version 0.0.51
This commit is contained in:
parent
0b8cf206f7
commit
e77297648a
@ -27,6 +27,9 @@ sigma_zz = guan.sigma_zz()
|
|||||||
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell, hopping)
|
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell, hopping)
|
||||||
hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2)
|
hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2)
|
||||||
hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3)
|
hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3)
|
||||||
|
hamiltonian_function = guan.one_dimensional_fourier_transform_with_k(unit_cell, hopping)
|
||||||
|
hamiltonian_function = guan.two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, hopping_1, hopping_2)
|
||||||
|
hamiltonian_function = guan.three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cell, hopping_1, hopping_2, hopping_3)
|
||||||
b1 = guan.calculate_one_dimensional_reciprocal_lattice_vector(a1)
|
b1 = guan.calculate_one_dimensional_reciprocal_lattice_vector(a1)
|
||||||
b1, b2 = guan.calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2)
|
b1, b2 = guan.calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2)
|
||||||
b1, b2, b3 = guan.calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3)
|
b1, b2, b3 = guan.calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3)
|
||||||
@ -35,11 +38,11 @@ b1, b2 = guan.calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1
|
|||||||
b1, b2, b3 = guan.calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3)
|
b1, b2, b3 = guan.calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3)
|
||||||
|
|
||||||
# Hamiltonian of finite size systems
|
# Hamiltonian of finite size systems
|
||||||
hamiltonian = guan.finite_size_along_one_direction(N, on_site=0, hopping=1, period=0)
|
hamiltonian = guan.hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0)
|
||||||
hamiltonian = guan.finite_size_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0)
|
hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0)
|
||||||
hamiltonian = guan.finite_size_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0)
|
hamiltonian = guan.hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0)
|
||||||
hopping = guan.hopping_along_zigzag_direction_for_graphene(N)
|
hopping = guan.hopping_matrix_along_zigzag_direction_for_graphene_ribbon(N)
|
||||||
hamiltonian = guan.finite_size_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0)
|
hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0)
|
||||||
|
|
||||||
# Hamiltonian of models in the reciprocal space
|
# Hamiltonian of models in the reciprocal space
|
||||||
hamiltonian = guan.hamiltonian_of_simple_chain(k)
|
hamiltonian = guan.hamiltonian_of_simple_chain(k)
|
||||||
@ -51,6 +54,7 @@ hamiltonian = guan.hamiltonian_of_graphene(k1, k2, M=0, t=1, a=1/sqrt(3))
|
|||||||
hamiltonian = guan.hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1)
|
hamiltonian = guan.hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1)
|
||||||
hamiltonian = guan.hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi=pi/4, a=1/sqrt(3))
|
hamiltonian = guan.hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi=pi/4, a=1/sqrt(3))
|
||||||
hamiltonian = guan.hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi=pi/4)
|
hamiltonian = guan.hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi=pi/4)
|
||||||
|
hamiltonian = guan.hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1)
|
||||||
|
|
||||||
# band structures and wave functions
|
# band structures and wave functions
|
||||||
eigenvalue = guan.calculate_eigenvalue(hamiltonian)
|
eigenvalue = guan.calculate_eigenvalue(hamiltonian)
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
[metadata]
|
[metadata]
|
||||||
# replace with your username:
|
# replace with your username:
|
||||||
name = guan
|
name = guan
|
||||||
version = 0.0.49
|
version = 0.0.51
|
||||||
author = guanjihuan
|
author = guanjihuan
|
||||||
author_email = guanjihuan@163.com
|
author_email = guanjihuan@163.com
|
||||||
description = An open source python package
|
description = An open source python package
|
||||||
|
@ -1,85 +0,0 @@
|
|||||||
# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com.
|
|
||||||
|
|
||||||
# Fourier_transform
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import cmath
|
|
||||||
|
|
||||||
# Fourier_transform for discrete lattices
|
|
||||||
|
|
||||||
def one_dimensional_fourier_transform(k, unit_cell, hopping):
|
|
||||||
unit_cell = np.array(unit_cell)
|
|
||||||
hopping = np.array(hopping)
|
|
||||||
hamiltonian = unit_cell+hopping*cmath.exp(1j*k)+hopping.transpose().conj()*cmath.exp(-1j*k)
|
|
||||||
return hamiltonian
|
|
||||||
|
|
||||||
def two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2):
|
|
||||||
unit_cell = np.array(unit_cell)
|
|
||||||
hopping_1 = np.array(hopping_1)
|
|
||||||
hopping_2 = np.array(hopping_2)
|
|
||||||
hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)
|
|
||||||
return hamiltonian
|
|
||||||
|
|
||||||
def three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3):
|
|
||||||
unit_cell = np.array(unit_cell)
|
|
||||||
hopping_1 = np.array(hopping_1)
|
|
||||||
hopping_2 = np.array(hopping_2)
|
|
||||||
hopping_3 = np.array(hopping_3)
|
|
||||||
hamiltonian = unit_cell+hopping_1*cmath.exp(1j*k1)+hopping_1.transpose().conj()*cmath.exp(-1j*k1)+hopping_2*cmath.exp(1j*k2)+hopping_2.transpose().conj()*cmath.exp(-1j*k2)+hopping_3*cmath.exp(1j*k3)+hopping_3.transpose().conj()*cmath.exp(-1j*k3)
|
|
||||||
return hamiltonian
|
|
||||||
|
|
||||||
|
|
||||||
## calculate reciprocal lattice vectors
|
|
||||||
|
|
||||||
def calculate_one_dimensional_reciprocal_lattice_vector(a1):
|
|
||||||
b1 = 2*np.pi/a1
|
|
||||||
return b1
|
|
||||||
|
|
||||||
def calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2):
|
|
||||||
a1 = np.array(a1)
|
|
||||||
a2 = np.array(a2)
|
|
||||||
a1 = np.append(a1, 0)
|
|
||||||
a2 = np.append(a2, 0)
|
|
||||||
a3 = np.array([0, 0, 1])
|
|
||||||
b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3))
|
|
||||||
b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3))
|
|
||||||
b1 = np.delete(b1, 2)
|
|
||||||
b2 = np.delete(b2, 2)
|
|
||||||
return b1, b2
|
|
||||||
|
|
||||||
def calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3):
|
|
||||||
a1 = np.array(a1)
|
|
||||||
a2 = np.array(a2)
|
|
||||||
a3 = np.array(a3)
|
|
||||||
b1 = 2*np.pi*np.cross(a2, a3)/np.dot(a1, np.cross(a2, a3))
|
|
||||||
b2 = 2*np.pi*np.cross(a3, a1)/np.dot(a1, np.cross(a2, a3))
|
|
||||||
b3 = 2*np.pi*np.cross(a1, a2)/np.dot(a1, np.cross(a2, a3))
|
|
||||||
return b1, b2, b3
|
|
||||||
|
|
||||||
def calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1):
|
|
||||||
import sympy
|
|
||||||
b1 = 2*sympy.pi/a1
|
|
||||||
return b1
|
|
||||||
|
|
||||||
def calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2):
|
|
||||||
import sympy
|
|
||||||
a1 = sympy.Matrix(1, 3, [a1[0], a1[1], 0])
|
|
||||||
a2 = sympy.Matrix(1, 3, [a2[0], a2[1], 0])
|
|
||||||
a3 = sympy.Matrix(1, 3, [0, 0, 1])
|
|
||||||
cross_a2_a3 = a2.cross(a3)
|
|
||||||
cross_a3_a1 = a3.cross(a1)
|
|
||||||
b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3)
|
|
||||||
b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3)
|
|
||||||
b1 = sympy.Matrix(1, 2, [b1[0], b1[1]])
|
|
||||||
b2 = sympy.Matrix(1, 2, [b2[0], b2[1]])
|
|
||||||
return b1, b2
|
|
||||||
|
|
||||||
def calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3):
|
|
||||||
import sympy
|
|
||||||
cross_a2_a3 = a2.cross(a3)
|
|
||||||
cross_a3_a1 = a3.cross(a1)
|
|
||||||
cross_a1_a2 = a1.cross(a2)
|
|
||||||
b1 = 2*sympy.pi*cross_a2_a3/a1.dot(cross_a2_a3)
|
|
||||||
b2 = 2*sympy.pi*cross_a3_a1/a1.dot(cross_a2_a3)
|
|
||||||
b3 = 2*sympy.pi*cross_a1_a2/a1.dot(cross_a2_a3)
|
|
||||||
return b1, b2, b3
|
|
@ -1,110 +0,0 @@
|
|||||||
# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com.
|
|
||||||
|
|
||||||
# Green functions
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import guan
|
|
||||||
|
|
||||||
def green_function(fermi_energy, hamiltonian, broadening, self_energy=0):
|
|
||||||
if np.array(hamiltonian).shape==():
|
|
||||||
dim = 1
|
|
||||||
else:
|
|
||||||
dim = np.array(hamiltonian).shape[0]
|
|
||||||
green = np.linalg.inv((fermi_energy+broadening*1j)*np.eye(dim)-hamiltonian-self_energy)
|
|
||||||
return green
|
|
||||||
|
|
||||||
def green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0):
|
|
||||||
h01 = np.array(h01)
|
|
||||||
if np.array(h00).shape==():
|
|
||||||
dim = 1
|
|
||||||
else:
|
|
||||||
dim = np.array(h00).shape[0]
|
|
||||||
green_nn_n = np.linalg.inv((fermi_energy+broadening*1j)*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), green_nn_n_minus), h01)-self_energy)
|
|
||||||
return green_nn_n
|
|
||||||
|
|
||||||
def green_function_in_n(green_in_n_minus, h01, green_nn_n):
|
|
||||||
green_in_n = np.dot(np.dot(green_in_n_minus, h01), green_nn_n)
|
|
||||||
return green_in_n
|
|
||||||
|
|
||||||
def green_function_ni_n(green_nn_n, h01, green_ni_n_minus):
|
|
||||||
h01 = np.array(h01)
|
|
||||||
green_ni_n = np.dot(np.dot(green_nn_n, h01.transpose().conj()), green_ni_n_minus)
|
|
||||||
return green_ni_n
|
|
||||||
|
|
||||||
def green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus):
|
|
||||||
green_ii_n = green_ii_n_minus+np.dot(np.dot(np.dot(np.dot(green_in_n_minus, h01), green_nn_n), h01.transpose().conj()),green_ni_n_minus)
|
|
||||||
return green_ii_n
|
|
||||||
|
|
||||||
def transfer_matrix(fermi_energy, h00, h01):
|
|
||||||
h01 = np.array(h01)
|
|
||||||
if np.array(h00).shape==():
|
|
||||||
dim = 1
|
|
||||||
else:
|
|
||||||
dim = np.array(h00).shape[0]
|
|
||||||
transfer = np.zeros((2*dim, 2*dim), dtype=complex)
|
|
||||||
transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00)
|
|
||||||
transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj())
|
|
||||||
transfer[dim:2*dim, 0:dim] = np.identity(dim)
|
|
||||||
transfer[dim:2*dim, dim:2*dim] = 0
|
|
||||||
return transfer
|
|
||||||
|
|
||||||
def surface_green_function_of_lead(fermi_energy, h00, h01):
|
|
||||||
h01 = np.array(h01)
|
|
||||||
if np.array(h00).shape==():
|
|
||||||
dim = 1
|
|
||||||
else:
|
|
||||||
dim = np.array(h00).shape[0]
|
|
||||||
fermi_energy = fermi_energy+1e-9*1j
|
|
||||||
transfer = transfer_matrix(fermi_energy, h00, h01)
|
|
||||||
eigenvalue, eigenvector = np.linalg.eig(transfer)
|
|
||||||
ind = np.argsort(np.abs(eigenvalue))
|
|
||||||
temp = np.zeros((2*dim, 2*dim), dtype=complex)
|
|
||||||
i0 = 0
|
|
||||||
for ind0 in ind:
|
|
||||||
temp[:, i0] = eigenvector[:, ind0]
|
|
||||||
i0 += 1
|
|
||||||
s1 = temp[dim:2*dim, 0:dim]
|
|
||||||
s2 = temp[0:dim, 0:dim]
|
|
||||||
s3 = temp[dim:2*dim, dim:2*dim]
|
|
||||||
s4 = temp[0:dim, dim:2*dim]
|
|
||||||
right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1)))
|
|
||||||
left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4)))
|
|
||||||
return right_lead_surface, left_lead_surface
|
|
||||||
|
|
||||||
def self_energy_of_lead(fermi_energy, h00, h01):
|
|
||||||
h01 = np.array(h01)
|
|
||||||
right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01)
|
|
||||||
right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj())
|
|
||||||
left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01)
|
|
||||||
gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j
|
|
||||||
gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j
|
|
||||||
return right_self_energy, left_self_energy, gamma_right, gamma_left
|
|
||||||
|
|
||||||
def self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR):
|
|
||||||
h_LC = np.array(h_LC)
|
|
||||||
h_CR = np.array(h_CR)
|
|
||||||
right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01)
|
|
||||||
right_self_energy = np.dot(np.dot(h_CR, right_lead_surface), h_CR.transpose().conj())
|
|
||||||
left_self_energy = np.dot(np.dot(h_LC.transpose().conj(), left_lead_surface), h_LC)
|
|
||||||
gamma_right = (right_self_energy - right_self_energy.transpose().conj())*1j
|
|
||||||
gamma_left = (left_self_energy - left_self_energy.transpose().conj())*1j
|
|
||||||
return right_self_energy, left_self_energy, gamma_right, gamma_left
|
|
||||||
|
|
||||||
def self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center):
|
|
||||||
h_lead_to_center = np.array(h_lead_to_center)
|
|
||||||
right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01)
|
|
||||||
self_energy = np.dot(np.dot(h_lead_to_center.transpose().conj(), right_lead_surface), h_lead_to_center)
|
|
||||||
gamma = (self_energy - self_energy.transpose().conj())*1j
|
|
||||||
return self_energy, gamma
|
|
||||||
|
|
||||||
def green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian):
|
|
||||||
dim = np.array(center_hamiltonian).shape[0]
|
|
||||||
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR)
|
|
||||||
green = np.linalg.inv(fermi_energy*np.identity(dim)-center_hamiltonian-left_self_energy-right_self_energy)
|
|
||||||
return green, gamma_right, gamma_left
|
|
||||||
|
|
||||||
def electron_correlation_function_green_n_for_local_current(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian):
|
|
||||||
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR)
|
|
||||||
green = guan.green_function(fermi_energy, center_hamiltonian, broadening=0, self_energy=left_self_energy+right_self_energy)
|
|
||||||
G_n = np.imag(np.dot(np.dot(green, gamma_left), green.transpose().conj()))
|
|
||||||
return G_n
|
|
@ -1,115 +0,0 @@
|
|||||||
# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com.
