0.1.196
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
[metadata]
|
||||
# replace with your username:
|
||||
name = guan
|
||||
version = 0.1.195
|
||||
version = 0.1.196
|
||||
author = guanjihuan
|
||||
author_email = guanjihuan@163.com
|
||||
description = An open source python package
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
Metadata-Version: 2.4
|
||||
Name: guan
|
||||
Version: 0.1.195
|
||||
Version: 0.1.196
|
||||
Summary: An open source python package
|
||||
Home-page: https://py.guanjihuan.com
|
||||
Author: guanjihuan
|
||||
|
||||
@@ -231,6 +231,42 @@ def standard_deviation_with_formula(data_array):
|
||||
std_result = np.sqrt(averaged_squared_data-averaged_data**2)
|
||||
return std_result
|
||||
|
||||
# 使用公式计算皮尔逊相关系数
|
||||
def calculate_pearson_correlation(x_array, y_array):
|
||||
import numpy as np
|
||||
mean_x = np.mean(x_array)
|
||||
mean_y = np.mean(y_array)
|
||||
numerator = np.sum((x_array - mean_x) * (y_array - mean_y))
|
||||
sum_sq_x = np.sum((x_array - mean_x) ** 2)
|
||||
sum_sq_y = np.sum((y_array - mean_y) ** 2)
|
||||
denominator = np.sqrt(sum_sq_x * sum_sq_y)
|
||||
correlation = numerator / denominator
|
||||
return correlation
|
||||
|
||||
# 使用 scipy 计算皮尔逊相关系数和 p 值
|
||||
def calculate_pearson_correlation_with_scipy(x_array, y_array):
|
||||
import scipy.stats
|
||||
correlation, p_value = scipy.stats.pearsonr(x_array, y_array)
|
||||
return correlation, p_value
|
||||
|
||||
# 使用 scipy 计算多个数组的皮尔逊相关系数和 p 值的矩阵
|
||||
def calculate_correlation_matrix_for_multiple_arrays(multiple_arrays):
|
||||
import scipy.stats
|
||||
import numpy as np
|
||||
num_arrays = len(multiple_arrays)
|
||||
correlation_matrix = np.zeros((num_arrays, num_arrays))
|
||||
p_value_matrix = np.zeros((num_arrays, num_arrays))
|
||||
row_idx = 0
|
||||
for array_1 in multiple_arrays:
|
||||
col_idx = 0
|
||||
for array_2 in multiple_arrays:
|
||||
correlation, p_value = scipy.stats.pearsonr(array_1, array_2)
|
||||
correlation_matrix[row_idx, col_idx] = correlation
|
||||
p_value_matrix[row_idx, col_idx] = p_value
|
||||
col_idx += 1
|
||||
row_idx += 1
|
||||
return correlation_matrix, p_value_matrix
|
||||
|
||||
# 获取两个模式之间的字符串
|
||||
def get_string_between_two_patterns(original_string, start, end, include_start_and_end=0):
|
||||
import re
|
||||
|
||||
Reference in New Issue
Block a user