From ebcdbb10021da013c189469f309f49df637c0865 Mon Sep 17 00:00:00 2001 From: guanjihuan Date: Thu, 20 Jan 2022 15:21:47 +0800 Subject: [PATCH] Update API_Reference.py --- API_Reference/API_Reference.py | 124 +++++++++++++++++++++++++++++++++ 1 file changed, 124 insertions(+) diff --git a/API_Reference/API_Reference.py b/API_Reference/API_Reference.py index ae0b553..d9d8a84 100644 --- a/API_Reference/API_Reference.py +++ b/API_Reference/API_Reference.py @@ -1,128 +1,252 @@ import guan + + # basic functions + guan.test() + sigma_0 = guan.sigma_0() + sigma_x = guan.sigma_x() + sigma_y = guan.sigma_y() + sigma_z = guan.sigma_z() + sigma_00 = guan.sigma_00() + sigma_0x = guan.sigma_0x() + sigma_0y = guan.sigma_0y() + sigma_0z = guan.sigma_0z() + sigma_x0 = guan.sigma_x0() + sigma_xx = guan.sigma_xx() + sigma_xy = guan.sigma_xy() + sigma_xz = guan.sigma_xz() + sigma_y0 = guan.sigma_y0() + sigma_yx = guan.sigma_yx() + sigma_yy = guan.sigma_yy() + sigma_yz = guan.sigma_yz() + sigma_z0 = guan.sigma_z0() + sigma_zx = guan.sigma_zx() + sigma_zy = guan.sigma_zy() + sigma_zz = guan.sigma_zz() + + # Fourier transform + hamiltonian = guan.one_dimensional_fourier_transform(k, unit_cell, hopping) + hamiltonian = guan.two_dimensional_fourier_transform_for_square_lattice(k1, k2, unit_cell, hopping_1, hopping_2) + hamiltonian = guan.three_dimensional_fourier_transform_for_cubic_lattice(k1, k2, k3, unit_cell, hopping_1, hopping_2, hopping_3) + hamiltonian_function = guan.one_dimensional_fourier_transform_with_k(unit_cell, hopping) + hamiltonian_function = guan.two_dimensional_fourier_transform_for_square_lattice_with_k1_k2(unit_cell, hopping_1, hopping_2) + hamiltonian_function = guan.three_dimensional_fourier_transform_for_cubic_lattice_with_k1_k2_k3(unit_cell, hopping_1, hopping_2, hopping_3) + b1 = guan.calculate_one_dimensional_reciprocal_lattice_vector(a1) + b1, b2 = guan.calculate_two_dimensional_reciprocal_lattice_vectors(a1, a2) + b1, b2, b3 = guan.calculate_three_dimensional_reciprocal_lattice_vectors(a1, a2, a3) + b1 = guan.calculate_one_dimensional_reciprocal_lattice_vector_with_sympy(a1) + b1, b2 = guan.calculate_two_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2) + b1, b2, b3 = guan.calculate_three_dimensional_reciprocal_lattice_vectors_with_sympy(a1, a2, a3) + + # Hamiltonian of finite size systems + hamiltonian = guan.hamiltonian_of_finite_size_system_along_one_direction(N, on_site=0, hopping=1, period=0) + hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_square_lattice(N1, N2, on_site=0, hopping_1=1, hopping_2=1, period_1=0, period_2=0) + hamiltonian = guan.hamiltonian_of_finite_size_system_along_three_directions_for_cubic_lattice(N1, N2, N3, on_site=0, hopping_1=1, hopping_2=1, hopping_3=1, period_1=0, period_2=0, period_3=0) + hopping = guan.hopping_matrix_along_zigzag_direction_for_graphene_ribbon(N) + hamiltonian = guan.hamiltonian_of_finite_size_system_along_two_directions_for_graphene(N1, N2, period_1=0, period_2=0) + + # Hamiltonian of models in the reciprocal space + hamiltonian = guan.hamiltonian_of_simple_chain(k) + hamiltonian = guan.hamiltonian_of_square_lattice(k1, k2) + hamiltonian = guan.hamiltonian_of_square_lattice_in_quasi_one_dimension(k, N=10) + hamiltonian = guan.hamiltonian_of_cubic_lattice(k1, k2, k3) + hamiltonian = guan.hamiltonian_of_ssh_model(k, v=0.6, w=1) + hamiltonian = guan.hamiltonian_of_graphene(k1, k2, M=0, t=1, a=1/sqrt(3)) + hamiltonian = guan.hamiltonian_of_graphene_with_zigzag_in_quasi_one_dimension(k, N=10, M=0, t=1) + hamiltonian = guan.hamiltonian_of_haldane_model(k1, k2, M=2/3, t1=1, t2=1/3, phi=pi/4, a=1/sqrt(3)) + hamiltonian = guan.hamiltonian_of_haldane_model_in_quasi_one_dimension(k, N=10, M=2/3, t1=1, t2=1/3, phi=pi/4) + hamiltonian = guan.hamiltonian_of_one_QAH_model(k1, k2, t1=1, t2=1, t3=0.5, m=-1) + + # band structures and wave functions + eigenvalue = guan.calculate_eigenvalue(hamiltonian) + eigenvalue_array = guan.calculate_eigenvalue_with_one_parameter(x_array, hamiltonian_function, print_show=0) + eigenvalue_array = guan.calculate_eigenvalue_with_two_parameters(x_array, y_array, hamiltonian_function, print_show=0, print_show_more=0) + eigenvector = guan.calculate_eigenvector(hamiltonian) + vector_target = guan.find_vector_with_the_same_gauge_with_binary_search(vector_target, vector_ref, show_error=1, show_times=0, show_phase=0, n_test=10001, precision=1e-6) + vector = guan.find_vector_with_fixed_gauge_by_making_one_component_real(vector, precision=0.005, index=None) + + # Green functions green = guan.green_function(fermi_energy, hamiltonian, broadening, self_energy=0) + green_nn_n = guan.green_function_nn_n(fermi_energy, h00, h01, green_nn_n_minus, broadening, self_energy=0) + green_in_n = guan.green_function_in_n(green_in_n_minus, h01, green_nn_n) + green_ni_n = guan.green_function_ni_n(green_nn_n, h01, green_ni_n_minus) + green_ii_n = guan.green_function_ii_n(green_ii_n_minus, green_in_n_minus, h01, green_nn_n, green_ni_n_minus) + transfer = guan.transfer_matrix(fermi_energy, h00, h01) + right_lead_surface, left_lead_surface = guan.surface_green_function_of_lead(fermi_energy, h00, h01) + right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead(fermi_energy, h00, h01) + right_self_energy, left_self_energy, gamma_right, gamma_left = guan.self_energy_of_lead_with_h_LC_and_h_CR(fermi_energy, h00, h01, h_LC, h_CR) + self_energy, gamma = guan.self_energy_of_lead_with_h_lead_to_center(fermi_energy, h00, h01, h_lead_to_center) + green, gamma_right, gamma_left = guan.green_function_with_leads(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian) + G_n = guan.electron_correlation_function_green_n_for_local_current(fermi_energy, h00, h01, h_LC, h_CR, center_hamiltonian) + + # density of states total_dos = guan.total_density_of_states(fermi_energy, hamiltonian, broadening=0.01) + total_dos_array = guan.total_density_of_states_with_fermi_energy_array(fermi_energy_array, hamiltonian, broadening=0.01, print_show=0) + local_dos = guan.local_density_of_states_for_square_lattice(fermi_energy, hamiltonian, N1, N2, internal_degree=1, broadening=0.01) + local_dos = guan.local_density_of_states_for_cubic_lattice(fermi_energy, hamiltonian, N1, N2, N3, internal_degree=1, broadening=0.01) + local_dos = guan.local_density_of_states_for_square_lattice_using_dyson_equation(fermi_energy, h00, h01, N2, N1, internal_degree=1, broadening=0.01) + local_dos = guan.local_density_of_states_for_cubic_lattice_using_dyson_equation(fermi_energy, h00, h01, N3, N2, N1, internal_degree=1, broadening=0.01) + local_dos = guan.local_density_of_states_for_square_lattice_with_self_energy_using_dyson_equation(fermi_energy, h00, h01, N2, N1, right_self_energy, left_self_energy, internal_degree=1, broadening=0.01) + + # quantum transport conductance = guan.calculate_conductance(fermi_energy, h00, h01, length=100) + conductance_array = guan.calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100, print_show=0) + conductance = guan.calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100) + conductance_array = guan.calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1, print_show=0) + conductance_array = guan.calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h01, disorder_concentration_array, disorder_intensity=2.0, length=100, calculation_times=1, print_show=0) + conductance_array = guan.calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, length_array, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1, print_show=0) + gamma_array, green = guan.get_gamma_array_and_green_for_six_terminal_transmission(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10) + transmission_matrix = guan.calculate_six_terminal_transmission_matrix(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10) + transmission_12, transmission_13, transmission_14, transmission_15, transmission_16 = guan.calculate_six_terminal_transmissions_from_lead_1(fermi_energy, h00_for_lead_4, h01_for_lead_4, h00_for_lead_2, h01_for_lead_2, center_hamiltonian, width=10, length=50, internal_degree=1, moving_step_of_leads=10) + if_active = guan.if_active_channel(k_of_channel) + k_of_channel, velocity_of_channel, eigenvalue, eigenvector = guan.get_k_and_velocity_of_channel(fermi_energy, h00, h01) + k_right, k_left, velocity_right, velocity_left, f_right, f_left, u_right, u_left, ind_right_active = guan.get_classified_k_velocity_u_and_f(fermi_energy, h00, h01) + transmission_matrix, reflection_matrix, k_right, k_left, velocity_right, velocity_left, ind_right_active = guan.calculate_scattering_matrix(fermi_energy, h00, h01, length=100) + guan.print_or_write_scattering_matrix(fermi_energy, h00, h01, length=100, print_show=1, write_file=0, filename='a', format='txt') + + # topological invariant + chern_number = guan.calculate_chern_number_for_square_lattice(hamiltonian_function, precision=100, print_show=0) + chern_number = guan.calculate_chern_number_for_square_lattice_with_Wilson_loop(hamiltonian_function, precision_of_plaquettes=10, precision_of_Wilson_loop=100, print_show=0) + chern_number = guan.calculate_chern_number_for_honeycomb_lattice(hamiltonian_function, a=1, precision=300, print_show=0) + wilson_loop_array = guan.calculate_wilson_loop(hamiltonian_function, k_min=-pi, k_max=pi, precision=100, print_show=0) + + # read and write + x_array, y_array = guan.read_one_dimensional_data(filename='a', format='txt') + x_array, y_array, matrix = guan.read_two_dimensional_data(filename='a', format='txt') + guan.write_one_dimensional_data(x_array, y_array, filename='a', format='txt') + guan.write_two_dimensional_data(x_array, y_array, matrix, filename='a', format='txt') + + # plot figures + guan.plot(x_array, y_array, xlabel='x', ylabel='y', title='', show=1, save=0, filename='a', format='jpg', dpi=300, type='', y_min=None, y_max=None, linewidth=None, markersize=None) + guan.plot_3d_surface(x_array, y_array, matrix, xlabel='x', ylabel='y', zlabel='z', title='', show=1, save=0, filename='a', format='jpg', dpi=300, z_min=None, z_max=None, rcount=100, ccount=100) + guan.plot_contour(x_array, y_array, matrix, xlabel='x', ylabel='y', title='', show=1, save=0, filename='a', format='jpg', dpi=300) + + # others + guan.download_with_scihub(address=None, num=1) + guan.str_to_audio(str='hello world', rate=125, voice=1, read=1, save=0, print_text=0) + guan.txt_to_audio(txt_path, rate=125, voice=1, read=1, save=0, print_text=0) + content = guan.pdf_to_text(pdf_path) + guan.pdf_to_audio(pdf_path, rate=125, voice=1, read=1, save=0, print_text=0) \ No newline at end of file