearLocator | ||||
|     matrix = np.array(matrix) | ||||
|     fig, ax = plt.subplots(subplot_kw={"projection": "3d"}) | ||||
|     plt.subplots_adjust(bottom=0.1, right=0.65)  | ||||
|     x_array, y_array = np.meshgrid(x_array, y_array) | ||||
|     if len(matrix.shape) == 2: | ||||
|         surf = ax.plot_surface(x_array, y_array, matrix, rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)  | ||||
|     elif len(matrix.shape) == 3: | ||||
|         for i0 in range(matrix.shape[2]): | ||||
|             surf = ax.plot_surface(x_array, y_array, matrix[:,:,i0], rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)  | ||||
|     ax.set_title(title, fontsize=20, fontfamily='Times New Roman') | ||||
|     ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')  | ||||
|     ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')  | ||||
|     ax.set_zlabel(zlabel, fontsize=20, fontfamily='Times New Roman')  | ||||
|     ax.zaxis.set_major_locator(LinearLocator(5))  | ||||
|     ax.zaxis.set_major_formatter('{x:.2f}')   | ||||
|     if z_min!=None or z_max!=None: | ||||
|         if z_min==None: | ||||
|             z_min=matrix.min() | ||||
|         if z_max==None: | ||||
|             z_max=matrix.max() | ||||
|         ax.set_zlim(z_min, z_max) | ||||
|     ax.tick_params(labelsize=15)  | ||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels() | ||||
|     [label.set_fontname('Times New Roman') for label in labels]  | ||||
|     cax = plt.axes([0.80, 0.15, 0.05, 0.75])  | ||||
|     cbar = fig.colorbar(surf, cax=cax)   | ||||
|     cbar.ax.tick_params(labelsize=15) | ||||
|     for l in cbar.ax.yaxis.get_ticklabels(): | ||||
|         l.set_family('Times New Roman') | ||||
|     if save == 1: | ||||
|         plt.savefig(filename+'.'+format, dpi=dpi)  | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
|  | ||||
| def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', show=1, save=0, filename='a', format='jpg', dpi=300):   | ||||
|     import matplotlib.pyplot as plt | ||||
|     fig, ax = plt.subplots() | ||||
|     plt.subplots_adjust(bottom=0.2, right=0.75, left = 0.16)  | ||||
|     x_array, y_array = np.meshgrid(x_array, y_array) | ||||
|     contour = ax.contourf(x_array,y_array,matrix,cmap='jet')  | ||||
|     ax.set_title(title, fontsize=20, fontfamily='Times New Roman') | ||||
|     ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')  | ||||
|     ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')  | ||||
|     ax.tick_params(labelsize=15)  | ||||
|     labels = ax.get_xticklabels() + ax.get_yticklabels() | ||||
|     [label.set_fontname('Times New Roman') for label in labels]  | ||||
|     cax = plt.axes([0.78, 0.17, 0.08, 0.71]) | ||||
|     cbar = fig.colorbar(contour, cax=cax)  | ||||
|     cbar.ax.tick_params(labelsize=15)  | ||||
|     for l in cbar.ax.yaxis.get_ticklabels(): | ||||
|         l.set_family('Times New Roman') | ||||
|     if save == 1: | ||||
|         plt.savefig(filename+'.'+format, dpi=dpi)  | ||||
|     if show == 1: | ||||
|         plt.show() | ||||
|     plt.close('all') | ||||
| @@ -1,264 +0,0 @@ | ||||
| # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. | ||||
|  | ||||
| # quantum transport | ||||
|  | ||||
| ## conductance | ||||
|  | ||||
| import numpy as np | ||||
| import copy | ||||
| import guan | ||||
|  | ||||
| def calculate_conductance(fermi_energy, h00, h01, length=100): | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
|     for ix in range(length): | ||||
|         if ix == 0: | ||||
|             green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) | ||||
|             green_0n_n = copy.deepcopy(green_nn_n) | ||||
|         elif ix != length-1: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|         else: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|     return conductance | ||||
|  | ||||
| def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100): | ||||
|     dim = np.array(fermi_energy_array).shape[0] | ||||
|     conductance_array = np.zeros(dim) | ||||
|     i0 = 0 | ||||
|     for fermi_energy_0 in fermi_energy_array: | ||||
|         conductance_array[i0] = np.real(calculate_conductance(fermi_energy_0, h00, h01, length)) | ||||