|
|
||||||
|
|
||||||
# Hamiltonian of finite size systems
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import guan
|
|
||||||
|
|
||||||
def finite_size_along_one_direction(N, on_site=0, hopping=1, period=0):
|
|
||||||
on_site = np.array(on_site)
|
|
||||||
hopping = np.array(hopping)
|
|
||||||
if on_site.shape==():
|
|
||||||
dim = 1
|
|
||||||
else:
|
|
||||||
dim = on_site.shape[0]
|
|
||||||
hamiltonian = np.zeros((N*dim, N*dim), dtype=complex)
|
|
||||||
for i0 in range(N):
|
|
||||||
hamiltonian[i0*dim+0:i0*dim+dim, i0*dim+0:i0*dim+dim] = on_site
|
|
||||||
for i0 in range(N-1):
|
|
||||||
hamiltonian[i0*dim+0:i0*dim+dim, (i0+1)*dim+0:(i0+1)*dim+dim] = hopping
|
|
||||||
hamiltonian[(i0+1)*dim+0:(i0+1)*dim+dim, i0*dim+0:i0*dim+dim] = hopping.transpose().conj()
|
|
||||||
if period == 1:
|
|
||||||
hamiltonian[(N-1)*dim+0:(N-1)*dim+dim, 0:dim] = hopping
|
|
||||||
hamiltonian[0:dim, (N-1)*dim+0:(N-1)*dim+dim] = hopping.transpose().conj()
|
|
||||||
return hamiltonian
|
|
||||||
|
|
||||||
def finite_size_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0):
|
|
||||||
on_site = np.array(on_site)
|
|
||||||
hopping_1 = np.array(hopping_1)
|
|
||||||
hopping_2 = np.array(hopping_2)
|
|
||||||
if on_site.shape==():
|
|
||||||
dim = 1
|
|
||||||
else:
|
|
||||||
dim = on_site.shape[0]
|
|
||||||
hamiltonian = np.zeros((N1*N2*dim, N1*N2*dim), dtype=complex)
|
|
||||||
for i1 in range(N1):
|
|
||||||
for i2 in range(N2):
|
|
||||||
hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = on_site
|
|
||||||
for i1 in range(N1-1):
|
|
||||||
for i2 in range(N2):
|
|
||||||
hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, (i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim] = hopping_1
|
|
||||||
hamiltonian[(i1+1)*N2*dim+i2*dim+0:(i1+1)*N2*dim+i2*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_1.transpose().conj()
|
|
||||||
for i1 in range(N1):
|
|
||||||
for i2 in range(N2-1):
|
|
||||||
hamiltonian[i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim, i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim] = hopping_2
|
|
||||||
hamiltonian[i1*N2*dim+(i2+1)*dim+0:i1*N2*dim+(i2+1)*dim+dim, i1*N2*dim+i2*dim+0:i1*N2*dim+i2*dim+dim] = hopping_2.transpose().conj()
|
|
||||||
if period_1 == 1:
|
|
||||||
for i2 in range(N2):
|
|
||||||
hamiltonian[(N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim, i2*dim+0:i2*dim+dim] = hopping_1
|
|
||||||
hamiltonian[i2*dim+0:i2*dim+dim, (N1-1)*N2*dim+i2*dim+0:(N1-1)*N2*dim+i2*dim+dim] = hopping_1.transpose().conj()
|
|
||||||
if period_2 == 1:
|
|
||||||
for i1 in range(N1):
|
|
||||||
hamiltonian[i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim, i1*N2*dim+0:i1*N2*dim+dim] = hopping_2
|
|
||||||
hamiltonian[i1*N2*dim+0:i1*N2*dim+dim, i1*N2*dim+(N2-1)*dim+0:i1*N2*dim+(N2-1)*dim+dim] = hopping_2.transpose().conj()
|
|
||||||
return hamiltonian
|
|
||||||
|
|
||||||
def finite_size_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0):
|
|
||||||
on_site = np.array(on_site)
|
|
||||||
hopping_1 = np.array(hopping_1)
|
|
||||||
hopping_2 = np.array(hopping_2)
|
|
||||||
hopping_3 = np.array(hopping_3)
|
|
||||||
if on_site.shape==():
|
|
||||||
dim = 1
|
|
||||||
else:
|
|
||||||
dim = on_site.shape[0]
|
|
||||||
hamiltonian = np.zeros((N1*N2*N3*dim, N1*N2*N3*dim), dtype=complex)
|
|
||||||
for i1 in range(N1):
|
|
||||||
for i2 in range(N2):
|
|
||||||
for i3 in range(N3):
|
|
||||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = on_site
|
|
||||||
for i1 in range(N1-1):
|
|
||||||
for i2 in range(N2):
|
|
||||||
for i3 in range(N3):
|
|
||||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, (i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1
|
|
||||||
hamiltonian[(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(i1+1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj()
|
|
||||||
for i1 in range(N1):
|
|
||||||
for i2 in range(N2-1):
|
|
||||||
for i3 in range(N3):
|
|
||||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim] = hopping_2
|
|
||||||
hamiltonian[i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(i2+1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_2.transpose().conj()
|
|
||||||
for i1 in range(N1):
|
|
||||||
for i2 in range(N2):
|
|
||||||
for i3 in range(N3-1):
|
|
||||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim] = hopping_3
|
|
||||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(i3+1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+i3*dim+0:i1*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_3.transpose().conj()
|
|
||||||
if period_1 == 1:
|
|
||||||
for i2 in range(N2):
|
|
||||||
for i3 in range(N3):
|
|
||||||
hamiltonian[(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim, i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim] = hopping_1
|
|
||||||
hamiltonian[i2*N3*dim+i3*dim+0:i2*N3*dim+i3*dim+dim, (N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+0:(N1-1)*N2*N3*dim+i2*N3*dim+i3*dim+dim] = hopping_1.transpose().conj()
|
|
||||||
if period_2 == 1:
|
|
||||||
for i1 in range(N1):
|
|
||||||
for i3 in range(N3):
|
|
||||||
hamiltonian[i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim, i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim] = hopping_2
|
|
||||||
hamiltonian[i1*N2*N3*dim+i3*dim+0:i1*N2*N3*dim+i3*dim+dim, i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+0:i1*N2*N3*dim+(N2-1)*N3*dim+i3*dim+dim] = hopping_2.transpose().conj()
|
|
||||||
if period_3 == 1:
|
|
||||||
for i1 in range(N1):
|
|
||||||
for i2 in range(N2):
|
|
||||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim, i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim] = hopping_3
|
|
||||||
hamiltonian[i1*N2*N3*dim+i2*N3*dim+0:i1*N2*N3*dim+i2*N3*dim+dim, i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+0:i1*N2*N3*dim+i2*N3*dim+(N3-1)*dim+dim] = hopping_3.transpose().conj()
|
|
||||||
return hamiltonian
|
|
||||||
|
|
||||||
def hopping_along_zigzag_direction_for_graphene(N):
|
|
||||||
hopping = np.zeros((4*N, 4*N), dtype=complex)
|
|
||||||
for i0 in range(N):
|
|
||||||
hopping[4*i0+1, 4*i0+0] = 1
|
|
||||||
hopping[4*i0+2, 4*i0+3] = 1
|
|
||||||
return hopping
|
|
||||||
|
|
||||||
def finite_size_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0):
|
|
||||||
on_site = guan.finite_size_along_one_direction(4)
|
|
||||||
hopping_1 = guan.hopping_along_zigzag_direction_for_graphene(1)
|
|
||||||
hopping_2 = np.zeros((4, 4), dtype=complex)
|
|
||||||
hopping_2[3, 0] = 1
|
|
||||||
hamiltonian = guan.finite_size_along_two_directions_for_square_lattice(N1, N2, on_site, hopping_1, hopping_2, period_1, period_2)
|
|
||||||
return hamiltonian
|
|
@ -1,124 +0,0 @@
|
|||||||
# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com.
