0.1.105
This commit is contained in:
parent
11950302de
commit
e79efc284f
@ -1,7 +1,7 @@
|
||||
[metadata]
|
||||
# replace with your username:
|
||||
name = guan
|
||||
version = 0.1.104
|
||||
version = 0.1.105
|
||||
author = guanjihuan
|
||||
author_email = guanjihuan@163.com
|
||||
description = An open source python package
|
||||
|
@ -1,6 +1,6 @@
|
||||
Metadata-Version: 2.1
|
||||
Name: guan
|
||||
Version: 0.1.104
|
||||
Version: 0.1.105
|
||||
Summary: An open source python package
|
||||
Home-page: https://py.guanjihuan.com
|
||||
Author: guanjihuan
|
||||
|
@ -165,8 +165,21 @@ def convolutional_neural_network_with_two_convolutional_layers_and_two_fully_con
|
||||
model = model_class_of_convolutional_neural_network_with_two_convolutional_layers_and_two_fully_connected_layers()
|
||||
return model
|
||||
|
||||
# 从损失函数的变化情况中获取是否停止训练的信号
|
||||
def get_break_signal_from_loss_array(loss_array, patience=100, min_delta=0.001):
|
||||
break_signal = 0
|
||||
counter = 0
|
||||
num = len(loss_array)
|
||||
for i0 in range(num):
|
||||
if i0 != 0:
|
||||
if abs(loss_array[i0]-loss_array[i0-1])<min_delta:
|
||||
counter += 1
|
||||
if counter >= patience:
|
||||
break_signal = 1
|
||||
return break_signal
|
||||
|
||||
# 使用优化器训练模型
|
||||
def train_model(model, x_data, y_data, optimizer='Adam', learning_rate=0.001, criterion='MSELoss', num_epochs=1000, print_show=1):
|
||||
def train_model(model, x_data, y_data, optimizer='Adam', learning_rate=0.001, criterion='MSELoss', num_epochs=1000, print_show=1, early_stop=0, patience=100, min_delta=0.001):
|
||||
import torch
|
||||
if optimizer == 'Adam':
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||
@ -177,21 +190,26 @@ def train_model(model, x_data, y_data, optimizer='Adam', learning_rate=0.001, cr
|
||||
criterion = torch.nn.MSELoss()
|
||||
elif criterion == 'CrossEntropyLoss':
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
losses = []
|
||||
loss_array = []
|
||||
for epoch in range(num_epochs):
|
||||
output = model.forward(x_data)
|
||||
loss = criterion(output, y_data)
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
losses.append(loss.item())
|
||||
loss_array.append(loss.item())
|
||||
if print_show == 1:
|
||||
if (epoch + 1) % 100 == 0:
|
||||
print(epoch, loss.item())
|
||||
return model, losses
|
||||
if early_stop == 1:
|
||||
import guan
|
||||
break_signal = guan.get_break_signal_from_loss_array(loss_array, patience=patience, min_delta=min_delta)
|
||||
if break_signal:
|
||||
break
|
||||
return model, loss_array
|
||||
|
||||
# 使用优化器批量训练模型
|
||||
def batch_train_model(model, train_loader, optimizer='Adam', learning_rate=0.001, criterion='MSELoss', num_epochs=1000, print_show=1):
|
||||
def batch_train_model(model, train_loader, optimizer='Adam', learning_rate=0.001, criterion='MSELoss', num_epochs=1000, print_show=1, more_loss_data=0, early_stop=0, patience=100, min_delta=0.001):
|
||||
import torch
|
||||
if optimizer == 'Adam':
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||
@ -202,6 +220,7 @@ def batch_train_model(model, train_loader, optimizer='Adam', learning_rate=0.001
|
||||
criterion = torch.nn.MSELoss()
|
||||
elif criterion == 'CrossEntropyLoss':
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
loss_array = []
|
||||
losses = []
|
||||
for epoch in range(num_epochs):
|
||||
for batch_x, batch_y in train_loader:
|
||||
@ -211,10 +230,19 @@ def batch_train_model(model, train_loader, optimizer='Adam', learning_rate=0.001
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
losses.append(loss.item())
|
||||
loss_array.append(loss.item())
|
||||
if print_show == 1:
|
||||
if (epoch + 1) % 100 == 0:
|
||||
print(epoch, loss.item())
|
||||
return model, losses
|
||||
if early_stop == 1:
|
||||
import guan
|
||||
break_signal = guan.get_break_signal_from_loss_array(loss_array, patience=patience, min_delta=min_delta)
|
||||
if break_signal:
|
||||
break
|
||||
if more_loss_data == 0:
|
||||
return model, loss_array
|
||||
else:
|
||||
return model, losses
|
||||
|
||||
# 保存模型参数到文件
|
||||
def save_model_parameters(model, filename='./model_parameters.pth'):
|
||||
|
Loading…
x
Reference in New Issue
Block a user