|         i0 += 1 | ||||
|     return conductance_array | ||||
|  | ||||
| def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100): | ||||
|     right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) | ||||
|     dim = np.array(h00).shape[0] | ||||
|     for ix in range(length): | ||||
|         disorder = np.zeros((dim, dim)) | ||||
|         for dim0 in range(dim): | ||||
|             if np.random.uniform(0, 1)<=disorder_concentration: | ||||
|                 disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity) | ||||
|         if ix == 0: | ||||
|             green_nn_n = guan.green_function(fermi_energy, h00+disorder, broadening=0, self_energy=left_self_energy) | ||||
|             green_0n_n = copy.deepcopy(green_nn_n) | ||||
|         elif ix != length-1: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|         else: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|             green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|     conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj())) | ||||
|     return conductance | ||||
|  | ||||
| def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1): | ||||
|     dim = np.array(disorder_intensity_array).shape[0] | ||||
|     conductance_array = np.zeros(dim) | ||||
|     i0 = 0 | ||||
|     for disorder_intensity_0 in disorder_intensity_array: | ||||
|         for times in range(calculation_times): | ||||
|             conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity_0, disorder_concentration=disorder_concentration, length=length)) | ||||
|         i0 += 1 | ||||
|     conductance_array = conductance_array/calculation_times | ||||
|     return conductance_array | ||||
|  | ||||
| def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h01, disorder_concentration_array, disorder_intensity=2.0, length=100, calculation_times=1): | ||||
|     dim = np.array(disorder_concentration_array).shape[0] | ||||
|     conductance_array = np.zeros(dim) | ||||
|     i0 = 0 | ||||
|     for disorder_concentration_0 in disorder_concentration_array: | ||||
|         for times in range(calculation_times): | ||||
|             conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration_0, length=length)) | ||||
|         i0 += 1 | ||||
|     conductance_array = conductance_array/calculation_times | ||||
|     return conductance_array | ||||
|  | ||||
| def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, length_array, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1): | ||||
|     dim = np.array(length_array).shape[0] | ||||
|     conductance_array = np.zeros(dim) | ||||
|     i0 = 0 | ||||
|     for length_0 in length_array: | ||||
|         for times in range(calculation_times): | ||||
|             conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length_0)) | ||||
|         i0 += 1 | ||||
|     conductance_array = conductance_array/calculation_times | ||||
|     return conductance_array | ||||
|  | ||||
|  | ||||
| ## scattering matrix | ||||
|  | ||||
| def if_active_channel(k_of_channel): | ||||
|     if np.abs(np.imag(k_of_channel))<1e-6: | ||||
|         if_active = 1 | ||||
|     else: | ||||
|         if_active = 0 | ||||
|     return if_active | ||||
|  | ||||
| def get_k_and_velocity_of_channel(fermi_energy, h00, h01): | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     transfer = guan.transfer_matrix(fermi_energy, h00, h01) | ||||
|     eigenvalue, eigenvector = np.linalg.eig(transfer) | ||||
|     k_of_channel = np.log(eigenvalue)/1j | ||||
|     ind = np.argsort(np.real(k_of_channel)) | ||||
|     k_of_channel = np.sort(k_of_channel) | ||||
|     temp = np.zeros((2*dim, 2*dim), dtype=complex) | ||||
|     temp2 = np.zeros((2*dim), dtype=complex) | ||||
|     i0 = 0 | ||||
|     for ind0 in ind: | ||||
|         temp[:, i0] = eigenvector[:, ind0] | ||||
|         temp2[i0] = eigenvalue[ind0] | ||||
|         i0 += 1 | ||||
|     eigenvalue = copy.deepcopy(temp2) | ||||
|     temp = temp[0:dim, :] | ||||
|     factor = np.zeros(2*dim, dtype=complex) | ||||
|     for dim0 in range(dim): | ||||
|         factor = factor+np.square(np.abs(temp[dim0, :])) | ||||
|     for dim0 in range(2*dim): | ||||
|         temp[:, dim0] = temp[:, dim0]/np.sqrt(factor[dim0]) | ||||