|
|
||||||
|
|
||||||
# Hamiltonian of models in the reciprocal space
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import cmath
|
|
||||||
from math import *
|
|
||||||
import guan
|
|
||||||
|
|
||||||
def hamiltonian_of_simple_chain(k):
|
|
||||||
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=0, hopping=1)
|
|
||||||
return hamiltonian
|
|
||||||
|
|
||||||
def hamiltonian_of_square_lattice(k1, k2):
|
|
||||||
hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell=0, hopping_1=1, hopping_2=1)
|
|
||||||
return hamiltonian
|
|
||||||
|
|
||||||
def hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10):
|
|
||||||
h00 = np.zeros((N, N), dtype=complex) # hopping in a unit cell
|
|
||||||
h01 = np.zeros((N, N), dtype=complex) # hopping between unit cells
|
|
||||||
for i in range(N-1):
|
|
||||||
h00[i, i+1] = 1
|
|
||||||
h00[i+1, i] = 1
|
|
||||||
for i in range(N):
|
|
||||||
h01[i, i] = 1
|
|
||||||
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
|
|
||||||
return hamiltonian
|
|
||||||
|
|
||||||
def hamiltonian_of_cubic_lattice(k1, k2, k3):
|
|
||||||
hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell=0, hopping_1=1, hopping_2=1, hopping_3=1)
|
|
||||||
return hamiltonian
|
|
||||||
|
|
||||||
def hamiltonian_of_ssh_model(k, v=0.6, w=1):
|
|
||||||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
|
||||||
hamiltonian[0,1] = v+w*cmath.exp(-1j*k)
|
|
||||||
hamiltonian[1,0] = v+w*cmath.exp(1j*k)
|
|
||||||
return hamiltonian
|
|
||||||
|
|
||||||
def hamiltonian_of_graphene(k1, k2, M=0, t=1, a=1/sqrt(3)):
|
|
||||||
h0 = np.zeros((2, 2), dtype=complex) # mass term
|
|
||||||
h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
|
|
||||||
h0[0, 0] = M
|
|
||||||
h0[1, 1] = -M
|
|
||||||
h1[1, 0] = t*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a))
|
|
||||||
h1[0, 1] = h1[1, 0].conj()
|
|
||||||
hamiltonian = h0 + h1
|
|
||||||
return hamiltonian
|
|
||||||
|
|
||||||
def hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1):
|
|
||||||
h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell
|
|
||||||
h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells
|
|
||||||
for i in range(N):
|
|
||||||
h00[i*4+0, i*4+0] = M
|
|
||||||
h00[i*4+1, i*4+1] = -M
|
|
||||||
h00[i*4+2, i*4+2] = M
|
|
||||||
h00[i*4+3, i*4+3] = -M
|
|
||||||
h00[i*4+0, i*4+1] = t
|
|
||||||
h00[i*4+1, i*4+0] = t
|
|
||||||
h00[i*4+1, i*4+2] = t
|
|
||||||
h00[i*4+2, i*4+1] = t
|
|
||||||
h00[i*4+2, i*4+3] = t
|
|
||||||
h00[i*4+3, i*4+2] = t
|
|
||||||
for i in range(N-1):
|
|
||||||
h00[i*4+3, (i+1)*4+0] = t
|
|
||||||
h00[(i+1)*4+0, i*4+3] = t
|
|
||||||
for i in range(N):
|
|
||||||
h01[i*4+1, i*4+0] = t
|
|
||||||
h01[i*4+2, i*4+3] = t
|
|
||||||
hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell=h00, hopping=h01)
|
|
||||||
return hamiltonian
|
|
||||||
|
|
||||||
def hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi=pi/4, a=1/sqrt(3)):
|
|
||||||
h0 = np.zeros((2, 2), dtype=complex) # mass term
|
|
||||||
h1 = np.zeros((2, 2), dtype=complex) # nearest hopping
|
|
||||||
h2 = np.zeros((2, 2), dtype=complex) # next nearest hopping
|
|
||||||
h0[0, 0] = M
|
|
||||||
h0[1, 1] = -M
|
|
||||||
h1[1, 0] = t1*(cmath.exp(1j*k2*a)+cmath.exp(1j*sqrt(3)/2*k1*a-1j/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j/2*k2*a))
|
|
||||||
h1[0, 1] = h1[1, 0].conj()
|
|
||||||
h2[0, 0] = t2*cmath.exp(-1j*phi)*(cmath.exp(1j*sqrt(3)*k1*a)+cmath.exp(-1j*sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j*3/2*k2*a))
|
|
||||||
h2[1, 1] = t2*cmath.exp(1j*phi)*(cmath.exp(1j*sqrt(3)*k1*a)+cmath.exp(-1j*sqrt(3)/2*k1*a+1j*3/2*k2*a)+cmath.exp(-1j*sqrt(3)/2*k1*a-1j*3/2*k2*a))
|
|
||||||
hamiltonian = h0 + h1 + h2 + h2.transpose().conj()
|
|
||||||
return hamiltonian
|
|
||||||
|
|
||||||
def hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi=pi/4):
|
|
||||||
h00 = np.zeros((4*N, 4*N), dtype=complex) # hopping in a unit cell
|
|
||||||
h01 = np.zeros((4*N, 4*N), dtype=complex) # hopping between unit cells
|
|
||||||
for i in range(N):
|
|
||||||
h00[i*4+0, i*4+0] = M
|
|
||||||
h00[i*4+1, i*4+1] = -M
|
|
||||||
h00[i*4+2, i*4+2] = M
|
|
||||||
h00[i*4+3, i*4+3] = -M
|
|
||||||
h00[i*4+0, i*4+1] = t1
|
|
||||||
h00[i*4+1, i*4+0] = t1
|
|
||||||
h00[i*4+1, i*4+2] = t1
|
|
||||||
h00[i*4+2, i*4+1] = t1
|
|
||||||
h00[i*4+2, i*4+3] = t1
|
|
||||||
h00[i*4+3, i*4+2] = t1
|
|
||||||
h00[i*4+0, i*4+2] = t2*cmath.exp(-1j*phi)
|
|
||||||
h00[i*4+2, i*4+0] = h00[i*4+0, i*4+2].conj()
|
|
||||||
h00[i*4+1, i*4+3] = t2*cmath.exp(-1j*phi)
|
|
||||||
h00[i*4+3, i*4+1] = h00[i*4+1, i*4+3].conj()
|
|
||||||
for i in range(N-1):
|
|
||||||
h00[i*4+3, (i+1)*4+0] = t1
|
|
||||||
h00[(i+1)*4+0, i*4+3] = t1
|
|
||||||
h00[i*4+2, (i+1)*4+0] = t2*cmath.exp(1j*phi)
|
|
||||||
h00[(i+1)*4+0, i*4+2] = h00[i*4+2, (i+1)*4+0].conj()
|
|
||||||
h00[i*4+3, (i+1)*4+1] = t2*cmath.exp(1j*phi)
|
|
||||||
h00[(i+1)*4+1, i*4+3] = h00[i*4+3, (i+1)*4+1].conj()
|
|
||||||
for i in range(N):
|
|
||||||
h01[i*4+1, i*4+0] = t1
|
|
||||||
h01[i*4+2, i*4+3] = t1
|
|
||||||
h01[i*4+0, i*4+0] = t2*cmath.exp(1j*phi)
|
|
||||||
h01[i*4+1, i*4+1] = t2*cmath.exp(-1j*phi)
|
|
||||||
h01[i*4+2, i*4+2] = t2*cmath.exp(1j*phi)
|
|
||||||
h01[i*4+3, i*4+3] = t2*cmath.exp(-1j*phi)
|
|
||||||
h01[i*4+1, i*4+3] = t2*cmath.exp(1j*phi)
|
|
||||||
h01[i*4+2, i*4+0] = t2*cmath.exp(-1j*phi)
|
|
||||||
if i != 0:
|
|
||||||
h01[i*4+1, (i-1)*4+3] = t2*cmath.exp(1j*phi)
|
|
||||||
for i in range(N-1):
|
|
||||||
h01[i*4+2, (i+1)*4+0] = t2*cmath.exp(-1j*phi)
|
|
||||||
hamiltonian = h00 + h01*cmath.exp(1j*k) + h01.transpose().conj()*cmath.exp(-1j*k)
|
|
||||||
return hamiltonian
|
|
File diff suppressed because it is too large
Load Diff
@ -1,125 +0,0 @@
|
|||||||
# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com.
|
|
||||||
|
|
||||||
# band_structures_and_wave_functions
|
|
||||||
|
|
||||||
## band structures
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import cmath
|
|
||||||
|
|
||||||
def calculate_eigenvalue(hamiltonian):
|
|
||||||
if np.array(hamiltonian).shape==():
|
|
||||||
eigenvalue = np.real(hamiltonian)
|
|
||||||
else:
|
|
||||||
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
|
|
||||||
return eigenvalue
|
|
||||||
|
|
||||||
def calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0):
|
|
||||||
dim_x = np.array(x_array).shape[0]
|
|
||||||
i0 = 0
|
|
||||||
if np.array(hamiltonian_function(0)).shape==():
|
|
||||||
eigenvalue_array = np.zeros((dim_x, 1))
|
|
||||||
for x0 in x_array:
|
|
||||||
hamiltonian = hamiltonian_function(x0)
|
|
||||||
eigenvalue_array[i0, 0] = np.real(hamiltonian)
|
|
||||||
i0 += 1
|
|
||||||
else:
|
|
||||||
dim = np.array(hamiltonian_function(0)).shape[0]
|
|
||||||
eigenvalue_array = np.zeros((dim_x, dim))
|
|
||||||
for x0 in x_array:
|
|
||||||
if print_show==1:
|
|
||||||
print(x0)
|
|
||||||
hamiltonian = hamiltonian_function(x0)
|
|
||||||
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
|
|
||||||
eigenvalue_array[i0, :] = eigenvalue
|
|
||||||
i0 += 1
|
|
||||||
return eigenvalue_array
|
|
||||||
|
|
||||||
def calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0):
|
|
||||||
dim_x = np.array(x_array).shape[0]
|
|
||||||
dim_y = np.array(y_array).shape[0]
|
|
||||||
if np.array(hamiltonian_function(0,0)).shape==():
|
|
||||||
eigenvalue_array = np.zeros((dim_y, dim_x, 1))
|
|
||||||
i0 = 0
|
|
||||||
for y0 in y_array:
|
|
||||||
j0 = 0
|
|
||||||
for x0 in x_array:
|
|
||||||
hamiltonian = hamiltonian_function(x0, y0)
|
|
||||||
eigenvalue_array[i0, j0, 0] = np.real(hamiltonian)
|
|
||||||
j0 += 1
|
|
||||||
i0 += 1
|
|
||||||
else:
|
|
||||||
dim = np.array(hamiltonian_function(0, 0)).shape[0]
|
|
||||||
eigenvalue_array = np.zeros((dim_y, dim_x, dim))
|
|
||||||
i0 = 0
|
|
||||||
for y0 in y_array:
|
|
||||||
j0 = 0
|
|
||||||
if print_show==1:
|
|
||||||
print(y0)
|
|
||||||
for x0 in x_array:
|
|
||||||
if print_show_more==1:
|
|
||||||
print(x0)
|
|
||||||
hamiltonian = hamiltonian_function(x0, y0)
|
|
||||||
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
|
|
||||||
eigenvalue_array[i0, j0, :] = eigenvalue
|
|
||||||
j0 += 1
|
|
||||||
i0 += 1
|
|
||||||
return eigenvalue_array
|
|
||||||
|
|
||||||
## wave functions
|
|
||||||
|
|
||||||
def calculate_eigenvector(hamiltonian):
|
|
||||||
eigenvalue, eigenvector = np.linalg.eigh(hamiltonian)
|
|
||||||
return eigenvector
|
|
||||||
|
|
||||||
## find vector with the same gauge
|
|
||||||
|
|
||||||
def find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=10001, precision=1e-6):
|
|
||||||
phase_1_pre = 0
|
|
||||||
phase_2_pre = np.pi
|
|
||||||
for i0 in range(n_test):
|
|
||||||
test_1 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_1_pre) - vector_ref))
|
|
||||||
test_2 = np.sum(np.abs(vector_target*cmath.exp(1j*phase_2_pre) - vector_ref))
|
|
||||||
if test_1 < precision:
|
|
||||||
phase = phase_1_pre
|
|
||||||
if show_times==1:
|
|
||||||
print('Binary search times=', i0)
|
|
||||||
break
|
|
||||||
if i0 == n_test-1:
|
|
||||||
phase = phase_1_pre
|
|
||||||
if show_error==1:
|
|
||||||
print('Gauge not found with binary search times=', i0)
|
|
||||||
if test_1 < test_2:
|
|
||||||
if i0 == 0:
|
|
||||||
phase_1 = phase_1_pre-(phase_2_pre-phase_1_pre)/2
|
|
||||||
phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2
|
|
||||||
else:
|
|
||||||
phase_1 = phase_1_pre
|
|
||||||
phase_2 = phase_1_pre+(phase_2_pre-phase_1_pre)/2
|
|
||||||
else:
|
|
||||||
if i0 == 0:
|
|
||||||
phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2
|
|
||||||
phase_2 = phase_2_pre+(phase_2_pre-phase_1_pre)/2
|
|
||||||
else:
|
|
||||||
phase_1 = phase_2_pre-(phase_2_pre-phase_1_pre)/2
|
|
||||||
phase_2 = phase_2_pre
|
|
||||||
phase_1_pre = phase_1
|
|
||||||
phase_2_pre = phase_2
|
|
||||||
vector_target = vector_target*cmath.exp(1j*phase)
|
|
||||||
if show_phase==1:
|
|
||||||
print('Phase=', phase)
|
|
||||||
return vector_target
|
|
||||||
|
|
||||||
def find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None):
|
|
||||||
if index == None:
|
|
||||||
index = np.argmax(np.abs(vector))
|
|
||||||
sign_pre = np.sign(np.imag(vector[index]))
|
|
||||||
for phase in np.arange(0, 2*np.pi, precision):
|
|
||||||
sign = np.sign(np.imag(vector[index]*cmath.exp(1j*phase)))
|
|
||||||
if np.abs(np.imag(vector[index]*cmath.exp(1j*phase))) < 1e-9 or sign == -sign_pre:
|
|
||||||
break
|
|
||||||
sign_pre = sign
|
|
||||||
vector = vector*cmath.exp(1j*phase)
|
|
||||||
if np.real(vector[index]) < 0:
|
|
||||||
vector = -vector
|
|
||||||
return vector
|
|
@ -1,74 +0,0 @@
|
|||||||
# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com.
|
|
||||||
|
|
||||||
# basic functions
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
## test
|
|
||||||
|
|
||||||
def test():
|
|
||||||
print('\nSuccess in the installation of Guan package!\n')
|
|
||||||
|
|
||||||
## Pauli matrices
|
|
||||||
|
|
||||||
def sigma_0():
|
|
||||||
return np.eye(2)
|
|
||||||
|
|
||||||
def sigma_x():
|
|
||||||
return np.array([[0, 1],[1, 0]])
|
|
||||||
|
|
||||||
def sigma_y():
|
|
||||||
return np.array([[0, -1j],[1j, 0]])
|
|
||||||
|
|
||||||
def sigma_z():
|
|
||||||
return np.array([[1, 0],[0, -1]])
|
|
||||||
|
|
||||||
## Kronecker product of Pauli matrices
|
|
||||||
|
|
||||||
def sigma_00():
|
|
||||||
return np.kron(sigma_0(), sigma_0())
|
|
||||||
|
|
||||||
def sigma_0x():
|
|
||||||
return np.kron(sigma_0(), sigma_x())
|
|
||||||
|
|
||||||
def sigma_0y():
|
|
||||||
return np.kron(sigma_0(), sigma_y())
|
|
||||||
|
|
||||||
def sigma_0z():
|
|
||||||
return np.kron(sigma_0(), sigma_z())
|
|
||||||
|
|
||||||
def sigma_x0():
|
|
||||||
return np.kron(sigma_x(), sigma_0())
|
|
||||||
|
|
||||||
def sigma_xx():
|
|
||||||
return np.kron(sigma_x(), sigma_x())
|
|
||||||
|
|
||||||
def sigma_xy():
|
|
||||||
return np.kron(sigma_x(), sigma_y())
|
|
||||||
|
|
||||||
def sigma_xz():
|
|
||||||
return np.kron(sigma_x(), sigma_z())
|
|
||||||
|
|
||||||
def sigma_y0():
|
|
||||||
return np.kron(sigma_y(), sigma_0())
|
|
||||||
|
|
||||||
def sigma_yx():
|
|
||||||
return np.kron(sigma_y(), sigma_x())
|
|
||||||
|
|
||||||
def sigma_yy():
|
|
||||||
return np.kron(sigma_y(), sigma_y())
|
|
||||||
|
|
||||||
def sigma_yz():
|
|
||||||
return np.kron(sigma_y(), sigma_z())
|
|
||||||
|
|
||||||
def sigma_z0():
|
|
||||||
return np.kron(sigma_z(), sigma_0())
|
|
||||||
|
|
||||||
def sigma_zx():
|
|
||||||
return np.kron(sigma_z(), sigma_x())
|
|
||||||
|
|
||||||
def sigma_zy():
|
|
||||||
return np.kron(sigma_z(), sigma_y())
|
|
||||||
|
|
||||||
def sigma_zz():
|
|
||||||
return np.kron(sigma_z(), sigma_z())
|
|
@ -1,139 +0,0 @@
|
|||||||
# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com.
