# GUAN is an open-source python package developed and maintained by https://www.guanjihuan.com. The primary location of this package is on website https://py.guanjihuan.com. # basic functions import numpy as np ## Pauli matrices def sigma_0(): return np.eye(2) def sigma_x(): return np.array([[0, 1],[1, 0]]) def sigma_y(): return np.array([[0, -1j],[1j, 0]]) def sigma_z(): return np.array([[1, 0],[0, -1]]) ## Kronecker product of Pauli matrices def sigma_00(): return np.kron(sigma_0(), sigma_0()) def sigma_0x(): return np.kron(sigma_0(), sigma_x()) def sigma_0y(): return np.kron(sigma_0(), sigma_y()) def sigma_0z(): return np.kron(sigma_0(), sigma_z()) def sigma_x0(): return np.kron(sigma_x(), sigma_0()) def sigma_xx(): return np.kron(sigma_x(), sigma_x()) def sigma_xy(): return np.kron(sigma_x(), sigma_y()) def sigma_xz(): return np.kron(sigma_x(), sigma_z()) def sigma_y0(): return np.kron(sigma_y(), sigma_0()) def sigma_yx(): return np.kron(sigma_y(), sigma_x()) def sigma_yy(): return np.kron(sigma_y(), sigma_y()) def sigma_yz(): return np.kron(sigma_y(), sigma_z()) def sigma_z0(): return np.kron(sigma_z(), sigma_0()) def sigma_zx(): return np.kron(sigma_z(), sigma_x()) def sigma_zy(): return np.kron(sigma_z(), sigma_y()) def sigma_zz(): return np.kron(sigma_z(), sigma_z())