|     velocity_of_channel = np.zeros((2*dim), dtype=complex) | ||||
|     for dim0 in range(2*dim): | ||||
|         velocity_of_channel[dim0] = eigenvalue[dim0]*np.dot(np.dot(temp[0:dim, :].transpose().conj(), h01),temp[0:dim, :])[dim0, dim0] | ||||
|     velocity_of_channel = -2*np.imag(velocity_of_channel) | ||||
|     eigenvector = copy.deepcopy(temp)  | ||||
|     return k_of_channel, velocity_of_channel, eigenvalue, eigenvector | ||||
|  | ||||
| def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01): | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     k_of_channel, velocity_of_channel, eigenvalue, eigenvector = get_k_and_velocity_of_channel(fermi_energy, h00, h01) | ||||
|     ind_right_active = 0; ind_right_evanescent = 0; ind_left_active = 0; ind_left_evanescent = 0 | ||||
|     k_right = np.zeros(dim, dtype=complex); k_left = np.zeros(dim, dtype=complex) | ||||
|     velocity_right = np.zeros(dim, dtype=complex); velocity_left = np.zeros(dim, dtype=complex) | ||||
|     lambda_right = np.zeros(dim, dtype=complex); lambda_left = np.zeros(dim, dtype=complex) | ||||
|     u_right = np.zeros((dim, dim), dtype=complex); u_left = np.zeros((dim, dim), dtype=complex) | ||||
|     for dim0 in range(2*dim): | ||||
|         if_active = if_active_channel(k_of_channel[dim0]) | ||||
|         if if_active_channel(k_of_channel[dim0]) == 1: | ||||
|             direction = np.sign(velocity_of_channel[dim0]) | ||||
|         else: | ||||
|             direction = np.sign(np.imag(k_of_channel[dim0])) | ||||
|         if direction == 1: | ||||
|             if if_active == 1:  # right-moving active channel | ||||
|                 k_right[ind_right_active] = k_of_channel[dim0] | ||||
|                 velocity_right[ind_right_active] = velocity_of_channel[dim0] | ||||
|                 lambda_right[ind_right_active] = eigenvalue[dim0] | ||||
|                 u_right[:, ind_right_active] = eigenvector[:, dim0] | ||||
|                 ind_right_active += 1 | ||||
|             else:               # right-moving evanescent channel | ||||
|                 k_right[dim-1-ind_right_evanescent] = k_of_channel[dim0] | ||||
|                 velocity_right[dim-1-ind_right_evanescent] = velocity_of_channel[dim0] | ||||
|                 lambda_right[dim-1-ind_right_evanescent] = eigenvalue[dim0] | ||||
|                 u_right[:, dim-1-ind_right_evanescent] = eigenvector[:, dim0] | ||||
|                 ind_right_evanescent += 1 | ||||
|         else: | ||||
|             if if_active == 1:  # left-moving active channel | ||||
|                 k_left[ind_left_active] = k_of_channel[dim0] | ||||
|                 velocity_left[ind_left_active] = velocity_of_channel[dim0] | ||||
|                 lambda_left[ind_left_active] = eigenvalue[dim0] | ||||
|                 u_left[:, ind_left_active] = eigenvector[:, dim0] | ||||
|                 ind_left_active += 1 | ||||
|             else:               # left-moving evanescent channel | ||||
|                 k_left[dim-1-ind_left_evanescent] = k_of_channel[dim0] | ||||
|                 velocity_left[dim-1-ind_left_evanescent] = velocity_of_channel[dim0] | ||||
|                 lambda_left[dim-1-ind_left_evanescent] = eigenvalue[dim0] | ||||
|                 u_left[:, dim-1-ind_left_evanescent] = eigenvector[:, dim0] | ||||
|                 ind_left_evanescent += 1 | ||||
|     lambda_matrix_right = np.diag(lambda_right) | ||||
|     lambda_matrix_left = np.diag(lambda_left) | ||||
|     f_right = np.dot(np.dot(u_right, lambda_matrix_right), np.linalg.inv(u_right)) | ||||
|     f_left = np.dot(np.dot(u_left, lambda_matrix_left), np.linalg.inv(u_left)) | ||||
|     return k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active | ||||
|  | ||||
| def calculate_scattering_matrix(fermi_energy, h00, h01, length=100): | ||||
|     h01 = np.array(h01) | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = get_classified_k_velocity_u_and_f(fermi_energy, h00, h01) | ||||
|     right_self_energy = np.dot(h01, f_right) | ||||
|     left_self_energy = np.dot(h01.transpose().conj(), np.linalg.inv(f_left)) | ||||
|     for i0 in range(length): | ||||
|         if i0 == 0: | ||||