|
|
||||||
|
|
||||||
# density of states
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from math import *
|
|
||||||
import guan
|
|
||||||
|
|
||||||
def total_density_of_states(fermi_energy, hamiltonian, broadening=0.01):
|
|
||||||
green = guan.green_function(fermi_energy, hamiltonian, broadening)
|
|
||||||
total_dos = -np.trace(np.imag(green))/pi
|
|
||||||
return total_dos
|
|
||||||
|
|
||||||
def total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01):
|
|
||||||
dim = np.array(fermi_energy_array).shape[0]
|
|
||||||
total_dos_array = np.zeros(dim)
|
|
||||||
i0 = 0
|
|
||||||
for fermi_energy in fermi_energy_array:
|
|
||||||
total_dos_array[i0] = total_density_of_states(fermi_energy, hamiltonian, broadening)
|
|
||||||
i0 += 1
|
|
||||||
return total_dos_array
|
|
||||||
|
|
||||||
def local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01):
|
|
||||||
# dim_hamiltonian = N1*N2*internal_degree
|
|
||||||
green = guan.green_function(fermi_energy, hamiltonian, broadening)
|
|
||||||
local_dos = np.zeros((N2, N1))
|
|
||||||
for i1 in range(N1):
|
|
||||||
for i2 in range(N2):
|
|
||||||
for i in range(internal_degree):
|
|
||||||
local_dos[i2, i1] = local_dos[i2, i1]-np.imag(green[i1*N2*internal_degree+i2*internal_degree+i, i1*N2*internal_degree+i2*internal_degree+i])/pi
|
|
||||||
return local_dos
|
|
||||||
|
|
||||||
def local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01):
|
|
||||||
# dim_hamiltonian = N1*N2*N3*internal_degree
|
|
||||||
green = guan.green_function(fermi_energy, hamiltonian, broadening)
|
|
||||||
local_dos = np.zeros((N3, N2, N1))
|
|
||||||
for i1 in range(N1):
|
|
||||||
for i2 in range(N2):
|
|
||||||
for i3 in range(N3):
|
|
||||||
for i in range(internal_degree):
|
|
||||||
local_dos[i3, i2, i1] = local_dos[i3, i2, i1]-np.imag(green[i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i, i1*N2*N3*internal_degree+i2*N3*internal_degree+i3*internal_degree+i])/pi
|
|
||||||
return local_dos
|
|
||||||
|
|
||||||
def local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01):
|
|
||||||
# dim_h00 = N2*internal_degree
|
|
||||||
local_dos = np.zeros((N2, N1))
|
|
||||||
green_11_1 = guan.green_function(fermi_energy, h00, broadening)
|
|
||||||
for i1 in range(N1):
|
|
||||||
green_nn_n_minus = green_11_1
|
|
||||||
green_in_n_minus = green_11_1
|
|
||||||
green_ni_n_minus = green_11_1
|
|
||||||
green_ii_n_minus = green_11_1
|
|
||||||
for i2_0 in range(i1):
|
|
||||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
|
|
||||||
green_nn_n_minus = green_nn_n
|
|
||||||
if i1!=0:
|
|
||||||
green_in_n_minus = green_nn_n
|
|
||||||
green_ni_n_minus = green_nn_n
|
|
||||||
green_ii_n_minus = green_nn_n
|
|
||||||
for size_0 in range(N1-1-i1):
|
|
||||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
|
|
||||||
green_nn_n_minus = green_nn_n
|
|
||||||
green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
|
|
||||||
green_ii_n_minus = green_ii_n
|
|
||||||
green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
|
|
||||||
green_in_n_minus = green_in_n
|
|
||||||
green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
|
|
||||||
green_ni_n_minus = green_ni_n
|
|
||||||
for i2 in range(N2):
|
|
||||||
for i in range(internal_degree):
|
|
||||||
local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/pi
|
|
||||||
return local_dos
|
|
||||||
|
|
||||||
def local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01):
|
|
||||||
# dim_h00 = N2*N3*internal_degree
|
|
||||||
local_dos = np.zeros((N3, N2, N1))
|
|
||||||
green_11_1 = guan.green_function(fermi_energy, h00, broadening)
|
|
||||||
for i1 in range(N1):
|
|
||||||
green_nn_n_minus = green_11_1
|
|
||||||
green_in_n_minus = green_11_1
|
|
||||||
green_ni_n_minus = green_11_1
|
|
||||||
green_ii_n_minus = green_11_1
|
|
||||||
for i1_0 in range(i1):
|
|
||||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
|
|
||||||
green_nn_n_minus = green_nn_n
|
|
||||||
if i1!=0:
|
|
||||||
green_in_n_minus = green_nn_n
|
|
||||||
green_ni_n_minus = green_nn_n
|
|
||||||
green_ii_n_minus = green_nn_n
|
|
||||||
for size_0 in range(N1-1-i1):
|
|
||||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
|
|
||||||
green_nn_n_minus = green_nn_n
|
|
||||||
green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
|
|
||||||
green_ii_n_minus = green_ii_n
|
|
||||||
green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
|
|
||||||
green_in_n_minus = green_in_n
|
|
||||||
green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
|
|
||||||
green_ni_n_minus = green_ni_n
|
|
||||||
for i2 in range(N2):
|
|
||||||
for i3 in range(N3):
|
|
||||||
for i in range(internal_degree):
|
|
||||||
local_dos[i3, i2, i1] = local_dos[i3, i2, i1] -np.imag(green_ii_n_minus[i2*N3*internal_degree+i3*internal_degree+i, i2*N3*internal_degree+i3*internal_degree+i])/pi
|
|
||||||
return local_dos
|
|
||||||
|
|
||||||
def local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01):
|
|
||||||
# dim_h00 = N2*internal_degree
|
|
||||||
local_dos = np.zeros((N2, N1))
|
|
||||||
green_11_1 = guan.green_function(fermi_energy, h00+left_self_energy, broadening)
|
|
||||||
for i1 in range(N1):
|
|
||||||
green_nn_n_minus = green_11_1
|
|
||||||
green_in_n_minus = green_11_1
|
|
||||||
green_ni_n_minus = green_11_1
|
|
||||||
green_ii_n_minus = green_11_1
|
|
||||||
for i2_0 in range(i1):
|
|
||||||
if i2_0 == N1-1-1:
|
|
||||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+right_self_energy, h01, green_nn_n_minus, broadening)
|
|
||||||
else:
|
|
||||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
|
|
||||||
green_nn_n_minus = green_nn_n
|
|
||||||
if i1!=0:
|
|
||||||
green_in_n_minus = green_nn_n
|
|
||||||
green_ni_n_minus = green_nn_n
|
|
||||||
green_ii_n_minus = green_nn_n
|
|
||||||
for size_0 in range(N1-1-i1):
|
|
||||||
if size_0 == N1-1-i1-1:
|
|
||||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+right_self_energy, h01, green_nn_n_minus, broadening)
|
|
||||||
else:
|
|
||||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening)
|
|
||||||
green_nn_n_minus = green_nn_n
|
|
||||||
green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus)
|
|
||||||
green_ii_n_minus = green_ii_n
|
|
||||||
green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n)
|
|
||||||
green_in_n_minus = green_in_n
|
|
||||||
green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus)
|
|
||||||
green_ni_n_minus = green_ni_n
|
|
||||||
for i2 in range(N2):
|
|
||||||
for i in range(internal_degree):
|
|
||||||
local_dos[i2, i1] = local_dos[i2, i1] - np.imag(green_ii_n_minus[i2*internal_degree+i, i2*internal_degree+i])/pi
|
|
||||||
return local_dos
|
|
@ -1,130 +0,0 @@
|
|||||||
# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com.
|
|
||||||
|
|
||||||
# others
|
|
||||||
|
|
||||||
import guan
|
|
||||||
|
|
||||||
## download
|
|
||||||
|
|
||||||
def download_with_scihub(address=None, num=1):
|
|
||||||
from bs4 import BeautifulSoup
|
|
||||||
import re
|
|
||||||
import requests
|
|
||||||
import os
|
|
||||||
if num==1 and address!=None:
|
|
||||||
address_array = [address]
|
|
||||||
else:
|
|
||||||
address_array = []
|
|
||||||
for i in range(num):
|
|
||||||
address = input('\nInput:')
|
|
||||||
address_array.append(address)
|
|
||||||
for address in address_array:
|
|
||||||
r = requests.post('https://sci-hub.st/', data={'request': address})
|
|
||||||
print('\nResponse:', r)
|
|
||||||
print('Address:', r.url)
|
|
||||||
soup = BeautifulSoup(r.text, features='lxml')
|
|
||||||
pdf_URL = soup.iframe['src']
|
|
||||||
if re.search(re.compile('^https:'), pdf_URL):
|
|
||||||
pass
|
|
||||||
else:
|
|
||||||
pdf_URL = 'https:'+pdf_URL
|
|
||||||
print('PDF address:', pdf_URL)
|
|
||||||
name = re.search(re.compile('fdp.*?/'),pdf_URL[::-1]).group()[::-1][1::]
|
|
||||||
print('PDF name:', name)
|
|
||||||
print('Directory:', os.getcwd())
|
|
||||||
print('\nDownloading...')
|
|
||||||
r = requests.get(pdf_URL, stream=True)
|
|
||||||
with open(name, 'wb') as f:
|
|
||||||
for chunk in r.iter_content(chunk_size=32):
|
|
||||||
f.write(chunk)
|
|
||||||
print('Completed!\n')
|
|
||||||
if num != 1:
|
|
||||||
print('All completed!\n')
|
|
||||||
|
|
||||||
## audio
|
|
||||||
|
|
||||||
def str_to_audio(str='hello world', rate=125, voice=1, read=1, save=0, print_text=0):
|
|
||||||
import pyttsx3
|
|
||||||
if print_text==1:
|
|
||||||
print(str)
|
|
||||||
engine = pyttsx3.init()
|
|
||||||
voices = engine.getProperty('voices')
|
|
||||||
engine.setProperty('voice', voices[voice].id)
|
|
||||||
engine.setProperty("rate", rate)
|
|
||||||
if save==1:
|
|
||||||
engine.save_to_file(str, 'str.mp3')
|
|
||||||
engine.runAndWait()
|
|
||||||
print('MP3 file saved!')
|
|
||||||
if read==1:
|
|
||||||
engine.say(str)
|
|
||||||
engine.runAndWait()
|
|
||||||
|
|
||||||
def txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, print_text=0):
|
|
||||||
import pyttsx3
|
|
||||||
f = open(txt_path, 'r', encoding ='utf-8')
|
|
||||||
text = f.read()
|
|
||||||
if print_text==1:
|
|
||||||
print(text)
|
|
||||||
engine = pyttsx3.init()
|
|
||||||
voices = engine.getProperty('voices')
|
|
||||||
engine.setProperty('voice', voices[voice].id)
|
|
||||||
engine.setProperty("rate", rate)
|
|
||||||
if save==1:
|
|
||||||
import re
|
|
||||||
file_name = re.split('[/,\\\]', txt_path)[-1][:-4]
|
|
||||||
engine.save_to_file(text, file_name+'.mp3')
|
|
||||||
engine.runAndWait()
|
|
||||||
print('MP3 file saved!')