|             green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) | ||||
|             green_00_n = copy.deepcopy(green_nn_n) | ||||
|             green_0n_n = copy.deepcopy(green_nn_n) | ||||
|             green_n0_n = copy.deepcopy(green_nn_n) | ||||
|         elif i0 != length-1:  | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)  | ||||
|         else: | ||||
|             green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) | ||||
|         green_00_n = guan.green_function_ii_n(green_00_n, green_0n_n, h01, green_nn_n, green_n0_n) | ||||
|         green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n) | ||||
|         green_n0_n = guan.green_function_ni_n(green_nn_n, h01, green_n0_n) | ||||
|     temp = np.dot(h01.transpose().conj(), np.linalg.inv(f_right)-np.linalg.inv(f_left)) | ||||
|     transmission_matrix = np.dot(np.dot(np.linalg.inv(u_right), np.dot(green_n0_n, temp)), u_right)  | ||||
|     reflection_matrix = np.dot(np.dot(np.linalg.inv(u_left), np.dot(green_00_n, temp)-np.identity(dim)), u_right) | ||||
|     for dim0 in range(dim): | ||||
|         for dim1 in range(dim): | ||||
|             if_active = if_active_channel(k_right[dim0])*if_active_channel(k_right[dim1]) | ||||
|             if if_active == 1: | ||||
|                 transmission_matrix[dim0, dim1] = np.sqrt(np.abs(velocity_right[dim0]/velocity_right[dim1])) * transmission_matrix[dim0, dim1] | ||||
|                 reflection_matrix[dim0, dim1] = np.sqrt(np.abs(velocity_left[dim0]/velocity_right[dim1]))*reflection_matrix[dim0, dim1] | ||||
|             else: | ||||
|                 transmission_matrix[dim0, dim1] = 0 | ||||
|                 reflection_matrix[dim0, dim1] = 0 | ||||
|     sum_of_tran_refl_array = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)+np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) | ||||
|     for sum_of_tran_refl in sum_of_tran_refl_array: | ||||
|         if sum_of_tran_refl > 1.001: | ||||
|             print('Error Alert: scattering matrix is not normalized!') | ||||
|     return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active | ||||
|  | ||||
| def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, on_print=1, on_write=0): | ||||
|     if np.array(h00).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(h00).shape[0] | ||||
|     transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = calculate_scattering_matrix(fermi_energy, h00, h01, length) | ||||
|     if on_print == 1: | ||||
|         print('\nActive channel (left or right) = ', ind_right_active) | ||||
|         print('Evanescent channel (left or right) = ', dim-ind_right_active, '\n') | ||||
|         print('K of right-moving active channels:\n', np.real(k_right[0:ind_right_active])) | ||||
|         print('K of left-moving active channels:\n', np.real(k_left[0:ind_right_active]), '\n') | ||||
|         print('Velocity of right-moving active channels:\n', np.real(velocity_right[0:ind_right_active])) | ||||
|         print('Velocity of left-moving active channels:\n', np.real(velocity_left[0:ind_right_active]), '\n') | ||||
|         print('Transmission matrix:\n', np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))) | ||||
|         print('Reflection matrix:\n', np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), '\n') | ||||
|         print('Total transmission of channels:\n', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) | ||||
|         print('Total reflection of channels:\n',np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) | ||||
|         print('Sum of transmission and reflection of channels:\n', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)) | ||||
|         print('Total conductance = ', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))), '\n') | ||||
|     if on_write == 1: | ||||
|         with open('a.txt', 'w') as f: | ||||
|             f.write('Active channel (left or right) = ' + str(ind_right_active) + '\n') | ||||
|             f.write('Evanescent channel (left or right) = ' + str(dim - ind_right_active) + '\n\n') | ||||
|             f.write('Channel               K                                     Velocity\n') | ||||
|             for ind0 in range(ind_right_active): | ||||
|                 f.write('   '+str(ind0 + 1) + '   |    '+str(np.real(k_right[ind0]))+'            ' + str(np.real(velocity_right[ind0]))+'\n') | ||||
|             f.write('\n') | ||||
|             for ind0 in range(ind_right_active): | ||||
|                 f.write('  -' + str(ind0 + 1) + '   |    ' + str(np.real(k_left[ind0])) + '            ' + str(np.real(velocity_left[ind0])) + '\n') | ||||
|             f.write('\nScattering matrix:\n              ') | ||||
|             for ind0 in range(ind_right_active): | ||||
|                 f.write(str(ind0+1)+'               ') | ||||
|             f.write('\n') | ||||
|             for ind1 in range(ind_right_active): | ||||
|                 f.write('  '+str(ind1+1)+'    ') | ||||
|                 for ind2 in range(ind_right_active): | ||||
|                     f.write('%f' % np.square(np.abs(transmission_matrix[ind1, ind2]))+'    ') | ||||
|                 f.write('\n') | ||||
|             f.write('\n') | ||||
|             for ind1 in range(ind_right_active): | ||||
|                 f.write(' -'+str(ind1+1)+'    ') | ||||
|                 for ind2 in range(ind_right_active): | ||||
|                     f.write('%f' % np.square(np.abs(reflection_matrix[ind1, ind2]))+'    ') | ||||
|                 f.write('\n') | ||||
|             f.write('\n') | ||||
|             f.write('Total transmission of channels:\n'+str(np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0))+'\n') | ||||
|             f.write('Total conductance = '+str(np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))))+'\n') | ||||
| @@ -1,87 +0,0 @@ | ||||
| # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. | ||||
|  | ||||
| # read and write | ||||
|  | ||||
| import numpy as np | ||||
|  | ||||
| def read_one_dimensional_data(filename='a', format='txt'):  | ||||
|     f = open(filename+'.'+format, 'r') | ||||
|     text = f.read() | ||||
|     f.close() | ||||
|     row_list = np.array(text.split('\n'))  | ||||
|     dim_column = np.array(row_list[0].split()).shape[0]  | ||||
|     x_array = np.array([]) | ||||
|     y_array = np.array([]) | ||||
|     for row in row_list: | ||||
|         column = np.array(row.split())  | ||||
|         if column.shape[0] != 0:   | ||||
|             x_array = np.append(x_array, [float(column[0])], axis=0)   | ||||
|             y_row = np.zeros(dim_column-1) | ||||
|             for dim0 in range(dim_column-1): | ||||
|                 y_row[dim0] = float(column[dim0+1]) | ||||
|             if np.array(y_array).shape[0] == 0: | ||||
|                 y_array = [y_row] | ||||
|             else: | ||||
|                 y_array = np.append(y_array, [y_row], axis=0) | ||||
|     return x_array, y_array | ||||
|  | ||||
| def read_two_dimensional_data(filename='a', format='txt'):  | ||||
|     f = open(filename+'.'+format, 'r') | ||||
|     text = f.read() | ||||
|     f.close() | ||||
|     row_list = np.array(text.split('\n'))  | ||||
|     dim_column = np.array(row_list[0].split()).shape[0]  | ||||
|     x_array = np.array([]) | ||||
|     y_array = np.array([]) | ||||
|     matrix = np.array([]) | ||||
|     for i0 in range(row_list.shape[0]): | ||||
|         column = np.array(row_list[i0].split())  | ||||
|         if i0 == 0: | ||||
|             x_str = column[1::]  | ||||
|             x_array = np.zeros(x_str.shape[0]) | ||||
|             for i00 in range(x_str.shape[0]): | ||||
|                 x_array[i00] = float(x_str[i00])  | ||||
|         elif column.shape[0] != 0:  | ||||
|             y_array = np.append(y_array, [float(column[0])], axis=0)   | ||||
|             matrix_row = np.zeros(dim_column-1) | ||||
|             for dim0 in range(dim_column-1): | ||||
|                 matrix_row[dim0] = float(column[dim0+1]) | ||||
|             if np.array(matrix).shape[0] == 0: | ||||
|                 matrix = [matrix_row] | ||||
|             else: | ||||
|                 matrix = np.append(matrix, [matrix_row], axis=0) | ||||
|     return x_array, y_array, matrix | ||||
|  | ||||
| def write_one_dimensional_data(x_array, y_array, filename='a', format='txt'):  | ||||
|     x_array = np.array(x_array) | ||||
|     y_array = np.array(y_array) | ||||
|     with open(filename+'.'+format, 'w') as f: | ||||