|
|
||||||
if read==1:
|
|
||||||
engine.say(text)
|
|
||||||
engine.runAndWait()
|
|
||||||
|
|
||||||
def pdf_to_text(pdf_path):
|
|
||||||
from pdfminer.pdfparser import PDFParser, PDFDocument
|
|
||||||
from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter
|
|
||||||
from pdfminer.converter import PDFPageAggregator
|
|
||||||
from pdfminer.layout import LAParams, LTTextBox
|
|
||||||
from pdfminer.pdfinterp import PDFTextExtractionNotAllowed
|
|
||||||
import logging
|
|
||||||
logging.Logger.propagate = False
|
|
||||||
logging.getLogger().setLevel(logging.ERROR)
|
|
||||||
praser = PDFParser(open(pdf_path, 'rb'))
|
|
||||||
doc = PDFDocument()
|
|
||||||
praser.set_document(doc)
|
|
||||||
doc.set_parser(praser)
|
|
||||||
doc.initialize()
|
|
||||||
if not doc.is_extractable:
|
|
||||||
raise PDFTextExtractionNotAllowed
|
|
||||||
else:
|
|
||||||
rsrcmgr = PDFResourceManager()
|
|
||||||
laparams = LAParams()
|
|
||||||
device = PDFPageAggregator(rsrcmgr, laparams=laparams)
|
|
||||||
interpreter = PDFPageInterpreter(rsrcmgr, device)
|
|
||||||
content = ''
|
|
||||||
for page in doc.get_pages():
|
|
||||||
interpreter.process_page(page)
|
|
||||||
layout = device.get_result()
|
|
||||||
for x in layout:
|
|
||||||
if isinstance(x, LTTextBox):
|
|
||||||
content = content + x.get_text().strip()
|
|
||||||
return content
|
|
||||||
|
|
||||||
def pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, print_text=0):
|
|
||||||
import pyttsx3
|
|
||||||
text = guan.pdf_to_text(pdf_path)
|
|
||||||
text = text.replace('\n', ' ')
|
|
||||||
if print_text==1:
|
|
||||||
print(text)
|
|
||||||
engine = pyttsx3.init()
|
|
||||||
voices = engine.getProperty('voices')
|
|
||||||
engine.setProperty('voice', voices[voice].id)
|
|
||||||
engine.setProperty("rate", rate)
|
|
||||||
if save==1:
|
|
||||||
import re
|
|
||||||
file_name = re.split('[/,\\\]', pdf_path)[-1][:-4]
|
|
||||||
engine.save_to_file(text, file_name+'.mp3')
|
|
||||||
engine.runAndWait()
|
|
||||||
print('MP3 file saved!')
|
|
||||||
if read==1:
|
|
||||||
engine.say(text)
|
|
||||||
engine.runAndWait()
|
|
@ -1,91 +0,0 @@
|
|||||||
# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com.
|
|
||||||
|
|
||||||
# plot figures
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
def plot(x_array, y_array, xlabel='x', ylabel='y', title='', show=1, save=0, filename='a', format='jpg', dpi=300, type='', y_min=None, y_max=None, linewidth=None, markersize=None):
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
fig, ax = plt.subplots()
|
|
||||||
plt.subplots_adjust(bottom=0.20, left=0.18)
|
|
||||||
ax.plot(x_array, y_array, type, linewidth=linewidth, markersize=markersize)
|
|
||||||
ax.grid()
|
|
||||||
ax.set_title(title, fontsize=20, fontfamily='Times New Roman')
|
|
||||||
ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')
|
|
||||||
ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')
|
|
||||||
if y_min!=None or y_max!=None:
|
|
||||||
if y_min==None:
|
|
||||||
y_min=min(y_array)
|
|
||||||
if y_max==None:
|
|
||||||
y_max=max(y_array)
|
|
||||||
ax.set_ylim(y_min, y_max)
|
|
||||||
ax.tick_params(labelsize=20)
|
|
||||||
labels = ax.get_xticklabels() + ax.get_yticklabels()
|
|
||||||
[label.set_fontname('Times New Roman') for label in labels]
|
|
||||||
if save == 1:
|
|
||||||
plt.savefig(filename+'.'+format, dpi=dpi)
|
|
||||||
if show == 1:
|
|
||||||
plt.show()
|
|
||||||
plt.close('all')
|
|
||||||
|
|
||||||
def plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', show=1, save=0, filename='a', format='jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100):
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
from matplotlib import cm
|
|
||||||
from matplotlib.ticker import LinearLocator
|
|
||||||
matrix = np.array(matrix)
|
|
||||||
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
|
|
||||||
plt.subplots_adjust(bottom=0.1, right=0.65)
|
|
||||||
x_array, y_array = np.meshgrid(x_array, y_array)
|
|
||||||
if len(matrix.shape) == 2:
|
|
||||||
surf = ax.plot_surface(x_array, y_array, matrix, rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)
|
|
||||||
elif len(matrix.shape) == 3:
|
|
||||||
for i0 in range(matrix.shape[2]):
|
|
||||||
surf = ax.plot_surface(x_array, y_array, matrix[:,:,i0], rcount=rcount, ccount=ccount, cmap=cm.coolwarm, linewidth=0, antialiased=False)
|
|
||||||
ax.set_title(title, fontsize=20, fontfamily='Times New Roman')
|
|
||||||
ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')
|
|
||||||
ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')
|
|
||||||
ax.set_zlabel(zlabel, fontsize=20, fontfamily='Times New Roman')
|
|
||||||
ax.zaxis.set_major_locator(LinearLocator(5))
|
|
||||||
ax.zaxis.set_major_formatter('{x:.2f}')
|
|
||||||
if z_min!=None or z_max!=None:
|
|
||||||
if z_min==None:
|
|
||||||
z_min=matrix.min()
|
|
||||||
if z_max==None:
|
|
||||||
z_max=matrix.max()
|
|
||||||
ax.set_zlim(z_min, z_max)
|
|
||||||
ax.tick_params(labelsize=15)
|
|
||||||
labels = ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels()
|
|
||||||
[label.set_fontname('Times New Roman') for label in labels]
|
|
||||||
cax = plt.axes([0.80, 0.15, 0.05, 0.75])
|
|
||||||
cbar = fig.colorbar(surf, cax=cax)
|
|
||||||
cbar.ax.tick_params(labelsize=15)
|
|
||||||
for l in cbar.ax.yaxis.get_ticklabels():
|
|
||||||
l.set_family('Times New Roman')
|
|
||||||
if save == 1:
|
|
||||||
plt.savefig(filename+'.'+format, dpi=dpi)
|
|
||||||
if show == 1:
|
|
||||||
plt.show()
|
|
||||||
plt.close('all')
|
|
||||||
|
|
||||||
def plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', show=1, save=0, filename='a', format='jpg', dpi=300):
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
fig, ax = plt.subplots()
|
|
||||||
plt.subplots_adjust(bottom=0.2, right=0.75, left = 0.16)
|
|
||||||
x_array, y_array = np.meshgrid(x_array, y_array)
|
|
||||||
contour = ax.contourf(x_array,y_array,matrix,cmap='jet')
|
|
||||||
ax.set_title(title, fontsize=20, fontfamily='Times New Roman')
|
|
||||||
ax.set_xlabel(xlabel, fontsize=20, fontfamily='Times New Roman')
|
|
||||||
ax.set_ylabel(ylabel, fontsize=20, fontfamily='Times New Roman')
|
|
||||||
ax.tick_params(labelsize=15)
|
|
||||||
labels = ax.get_xticklabels() + ax.get_yticklabels()
|
|
||||||
[label.set_fontname('Times New Roman') for label in labels]
|
|
||||||
cax = plt.axes([0.78, 0.17, 0.08, 0.71])
|
|
||||||
cbar = fig.colorbar(contour, cax=cax)
|
|
||||||
cbar.ax.tick_params(labelsize=15)
|
|
||||||
for l in cbar.ax.yaxis.get_ticklabels():
|
|
||||||
l.set_family('Times New Roman')
|
|
||||||
if save == 1:
|
|
||||||
plt.savefig(filename+'.'+format, dpi=dpi)
|
|
||||||
if show == 1:
|
|
||||||
plt.show()
|
|
||||||
plt.close('all')
|
|
@ -1,264 +0,0 @@
|
|||||||
# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com.
|
|
||||||
|
|
||||||
# quantum transport
|
|
||||||
|
|
||||||
## conductance
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import copy
|
|
||||||
import guan
|
|
||||||
|
|
||||||
def calculate_conductance(fermi_energy, h00, h01, length=100):
|
|
||||||
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
|
||||||
for ix in range(length):
|
|
||||||
if ix == 0:
|
|
||||||
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
|
|
||||||
green_0n_n = copy.deepcopy(green_nn_n)
|
|
||||||
elif ix != length-1:
|
|
||||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)
|
|
||||||
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
|
||||||
else:
|
|
||||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
|
||||||
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
|
||||||
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
|
||||||
return conductance
|
|
||||||
|
|
||||||
def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100):
|
|
||||||
dim = np.array(fermi_energy_array).shape[0]
|
|
||||||
conductance_array = np.zeros(dim)
|
|
||||||
i0 = 0
|
|
||||||
for fermi_energy_0 in fermi_energy_array:
|
|
||||||
conductance_array[i0] = np.real(calculate_conductance(fermi_energy_0, h00, h01, length))
|
|
||||||
i0 += 1
|
|
||||||
return conductance_array
|
|
||||||
|
|
||||||
def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100):
|
|
||||||
right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01)
|
|
||||||
dim = np.array(h00).shape[0]
|
|
||||||
for ix in range(length):
|
|
||||||
disorder = np.zeros((dim, dim))
|
|
||||||
for dim0 in range(dim):
|
|
||||||
if np.random.uniform(0, 1)<=disorder_concentration:
|
|
||||||
disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity)
|
|
||||||
if ix == 0:
|
|
||||||
green_nn_n = guan.green_function(fermi_energy, h00+disorder, broadening=0, self_energy=left_self_energy)
|
|
||||||
green_0n_n = copy.deepcopy(green_nn_n)
|
|
||||||
elif ix != length-1:
|
|
||||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0)
|
|
||||||
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
|
||||||
else:
|
|
||||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
|
||||||
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
|
||||||
conductance = np.trace(np.dot(np.dot(np.dot(gamma_left, green_0n_n), gamma_right), green_0n_n.transpose().conj()))
|
|
||||||
return conductance
|
|
||||||
|
|
||||||
def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1):
|
|
||||||
dim = np.array(disorder_intensity_array).shape[0]
|
|
||||||
conductance_array = np.zeros(dim)
|
|
||||||
i0 = 0
|
|
||||||
for disorder_intensity_0 in disorder_intensity_array:
|
|
||||||
for times in range(calculation_times):
|
|
||||||
conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity_0, disorder_concentration=disorder_concentration, length=length))
|
|
||||||
i0 += 1
|
|
||||||
conductance_array = conductance_array/calculation_times
|
|
||||||
return conductance_array
|
|
||||||
|
|
||||||
def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h01, disorder_concentration_array, disorder_intensity=2.0, length=100, calculation_times=1):
|
|
||||||
dim = np.array(disorder_concentration_array).shape[0]
|
|
||||||
conductance_array = np.zeros(dim)
|
|
||||||
i0 = 0
|
|
||||||
for disorder_concentration_0 in disorder_concentration_array:
|
|
||||||
for times in range(calculation_times):
|
|
||||||
conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration_0, length=length))
|
|
||||||
i0 += 1
|
|
||||||
conductance_array = conductance_array/calculation_times
|
|
||||||
return conductance_array
|
|
||||||
|
|
||||||
def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, length_array, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1):
|
|
||||||
dim = np.array(length_array).shape[0]
|
|
||||||
conductance_array = np.zeros(dim)
|
|
||||||
i0 = 0
|
|
||||||
for length_0 in length_array:
|
|
||||||
for times in range(calculation_times):
|
|
||||||
conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length_0))