|         i0 = 0 | ||||
|         for x0 in x_array: | ||||
|             f.write(str(x0)+'   ') | ||||
|             if len(y_array.shape) == 1: | ||||
|                 f.write(str(y_array[i0])+'\n') | ||||
|             elif len(y_array.shape) == 2: | ||||
|                 for j0 in range(y_array.shape[1]): | ||||
|                     f.write(str(y_array[i0, j0])+'   ') | ||||
|                 f.write('\n') | ||||
|             i0 += 1 | ||||
|  | ||||
| def write_two_dimensional_data(x_array, y_array, matrix, filename='a', format='txt'):  | ||||
|     x_array = np.array(x_array) | ||||
|     y_array = np.array(y_array) | ||||
|     matrix = np.array(matrix) | ||||
|     with open(filename+'.'+format, 'w') as f: | ||||
|         f.write('0   ') | ||||
|         for x0 in x_array: | ||||
|             f.write(str(x0)+'   ') | ||||
|         f.write('\n') | ||||
|         i0 = 0 | ||||
|         for y0 in y_array: | ||||
|             f.write(str(y0)) | ||||
|             j0 = 0 | ||||
|             for x0 in x_array: | ||||
|                 f.write('   '+str(matrix[i0, j0])+'   ') | ||||
|                 j0 += 1 | ||||
|             f.write('\n') | ||||
|             i0 += 1 | ||||
| @@ -1,131 +0,0 @@ | ||||
| # Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com. | ||||
|  | ||||
| # topological invariant | ||||
|  | ||||
| import numpy as np | ||||
| import cmath | ||||
| from math import * | ||||
| import guan | ||||
|  | ||||
| def calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100): | ||||
|     if np.array(hamiltonian_function(0, 0)).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian_function(0, 0)).shape[0]    | ||||
|     delta = 2*pi/precision | ||||
|     chern_number = np.zeros(dim, dtype=complex) | ||||
|     for kx in np.arange(-pi, pi, delta): | ||||
|         for ky in np.arange(-pi, pi, delta): | ||||
|             H = hamiltonian_function(kx, ky) | ||||
|             vector = guan.calculate_eigenvector(H) | ||||
|             H_delta_kx = hamiltonian_function(kx+delta, ky)  | ||||
|             vector_delta_kx = guan.calculate_eigenvector(H_delta_kx) | ||||
|             H_delta_ky = hamiltonian_function(kx, ky+delta) | ||||
|             vector_delta_ky = guan.calculate_eigenvector(H_delta_ky) | ||||
|             H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta) | ||||
|             vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky) | ||||
|             for i in range(dim): | ||||
|                 vector_i = vector[:, i] | ||||
|                 vector_delta_kx_i = vector_delta_kx[:, i] | ||||
|                 vector_delta_ky_i = vector_delta_ky[:, i] | ||||
|                 vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] | ||||
|                 Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) | ||||
|                 Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) | ||||
|                 Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) | ||||
|                 Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) | ||||
|                 F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) | ||||
|                 chern_number[i] = chern_number[i] + F | ||||
|     chern_number = chern_number/(2*pi*1j) | ||||
|     return chern_number | ||||
|  | ||||
| def calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=10, precision_of_Wilson_loop=100): | ||||
|     delta = 2*pi/precision_of_plaquettes | ||||
|     chern_number = 0 | ||||
|     for kx in np.arange(-pi, pi, delta): | ||||
|         for ky in np.arange(-pi, pi, delta): | ||||
|             vector_array = [] | ||||
|             # line_1 | ||||
|             for i0 in range(precision_of_Wilson_loop+1): | ||||
|                 H_delta = hamiltonian_function(kx+delta/precision_of_Wilson_loop*i0, ky)  | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_2 | ||||
|             for i0 in range(precision_of_Wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_Wilson_loop*(i0+1))   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_3 | ||||
|             for i0 in range(precision_of_Wilson_loop): | ||||