|
|
||||||
i0 += 1
|
|
||||||
conductance_array = conductance_array/calculation_times
|
|
||||||
return conductance_array
|
|
||||||
|
|
||||||
|
|
||||||
## scattering matrix
|
|
||||||
|
|
||||||
def if_active_channel(k_of_channel):
|
|
||||||
if np.abs(np.imag(k_of_channel))<1e-6:
|
|
||||||
if_active = 1
|
|
||||||
else:
|
|
||||||
if_active = 0
|
|
||||||
return if_active
|
|
||||||
|
|
||||||
def get_k_and_velocity_of_channel(fermi_energy, h00, h01):
|
|
||||||
if np.array(h00).shape==():
|
|
||||||
dim = 1
|
|
||||||
else:
|
|
||||||
dim = np.array(h00).shape[0]
|
|
||||||
transfer = guan.transfer_matrix(fermi_energy, h00, h01)
|
|
||||||
eigenvalue, eigenvector = np.linalg.eig(transfer)
|
|
||||||
k_of_channel = np.log(eigenvalue)/1j
|
|
||||||
ind = np.argsort(np.real(k_of_channel))
|
|
||||||
k_of_channel = np.sort(k_of_channel)
|
|
||||||
temp = np.zeros((2*dim, 2*dim), dtype=complex)
|
|
||||||
temp2 = np.zeros((2*dim), dtype=complex)
|
|
||||||
i0 = 0
|
|
||||||
for ind0 in ind:
|
|
||||||
temp[:, i0] = eigenvector[:, ind0]
|
|
||||||
temp2[i0] = eigenvalue[ind0]
|
|
||||||
i0 += 1
|
|
||||||
eigenvalue = copy.deepcopy(temp2)
|
|
||||||
temp = temp[0:dim, :]
|
|
||||||
factor = np.zeros(2*dim, dtype=complex)
|
|
||||||
for dim0 in range(dim):
|
|
||||||
factor = factor+np.square(np.abs(temp[dim0, :]))
|
|
||||||
for dim0 in range(2*dim):
|
|
||||||
temp[:, dim0] = temp[:, dim0]/np.sqrt(factor[dim0])
|
|
||||||
velocity_of_channel = np.zeros((2*dim), dtype=complex)
|
|
||||||
for dim0 in range(2*dim):
|
|
||||||
velocity_of_channel[dim0] = eigenvalue[dim0]*np.dot(np.dot(temp[0:dim, :].transpose().conj(), h01),temp[0:dim, :])[dim0, dim0]
|
|
||||||
velocity_of_channel = -2*np.imag(velocity_of_channel)
|
|
||||||
eigenvector = copy.deepcopy(temp)
|
|
||||||
return k_of_channel, velocity_of_channel, eigenvalue, eigenvector
|
|
||||||
|
|
||||||
def get_classified_k_velocity_u_and_f(fermi_energy, h00, h01):
|
|
||||||
if np.array(h00).shape==():
|
|
||||||
dim = 1
|
|
||||||
else:
|
|
||||||
dim = np.array(h00).shape[0]
|
|
||||||
k_of_channel, velocity_of_channel, eigenvalue, eigenvector = get_k_and_velocity_of_channel(fermi_energy, h00, h01)
|
|
||||||
ind_right_active = 0; ind_right_evanescent = 0; ind_left_active = 0; ind_left_evanescent = 0
|
|
||||||
k_right = np.zeros(dim, dtype=complex); k_left = np.zeros(dim, dtype=complex)
|
|
||||||
velocity_right = np.zeros(dim, dtype=complex); velocity_left = np.zeros(dim, dtype=complex)
|
|
||||||
lambda_right = np.zeros(dim, dtype=complex); lambda_left = np.zeros(dim, dtype=complex)
|
|
||||||
u_right = np.zeros((dim, dim), dtype=complex); u_left = np.zeros((dim, dim), dtype=complex)
|
|
||||||
for dim0 in range(2*dim):
|
|
||||||
if_active = if_active_channel(k_of_channel[dim0])
|
|
||||||
if if_active_channel(k_of_channel[dim0]) == 1:
|
|
||||||
direction = np.sign(velocity_of_channel[dim0])
|
|
||||||
else:
|
|
||||||
direction = np.sign(np.imag(k_of_channel[dim0]))
|
|
||||||
if direction == 1:
|
|
||||||
if if_active == 1: # right-moving active channel
|
|
||||||
k_right[ind_right_active] = k_of_channel[dim0]
|
|
||||||
velocity_right[ind_right_active] = velocity_of_channel[dim0]
|
|
||||||
lambda_right[ind_right_active] = eigenvalue[dim0]
|
|
||||||
u_right[:, ind_right_active] = eigenvector[:, dim0]
|
|
||||||
ind_right_active += 1
|
|
||||||
else: # right-moving evanescent channel
|
|
||||||
k_right[dim-1-ind_right_evanescent] = k_of_channel[dim0]
|
|
||||||
velocity_right[dim-1-ind_right_evanescent] = velocity_of_channel[dim0]
|
|
||||||
lambda_right[dim-1-ind_right_evanescent] = eigenvalue[dim0]
|
|
||||||
u_right[:, dim-1-ind_right_evanescent] = eigenvector[:, dim0]
|
|
||||||
ind_right_evanescent += 1
|
|
||||||
else:
|
|
||||||
if if_active == 1: # left-moving active channel
|
|
||||||
k_left[ind_left_active] = k_of_channel[dim0]
|
|
||||||
velocity_left[ind_left_active] = velocity_of_channel[dim0]
|
|
||||||
lambda_left[ind_left_active] = eigenvalue[dim0]
|
|
||||||
u_left[:, ind_left_active] = eigenvector[:, dim0]
|
|
||||||
ind_left_active += 1
|
|
||||||
else: # left-moving evanescent channel
|
|
||||||
k_left[dim-1-ind_left_evanescent] = k_of_channel[dim0]
|
|
||||||
velocity_left[dim-1-ind_left_evanescent] = velocity_of_channel[dim0]
|
|
||||||
lambda_left[dim-1-ind_left_evanescent] = eigenvalue[dim0]
|
|
||||||
u_left[:, dim-1-ind_left_evanescent] = eigenvector[:, dim0]
|
|
||||||
ind_left_evanescent += 1
|
|
||||||
lambda_matrix_right = np.diag(lambda_right)
|
|
||||||
lambda_matrix_left = np.diag(lambda_left)
|
|
||||||
f_right = np.dot(np.dot(u_right, lambda_matrix_right), np.linalg.inv(u_right))
|
|
||||||
f_left = np.dot(np.dot(u_left, lambda_matrix_left), np.linalg.inv(u_left))
|
|
||||||
return k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active
|
|
||||||
|
|
||||||
def calculate_scattering_matrix(fermi_energy, h00, h01, length=100):
|
|
||||||
h01 = np.array(h01)
|
|
||||||
if np.array(h00).shape==():
|
|
||||||
dim = 1
|
|
||||||
else:
|
|
||||||
dim = np.array(h00).shape[0]
|
|
||||||
k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = get_classified_k_velocity_u_and_f(fermi_energy, h00, h01)
|
|
||||||
right_self_energy = np.dot(h01, f_right)
|
|
||||||
left_self_energy = np.dot(h01.transpose().conj(), np.linalg.inv(f_left))
|
|
||||||
for i0 in range(length):
|
|
||||||
if i0 == 0:
|
|
||||||
green_nn_n = guan.green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy)
|
|
||||||
green_00_n = copy.deepcopy(green_nn_n)
|
|
||||||
green_0n_n = copy.deepcopy(green_nn_n)
|
|
||||||
green_n0_n = copy.deepcopy(green_nn_n)
|
|
||||||
elif i0 != length-1:
|
|
||||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0)
|
|
||||||
else:
|
|
||||||
green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy)
|
|
||||||
green_00_n = guan.green_function_ii_n(green_00_n, green_0n_n, h01, green_nn_n, green_n0_n)
|
|
||||||
green_0n_n = guan.green_function_in_n(green_0n_n, h01, green_nn_n)
|
|
||||||
green_n0_n = guan.green_function_ni_n(green_nn_n, h01, green_n0_n)
|
|
||||||
temp = np.dot(h01.transpose().conj(), np.linalg.inv(f_right)-np.linalg.inv(f_left))
|
|
||||||
transmission_matrix = np.dot(np.dot(np.linalg.inv(u_right), np.dot(green_n0_n, temp)), u_right)
|
|
||||||
reflection_matrix = np.dot(np.dot(np.linalg.inv(u_left), np.dot(green_00_n, temp)-np.identity(dim)), u_right)
|
|
||||||
for dim0 in range(dim):
|
|
||||||
for dim1 in range(dim):
|
|
||||||
if_active = if_active_channel(k_right[dim0])*if_active_channel(k_right[dim1])
|
|
||||||
if if_active == 1:
|
|
||||||
transmission_matrix[dim0, dim1] = np.sqrt(np.abs(velocity_right[dim0]/velocity_right[dim1])) * transmission_matrix[dim0, dim1]
|
|
||||||
reflection_matrix[dim0, dim1] = np.sqrt(np.abs(velocity_left[dim0]/velocity_right[dim1]))*reflection_matrix[dim0, dim1]
|
|
||||||
else:
|
|
||||||
transmission_matrix[dim0, dim1] = 0
|
|
||||||
reflection_matrix[dim0, dim1] = 0
|
|
||||||
sum_of_tran_refl_array = np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)+np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0)
|
|
||||||
for sum_of_tran_refl in sum_of_tran_refl_array:
|
|
||||||
if sum_of_tran_refl > 1.001:
|
|
||||||
print('Error Alert: scattering matrix is not normalized!')
|
|
||||||
return transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active
|
|
||||||
|
|
||||||
def print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, on_print=1, on_write=0):
|
|
||||||
if np.array(h00).shape==():
|
|
||||||
dim = 1
|
|
||||||
else:
|
|
||||||
dim = np.array(h00).shape[0]
|
|
||||||
transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = calculate_scattering_matrix(fermi_energy, h00, h01, length)
|
|
||||||
if on_print == 1:
|
|
||||||
print('\nActive channel (left or right) = ', ind_right_active)
|
|
||||||
print('Evanescent channel (left or right) = ', dim-ind_right_active, '\n')
|
|
||||||
print('K of right-moving active channels:\n', np.real(k_right[0:ind_right_active]))
|
|
||||||
print('K of left-moving active channels:\n', np.real(k_left[0:ind_right_active]), '\n')
|
|
||||||
print('Velocity of right-moving active channels:\n', np.real(velocity_right[0:ind_right_active]))
|
|
||||||
print('Velocity of left-moving active channels:\n', np.real(velocity_left[0:ind_right_active]), '\n')
|
|
||||||
print('Transmission matrix:\n', np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])))
|
|
||||||
print('Reflection matrix:\n', np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), '\n')
|
|
||||||
print('Total transmission of channels:\n', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0))
|
|
||||||
print('Total reflection of channels:\n',np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0))
|
|
||||||
print('Sum of transmission and reflection of channels:\n', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0) + np.sum(np.square(np.abs(reflection_matrix[0:ind_right_active, 0:ind_right_active])), axis=0))
|
|
||||||
print('Total conductance = ', np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))), '\n')
|
|
||||||
if on_write == 1:
|
|
||||||
with open('a.txt', 'w') as f:
|
|
||||||
f.write('Active channel (left or right) = ' + str(ind_right_active) + '\n')
|
|
||||||
f.write('Evanescent channel (left or right) = ' + str(dim - ind_right_active) + '\n\n')
|
|
||||||
f.write('Channel K Velocity\n')
|
|
||||||
for ind0 in range(ind_right_active):
|
|
||||||
f.write(' '+str(ind0 + 1) + ' | '+str(np.real(k_right[ind0]))+' ' + str(np.real(velocity_right[ind0]))+'\n')
|
|
||||||
f.write('\n')
|
|
||||||
for ind0 in range(ind_right_active):
|
|
||||||
f.write(' -' + str(ind0 + 1) + ' | ' + str(np.real(k_left[ind0])) + ' ' + str(np.real(velocity_left[ind0])) + '\n')
|
|
||||||
f.write('\nScattering matrix:\n ')
|
|
||||||
for ind0 in range(ind_right_active):
|
|
||||||
f.write(str(ind0+1)+' ')
|
|
||||||
f.write('\n')
|
|
||||||
for ind1 in range(ind_right_active):
|
|
||||||
f.write(' '+str(ind1+1)+' ')
|
|
||||||
for ind2 in range(ind_right_active):
|
|
||||||
f.write('%f' % np.square(np.abs(transmission_matrix[ind1, ind2]))+' ')
|
|
||||||
f.write('\n')
|
|
||||||
f.write('\n')
|
|
||||||
for ind1 in range(ind_right_active):
|
|
||||||
f.write(' -'+str(ind1+1)+' ')
|
|
||||||
for ind2 in range(ind_right_active):
|
|
||||||
f.write('%f' % np.square(np.abs(reflection_matrix[ind1, ind2]))+' ')
|
|
||||||
f.write('\n')
|
|
||||||
f.write('\n')
|
|
||||||
f.write('Total transmission of channels:\n'+str(np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active])), axis=0))+'\n')
|
|
||||||
f.write('Total conductance = '+str(np.sum(np.square(np.abs(transmission_matrix[0:ind_right_active, 0:ind_right_active]))))+'\n')
|
|
@ -1,87 +0,0 @@
|
|||||||
# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com.
|
|
||||||
|
|
||||||
# read and write
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
def read_one_dimensional_data(filename='a', format='txt'):
|
|
||||||
f = open(filename+'.'+format, 'r')
|
|
||||||
text = f.read()
|
|
||||||
f.close()
|
|
||||||
row_list = np.array(text.split('\n'))
|
|
||||||
dim_column = np.array(row_list[0].split()).shape[0]
|
|
||||||
x_array = np.array([])
|
|
||||||
y_array = np.array([])
|
|
||||||
for row in row_list:
|
|
||||||
column = np.array(row.split())
|
|
||||||
if column.shape[0] != 0:
|
|
||||||
x_array = np.append(x_array, [float(column[0])], axis=0)
|
|
||||||
y_row = np.zeros(dim_column-1)
|
|
||||||
for dim0 in range(dim_column-1):
|
|
||||||
y_row[dim0] = float(column[dim0+1])
|
|
||||||
if np.array(y_array).shape[0] == 0:
|
|
||||||
y_array = [y_row]
|
|
||||||
else:
|
|
||||||
y_array = np.append(y_array, [y_row], axis=0)
|
|
||||||
return x_array, y_array
|
|
||||||
|
|
||||||
def read_two_dimensional_data(filename='a', format='txt'):
|
|
||||||
f = open(filename+'.'+format, 'r')
|
|
||||||
text = f.read()
|
|
||||||
f.close()
|
|
||||||
row_list = np.array(text.split('\n'))
|
|
||||||
dim_column = np.array(row_list[0].split()).shape[0]
|
|
||||||
x_array = np.array([])
|
|
||||||
y_array = np.array([])
|
|
||||||
matrix = np.array([])
|
|
||||||
for i0 in range(row_list.shape[0]):
|
|
||||||
column = np.array(row_list[i0].split())
|
|
||||||
if i0 == 0:
|
|
||||||
x_str = column[1::]
|
|
||||||
x_array = np.zeros(x_str.shape[0])
|
|
||||||
for i00 in range(x_str.shape[0]):
|
|
||||||
x_array[i00] = float(x_str[i00])
|
|
||||||
elif column.shape[0] != 0:
|
|
||||||
y_array = np.append(y_array, [float(column[0])], axis=0)
|
|
||||||
matrix_row = np.zeros(dim_column-1)
|
|
||||||
for dim0 in range(dim_column-1):
|
|
||||||
matrix_row[dim0] = float(column[dim0+1])
|
|
||||||
if np.array(matrix).shape[0] == 0:
|
|
||||||
matrix = [matrix_row]
|
|
||||||
else:
|
|
||||||
matrix = np.append(matrix, [matrix_row], axis=0)
|
|
||||||
return x_array, y_array, matrix
|
|
||||||
|
|
||||||
def write_one_dimensional_data(x_array, y_array, filename='a', format='txt'):
|
|
||||||
x_array = np.array(x_array)
|
|
||||||
y_array = np.array(y_array)
|
|
||||||
with open(filename+'.'+format, 'w') as f:
|
|
||||||
i0 = 0
|
|
||||||
for x0 in x_array:
|
|
||||||
f.write(str(x0)+' ')
|
|
||||||
if len(y_array.shape) == 1:
|
|
||||||
f.write(str(y_array[i0])+'\n')
|
|
||||||
elif len(y_array.shape) == 2:
|
|
||||||
for j0 in range(y_array.shape[1]):
|
|
||||||
f.write(str(y_array[i0, j0])+' ')
|
|
||||||
f.write('\n')
|
|
||||||
i0 += 1
|
|
||||||
|
|
||||||
def write_two_dimensional_data(x_array, y_array, matrix, filename='a', format='txt'):
|
|
||||||
x_array = np.array(x_array)
|
|
||||||
y_array = np.array(y_array)
|
|
||||||
matrix = np.array(matrix)
|
|
||||||
with open(filename+'.'+format, 'w') as f:
|
|
||||||
f.write('0 ')
|
|
||||||
for x0 in x_array:
|
|
||||||
f.write(str(x0)+' ')
|
|
||||||
f.write('\n')
|
|
||||||
i0 = 0
|
|
||||||
for y0 in y_array:
|
|
||||||
f.write(str(y0))
|
|
||||||
j0 = 0
|
|
||||||
for x0 in x_array:
|
|
||||||
f.write(' '+str(matrix[i0, j0])+' ')
|
|
||||||
j0 += 1
|
|
||||||
f.write('\n')
|
|
||||||
i0 += 1
|
|
@ -1,131 +0,0 @@
|
|||||||
# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com/about. The primary location of this package is on website https://py.guanjihuan.com.
|
|
||||||
|
|
||||||
# topological invariant
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import cmath
|
|
||||||
from math import *
|
|
||||||
import guan
|
|
||||||
|
|
||||||
def calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100):
|
|
||||||
if np.array(hamiltonian_function(0, 0)).shape==():
|
|
||||||
dim = 1
|
|
||||||
else:
|
|
||||||
dim = np.array(hamiltonian_function(0, 0)).shape[0]
|
|
||||||
delta = 2*pi/precision
|
|
||||||
chern_number = np.zeros(dim, dtype=complex)
|
|
||||||
for kx in np.arange(-pi, pi, delta):
|
|
||||||
for ky in np.arange(-pi, pi, delta):
|
|
||||||
H = hamiltonian_function(kx, ky)
|
|
||||||
vector = guan.calculate_eigenvector(H)
|
|
||||||
H_delta_kx = hamiltonian_function(kx+delta, ky)
|
|
||||||
vector_delta_kx = guan.calculate_eigenvector(H_delta_kx)
|
|
||||||
H_delta_ky = hamiltonian_function(kx, ky+delta)
|
|
||||||
vector_delta_ky = guan.calculate_eigenvector(H_delta_ky)
|
|
||||||
H_delta_kx_ky = hamiltonian_function(kx+delta, ky+delta)
|
|
||||||
vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky)
|
|
||||||
for i in range(dim):
|
|
||||||
vector_i = vector[:, i]
|
|
||||||
vector_delta_kx_i = vector_delta_kx[:, i]
|
|
||||||
vector_delta_ky_i = vector_delta_ky[:, i]
|
|
||||||
vector_delta_kx_ky_i = vector_delta_kx_ky[:, i]
|
|
||||||
Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i))
|
|
||||||
Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i))
|
|
||||||
Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i))
|
|
||||||
Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i))
|
|
||||||
F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))
|
|
||||||
chern_number[i] = chern_number[i] + F
|
|
||||||
chern_number = chern_number/(2*pi*1j)
|
|
||||||
return chern_number
|
|
||||||
|
|
||||||
def calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=10, precision_of_Wilson_loop=100):
|
|
||||||
delta = 2*pi/precision_of_plaquettes
|
|
||||||
chern_number = 0
|
|
||||||
for kx in np.arange(-pi, pi, delta):
|
|
||||||
for ky in np.arange(-pi, pi, delta):
|
|
||||||
vector_array = []
|
|
||||||
# line_1
|
|
||||||
for i0 in range(precision_of_Wilson_loop+1):
|
|
||||||
H_delta = hamiltonian_function(kx+delta/precision_of_Wilson_loop*i0, ky)
|
|
||||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
|
||||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
|
||||||
vector_array.append(vector_delta)
|
|
||||||
# line_2
|
|
||||||
for i0 in range(precision_of_Wilson_loop):
|
|
||||||
H_delta = hamiltonian_function(kx+delta, ky+delta/precision_of_Wilson_loop*(i0+1))
|
|
||||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
|
||||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
|
||||||
vector_array.append(vector_delta)
|
|
||||||
# line_3
|
|
||||||
for i0 in range(precision_of_Wilson_loop):
|
|
||||||
H_delta = hamiltonian_function(kx+delta-delta/precision_of_Wilson_loop*(i0+1), ky+delta)
|
|
||||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
|
||||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
|
||||||
vector_array.append(vector_delta)
|
|
||||||
# line_4
|
|
||||||
for i0 in range(precision_of_Wilson_loop-1):
|
|
||||||
H_delta = hamiltonian_function(kx, ky+delta-delta/precision_of_Wilson_loop*(i0+1))
|
|
||||||
eigenvalue, eigenvector = np.linalg.eig(H_delta)
|
|
||||||
vector_delta = eigenvector[:, np.argsort(np.real(eigenvalue))]
|
|
||||||
vector_array.append(vector_delta)
|
|
||||||
Wilson_loop = 1
|
|
||||||
for i0 in range(len(vector_array)-1):
|
|
||||||
Wilson_loop = Wilson_loop*np.dot(vector_array[i0].transpose().conj(), vector_array[i0+1])
|
|
||||||
Wilson_loop = Wilson_loop*np.dot(vector_array[len(vector_array)-1].transpose().conj(), vector_array[0])
|
|
||||||
arg = np.log(np.diagonal(Wilson_loop))/1j
|
|
||||||
chern_number = chern_number + arg
|
|
||||||
chern_number = chern_number/(2*pi)
|
|
||||||
return chern_number
|
|
||||||
|
|
||||||
def calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300):
|
|
||||||
if np.array(hamiltonian_function(0, 0)).shape==():
|
|
||||||
dim = 1
|
|
||||||
else:
|
|
||||||
dim = np.array(hamiltonian_function(0, 0)).shape[0]
|
|
||||||
chern_number = np.zeros(dim, dtype=complex)
|
|
||||||
L1 = 4*sqrt(3)*pi/9/a
|
|
||||||
L2 = 2*sqrt(3)*pi/9/a
|
|
||||||
L3 = 2*pi/3/a
|
|
||||||
delta1 = 2*L1/precision
|
|
||||||
delta3 = 2*L3/precision
|
|
||||||
for kx in np.arange(-L1, L1, delta1):
|
|
||||||
for ky in np.arange(-L3, L3, delta3):
|
|
||||||
if (-L2<=kx<=L2) or (kx>L2 and -(L1-kx)*tan(pi/3)<=ky<=(L1-kx)*tan(pi/3)) or (kx<-L2 and -(kx-(-L1))*tan(pi/3)<=ky<=(kx-(-L1))*tan(pi/3)):
|
|
||||||
H = hamiltonian_function(kx, ky)
|
|
||||||
vector = guan.calculate_eigenvector(H)
|
|
||||||
H_delta_kx = hamiltonian_function(kx+delta1, ky)
|
|
||||||
vector_delta_kx = guan.calculate_eigenvector(H_delta_kx)
|
|
||||||
H_delta_ky = hamiltonian_function(kx, ky+delta3)
|
|
||||||
vector_delta_ky = guan.calculate_eigenvector(H_delta_ky)
|
|
||||||
H_delta_kx_ky = hamiltonian_function(kx+delta1, ky+delta3)
|
|
||||||
vector_delta_kx_ky = guan.calculate_eigenvector(H_delta_kx_ky)
|
|
||||||
for i in range(dim):
|
|
||||||
vector_i = vector[:, i]
|
|
||||||
vector_delta_kx_i = vector_delta_kx[:, i]
|
|
||||||
vector_delta_ky_i = vector_delta_ky[:, i]
|
|
||||||
vector_delta_kx_ky_i = vector_delta_kx_ky[:, i]
|
|
||||||
Ux = np.dot(np.conj(vector_i), vector_delta_kx_i)/abs(np.dot(np.conj(vector_i), vector_delta_kx_i))
|
|
||||||
Uy = np.dot(np.conj(vector_i), vector_delta_ky_i)/abs(np.dot(np.conj(vector_i), vector_delta_ky_i))
|
|
||||||
Ux_y = np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_ky_i), vector_delta_kx_ky_i))
|
|
||||||
Uy_x = np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i)/abs(np.dot(np.conj(vector_delta_kx_i), vector_delta_kx_ky_i))
|
|
||||||
F = cmath.log(Ux*Uy_x*(1/Ux_y)*(1/Uy))
|
|
||||||
chern_number[i] = chern_number[i] + F
|
|
||||||
chern_number = chern_number/(2*pi*1j)
|
|
||||||
return chern_number
|
|
||||||
|
|
||||||
def calculate_wilson_loop(hamiltonian_function, k_min=-pi, k_max=pi, precision=100):
|
|
||||||
k_array = np.linspace(k_min, k_max, precision)
|
|
||||||
dim = np.array(hamiltonian_function(0)).shape[0]
|
|
||||||
wilson_loop_array = np.ones(dim, dtype=complex)
|
|
||||||
for i in range(dim):
|
|
||||||
eigenvector_array = []
|
|
||||||
for k in k_array:
|
|
||||||
eigenvector = guan.calculate_eigenvector(hamiltonian_function(k))
|
|
||||||
if k != k_max:
|
|
||||||
eigenvector_array.append(eigenvector[:, i])
|
|
||||||
else:
|
|
||||||
eigenvector_array.append(eigenvector_array[0])
|
|
||||||
for i0 in range(precision-1):
|
|
||||||
F = np.dot(eigenvector_array[i0+1].transpose().conj(), eigenvector_array[i0])
|
|
||||||
wilson_loop_array[i] = np.dot(F, wilson_loop_array[i])
|
|
||||||
return wilson_loop_array
|
|
47
Tutorial/01_test_and_Pauli_matrix.py
Normal file
47
Tutorial/01_test_and_Pauli_matrix.py
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
import guan
|
||||||
|
|
||||||
|
# test
|
||||||
|
guan.test()
|
||||||
|
|
||||||
|
# Pauli matrix
|
||||||
|
sigma_0 = guan.sigma_0()
|
||||||
|
sigma_x = guan.sigma_x()
|
||||||
|
sigma_y = guan.sigma_y()
|
||||||
|
sigma_z = guan.sigma_z()
|
||||||
|
sigma_00 = guan.sigma_00()
|
||||||
|
sigma_0x = guan.sigma_0x()
|
||||||
|
sigma_0y = guan.sigma_0y()
|
||||||
|
sigma_0z = guan.sigma_0z()
|
||||||
|
sigma_x0 = guan.sigma_x0()
|
||||||
|
sigma_xx = guan.sigma_xx()
|
||||||
|
sigma_xy = guan.sigma_xy()
|
||||||
|