|                 H_delta = hamiltonian_function(kx+delta-delta/precision_of_Wilson_loop*(i0+1), ky+delta)   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             # line_4 | ||||
|             for i0 in range(precision_of_Wilson_loop-1): | ||||
|                 H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_Wilson_loop*(i0+1))   | ||||
|                 eigenvalue, eigenvector = np.linalg.eig(H_delta) | ||||
|                 vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))] | ||||
|                 vector_array.append(vector_delta) | ||||
|             Wilson_loop = 1 | ||||
|             for i0 in range(len(vector_array)-1): | ||||
|                 Wilson_loop = Wilson_loop*np.dot(vector_array[i0].transpose().conj(), vector_array[i0+1]) | ||||
|             Wilson_loop = Wilson_loop*np.dot(vector_array[len(vector_array)-1].transpose().conj(), vector_array[0]) | ||||
|             arg = np.log(np.diagonal(Wilson_loop))/1j | ||||
|             chern_number = chern_number + arg | ||||
|     chern_number = chern_number/(2*pi) | ||||
|     return chern_number | ||||
|  | ||||
| def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300): | ||||
|     if np.array(hamiltonian_function(0, 0)).shape==(): | ||||
|         dim = 1 | ||||
|     else: | ||||
|         dim = np.array(hamiltonian_function(0, 0)).shape[0]    | ||||
|     chern_number = np.zeros(dim, dtype=complex) | ||||
|     L1 = 4*sqrt(3)*pi/9/a | ||||
|     L2 = 2*sqrt(3)*pi/9/a | ||||
|     L3 = 2*pi/3/a | ||||
|     delta1 = 2*L1/precision | ||||
|     delta3 = 2*L3/precision | ||||
|     for kx in np.arange(-L1, L1, delta1): | ||||
|         for ky in np.arange(-L3, L3, delta3): | ||||
|             if (-L2<=kx<=L2) or (kx>L2 and -(L1-kx)*tan(pi/3)<=ky<=(L1-kx)*tan(pi/3)) or (kx<-L2 and  -(kx-(-L1))*tan(pi/3)<=ky<=(kx-(-L1))*tan(pi/3)): | ||||
|                 H = hamiltonian_function(kx, ky) | ||||
|                 vector = guan.calculate_eigenvector(H) | ||||
|                 H_delta_kx = hamiltonian_function(kx+delta1, ky)  | ||||
|                 vector_delta_kx = guan.calculate_eigenvector(H_delta_kx) | ||||
|                 H_delta_ky = hamiltonian_function(kx, ky+delta3) | ||||
|                 vector_delta_ky = guan.calculate_eigenvector(H_delta_ky) | ||||
|                 H_delta_kx_ky = hamiltonian_function(kx+delta1, ky+delta3) | ||||
|                 vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky) | ||||
|                 for i in range(dim): | ||||
|                     vector_i = vector[:, i] | ||||
|                     vector_delta_kx_i = vector_delta_kx[:, i] | ||||
|                     vector_delta_ky_i = vector_delta_ky[:, i] | ||||
|                     vector_delta_kx_ky_i = vector_delta_kx_ky[:, i] | ||||
|                     Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i)) | ||||
|                     Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i)) | ||||
|                     Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)) | ||||
|                     Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)) | ||||
|                     F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy)) | ||||
|                     chern_number[i] = chern_number[i] + F | ||||
|     chern_number = chern_number/(2*pi*1j) | ||||
|     return chern_number | ||||
|  | ||||
| def calculate_wilson_loop(hamiltonian_function, k_min=-pi, k_max=pi, precision=100): | ||||
|     k_array = np.linspace(k_min, k_max, precision) | ||||
|     dim = np.array(hamiltonian_function(0)).shape[0] | ||||
|     wilson_loop_array = np.ones(dim, dtype=complex) | ||||
|     for i in range(dim): | ||||
|         eigenvector_array = [] | ||||
|         for k in k_array: | ||||
|             eigenvector  = guan.calculate_eigenvector(hamiltonian_function(k))   | ||||
|             if k != k_max: | ||||
|                 eigenvector_array.append(eigenvector[:, i]) | ||||
|             else: | ||||
|                 eigenvector_array.append(eigenvector_array[0]) | ||||
|         for i0 in range(precision-1): | ||||
|             F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0]) | ||||
|             wilson_loop_array[i] = np.dot(F, wilson_loop_array[i]) | ||||
|     return wilson_loop_array | ||||
		Reference in New Issue
	
	Block a user