sigma_xz = guan.sigma_xz()
|
||||||
|
sigma_y0 = guan.sigma_y0()
|
||||||
|
sigma_yx = guan.sigma_yx()
|
||||||
|
sigma_yy = guan.sigma_yy()
|
||||||
|
sigma_yz = guan.sigma_yz()
|
||||||
|
sigma_z0 = guan.sigma_z0()
|
||||||
|
sigma_zx = guan.sigma_zx()
|
||||||
|
sigma_zy = guan.sigma_zy()
|
||||||
|
sigma_zz = guan.sigma_zz()
|
||||||
|
print('Pauli matrix\n')
|
||||||
|
print('sigma_0\n', sigma_0, '\n')
|
||||||
|
print('sigma_x\n', sigma_x, '\n')
|
||||||
|
print('sigma_y\n', sigma_y, '\n')
|
||||||
|
print('sigma_z\n', sigma_z, '\n')
|
||||||
|
print('sigma_00\n', sigma_00, '\n')
|
||||||
|
print('sigma_0x\n', sigma_0x, '\n')
|
||||||
|
print('sigma_0y\n', sigma_0y, '\n')
|
||||||
|
print('sigma_0z\n', sigma_0z, '\n')
|
||||||
|
print('sigma_x0\n', sigma_x0, '\n')
|
||||||
|
print('sigma_xx\n', sigma_xx, '\n')
|
||||||
|
print('sigma_xy\n', sigma_xy, '\n')
|
||||||
|
print('sigma_xz\n', sigma_xz, '\n')
|
||||||
|
print('sigma_y0\n', sigma_y0, '\n')
|
||||||
|
print('sigma_yx\n', sigma_yx, '\n')
|
||||||
|
print('sigma_yy\n', sigma_yy, '\n')
|
||||||
|
print('sigma_yz\n', sigma_yz, '\n')
|
||||||
|
print('sigma_z0\n', sigma_z0, '\n')
|
||||||
|
print('sigma_zx\n', sigma_zx, '\n')
|
||||||
|
print('sigma_zy\n', sigma_zy, '\n')
|
||||||
|
print('sigma_zz\n', sigma_zz, '\n')
|
@ -0,0 +1,8 @@
|
|||||||
|
import guan
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# Fourier transform / calculate band structures / plot figures
|
||||||
|
k_array = np.linspace(-np.pi, np.pi, 100)
|
||||||
|
hamiltonian_function = guan.one_dimensional_fourier_transform_with_k(unit_cell=0, hopping=1) # one dimensional chain
|
||||||
|
eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(k_array, hamiltonian_function)
|
||||||
|
guan.plot(k_array, eigenvalue_array, xlabel='k', ylabel='E', type='-k')
|
6
Tutorial/03_Hamiltonian_of_finite_size_systems.py
Normal file
6
Tutorial/03_Hamiltonian_of_finite_size_systems.py
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
import guan
|
||||||
|
|
||||||
|
# Hamiltonian of finite size
|
||||||
|
print('\n', guan.hamiltonian_of_finite_size_system_along_one_direction(3), '\n')
|
||||||
|
print(guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(2, 2), '\n')
|
||||||
|
print(guan.hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(2, 2, 2), '\n')
|
9
Tutorial/04_some_models_in_the_reciprocal_space.py
Normal file
9
Tutorial/04_some_models_in_the_reciprocal_space.py
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
import guan
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
# Hamiltonian of models in the reciprocal space / calculate band structures / plot figures
|
||||||
|
k_array = np.linspace(-np.pi, np.pi, 100)
|
||||||
|
eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(k_array, guan.hamiltonian_of_square_lattice_in_quasi_one_dimension)
|
||||||
|
guan.plot(k_array, eigenvalue_array, xlabel='k', ylabel='E', type='-k')
|
||||||
|
eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(k_array, guan.hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension)
|
||||||
|
guan.plot(k_array, eigenvalue_array, xlabel='k', ylabel='E', type='-k')
|
@ -2,7 +2,7 @@ import guan
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
# calculate density of states
|
# calculate density of states
|
||||||
hamiltonian = guan.finite_size_along_two_directions_for_square_lattice(2,2)
|
hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(2,2)
|
||||||
fermi_energy_array = np.linspace(-4, 4, 400)
|
fermi_energy_array = np.linspace(-4, 4, 400)
|
||||||
total_dos_array = guan.total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.1)
|
total_dos_array = guan.total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.1)
|
||||||
guan.plot(fermi_energy_array, total_dos_array, xlabel='E', ylabel='Total DOS', type='-o')
|
guan.plot(fermi_energy_array, total_dos_array, xlabel='E', ylabel='Total DOS', type='-o')
|
||||||
@ -10,10 +10,10 @@ guan.plot(fermi_energy_array, total_dos_array, xlabel='E', ylabel='Total DOS', t
|
|||||||
fermi_energy = 0
|
fermi_energy = 0
|
||||||
N1 = 3
|
N1 = 3
|
||||||
N2 = 4
|
N2 = 4
|
||||||
hamiltonian = guan.finite_size_along_two_directions_for_square_lattice(N1,N2)
|
hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1,N2)
|
||||||
LDOS = guan.local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1=N1, N2=N2)
|
LDOS = guan.local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1=N1, N2=N2)
|
||||||
print('square lattice:\n', LDOS, '\n')
|
print('square lattice:\n', LDOS, '\n')
|
||||||
h00 = guan.finite_size_along_one_direction(N2)
|
h00 = guan.hamiltonian_of_finite_size_system_along_one_direction(N2)
|
||||||
h01 = np.identity(N2)
|
h01 = np.identity(N2)
|
||||||
LDOS = guan.local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00=h00, h01=h01, N2=N2, N1=N1)
|
LDOS = guan.local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00=h00, h01=h01, N2=N2, N1=N1)
|
||||||
print(LDOS, '\n\n')
|
print(LDOS, '\n\n')
|
||||||
@ -22,10 +22,10 @@ print(LDOS, '\n\n')
|
|||||||
N1 = 3
|
N1 = 3
|
||||||
N2 = 4
|
N2 = 4
|
||||||
N3 = 5
|
N3 = 5
|
||||||
hamiltonian = guan.finite_size_along_three_directions_for_cubic_lattice(N1, N2, N3)
|
hamiltonian = guan.hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3)
|
||||||
LDOS = guan.local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1=N1, N2=N2, N3=N3)
|
LDOS = guan.local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1=N1, N2=N2, N3=N3)
|
||||||
print('cubic lattice:\n', LDOS, '\n')
|
print('cubic lattice:\n', LDOS, '\n')
|
||||||
h00 = guan.finite_size_along_two_directions_for_square_lattice(N2, N3)
|
h00 = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N2, N3)
|
||||||
h01 = np.identity(N2*N3)
|
h01 = np.identity(N2*N3)
|
||||||
LDOS = guan.local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3=N3, N2=N2, N1=N1)
|
LDOS = guan.local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3=N3, N2=N2, N1=N1)
|
||||||
print(LDOS)
|
print(LDOS)
|
@ -2,14 +2,12 @@ import guan
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
# calculate conductance
|
# calculate conductance
|
||||||
fermi_energy_array = np.linspace(-5, 5, 400)
|
fermi_energy_array = np.linspace(-4, 4, 400)
|
||||||
h00 = guan.finite_size_along_one_direction(4)
|
h00 = guan.hamiltonian_of_finite_size_system_along_one_direction(4)
|
||||||
h01 = np.identity(4)
|
h01 = np.identity(4)
|
||||||
conductance_array = guan.calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01)
|
conductance_array = guan.calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01)
|
||||||
guan.plot(fermi_energy_array, conductance_array, xlabel='E', ylabel='Conductance', type='-o')
|
guan.plot(fermi_energy_array, conductance_array, xlabel='E', ylabel='Conductance', type='-')
|
||||||
|
|
||||||
# calculate scattering matrix
|
# calculate scattering matrix
|
||||||
fermi_energy = 0
|
fermi_energy = 0
|
||||||
h00 = guan.finite_size_along_one_direction(4)
|
|
||||||
h01 = np.identity(4)
|
|
||||||
guan.print_or_write_scattering_matrix(fermi_energy, h00, h01)
|
guan.print_or_write_scattering_matrix(fermi_energy, h00, h01)
|
13
Tutorial/07_calculate_Chern_number_and_Wilson_loop.py
Normal file
13
Tutorial/07_calculate_Chern_number_and_Wilson_loop.py
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
import guan
|
||||||
|
import numpy as np
|
||||||
|
from math import *
|
||||||
|
|
||||||
|
# calculate Chern number
|
||||||
|
chern_number = guan.calculate_chern_number_for_square_lattice(guan.hamiltonian_of_one_QAH_model, precision=100)
|
||||||
|
print('\nChern number=', chern_number)
|
||||||
|
|
||||||
|
# calculate Wilson loop
|
||||||
|
wilson_loop_array = guan.calculate_wilson_loop(guan.hamiltonian_of_ssh_model)
|
||||||
|
print('Wilson loop =', wilson_loop_array)
|
||||||
|
p = np.log(wilson_loop_array)/2/pi/1j
|
||||||
|
print('p =', p, '\n')
|
@ -1,9 +0,0 @@
|
|||||||
import guan
|
|
||||||
import numpy as np
|
|
||||||
import functools
|
|
||||||
|
|
||||||
# Fourier transform / calculate band structures / plot figures
|
|
||||||
x_array = np.linspace(-np.pi, np.pi, 100)
|
|
||||||
hamiltonian_function = functools.partial(guan.one_dimensional_fourier_transform, unit_cell=0, hopping=1)
|
|
||||||
eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function)
|
|
||||||
guan.plot(x_array, eigenvalue_array, xlabel='k', ylabel='E', type='-k')
|
|
@ -1,6 +0,0 @@
|
|||||||
import guan
|
|
||||||
|
|
||||||
# Hamiltonian of finite size
|
|
||||||
print(guan.finite_size_along_one_direction(3), '\n')
|
|
||||||
print(guan.finite_size_along_two_directions_for_square_lattice(2, 2), '\n')
|
|
||||||
print(guan.finite_size_along_three_directions_for_cubic_lattice(2, 2, 2), '\n')
|
|
@ -1,24 +0,0 @@
|
|||||||
import guan
|
|
||||||
import numpy as np
|
|
||||||
from math import *
|
|
||||||
|
|
||||||
# calculate Chern number
|
|
||||||
def hamiltonian_function(kx, ky): # one QAH model with chern number 2
|
|
||||||
t1 = 1.0
|
|
||||||
t2 = 1.0
|
|
||||||
t3 = 0.5
|
|
||||||
m = -1.0
|
|
||||||
hamiltonian = np.zeros((2, 2), dtype=complex)
|
|
||||||
hamiltonian[0, 1] = 2*t1*cos(kx)-1j*2*t1*cos(ky)
|
|
||||||
hamiltonian[1, 0] = 2*t1*cos(kx)+1j*2*t1*cos(ky)
|
|
||||||
hamiltonian[0, 0] = m+2*t3*sin(kx)+2*t3*sin(ky)+2*t2*cos(kx+ky)
|
|
||||||
hamiltonian[1, 1] = -(m+2*t3*sin(kx)+2*t3*sin(ky)+2*t2*cos(kx+ky))
|
|
||||||
return hamiltonian
|
|
||||||
chern_number = guan.calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100)
|
|
||||||
print('Chern number=', chern_number)
|
|
||||||
|
|
||||||
# calculate Wilson loop
|
|
||||||
wilson_loop_array = guan.calculate_wilson_loop(guan.hamiltonian_of_ssh_model)
|
|
||||||
print('Wilson loop =', wilson_loop_array)
|
|
||||||
p = np.log(wilson_loop_array)/2/pi/1j
|
|
||||||
print('p =', p, '\n')
|
|
@ -1,9 +0,0 @@
|
|||||||
import guan
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
# Hamiltonian of models in the reciprocal space / calculate band structures / plot figures
|
|
||||||
x_array = np.linspace(-np.pi, np.pi, 100)
|
|
||||||
eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(x_array, guan.hamiltonian_of_square_lattice_in_quasi_one_dimension)
|
|
||||||
guan.plot(x_array, eigenvalue_array, xlabel='k', ylabel='E', type='-k')
|
|
||||||
eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(x_array, guan.hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension)
|
|
||||||
guan.plot(x_array, eigenvalue_array, xlabel='k', ylabel='E', type='-k')
|
|
@ -1,12 +0,0 @@
|
|||||||
import guan
|
|
||||||
|
|
||||||
# test
|
|
||||||
print('test')
|
|
||||||
guan.test()
|
|
||||||
|
|
||||||
# Pauli matrix
|
|
||||||
print('Pauli matrix')
|
|
||||||
print('sigma_0:\n', guan.sigma_0(), '\n')
|
|
||||||
print('sigma_x:\n', guan.sigma_x(), '\n')
|
|
||||||
print('sigma_y:\n', guan.sigma_y(), '\n')
|
|
||||||
print('sigma_z:\n', guan.sigma_z(), '\n')
|
|
Loading…
x
Reference in New Issue
Block a user