# Guan is an open-source python package developed and maintained by https://www.guanjihuan.com. The primary location of this package is on website https://py.guanjihuan.com. # calculate conductance import numpy as np import copy from .calculate_Green_functions import * def transfer_matrix(fermi_energy, h00, h01): h01 = np.array(h01) if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] transfer = np.zeros((2*dim, 2*dim), dtype=complex) transfer[0:dim, 0:dim] = np.dot(np.linalg.inv(h01), fermi_energy*np.identity(dim)-h00) transfer[0:dim, dim:2*dim] = np.dot(-1*np.linalg.inv(h01), h01.transpose().conj()) transfer[dim:2*dim, 0:dim] = np.identity(dim) transfer[dim:2*dim, dim:2*dim] = 0 return transfer def surface_green_function_of_lead(fermi_energy, h00, h01): h01 = np.array(h01) if np.array(h00).shape==(): dim = 1 else: dim = np.array(h00).shape[0] fermi_energy = fermi_energy+1e-9*1j transfer = transfer_matrix(fermi_energy, h00, h01) eigenvalue, eigenvector = np.linalg.eig(transfer) ind = np.argsort(np.abs(eigenvalue)) temp = np.zeros((2*dim, 2*dim), dtype=complex) i0 = 0 for ind0 in ind: temp[:, i0] = eigenvector[:, ind0] i0 += 1 s1 = temp[dim:2*dim, 0:dim] s2 = temp[0:dim, 0:dim] s3 = temp[dim:2*dim, dim:2*dim] s4 = temp[0:dim, dim:2*dim] right_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01, s2), np.linalg.inv(s1))) left_lead_surface = np.linalg.inv(fermi_energy*np.identity(dim)-h00-np.dot(np.dot(h01.transpose().conj(), s3), np.linalg.inv(s4))) return right_lead_surface, left_lead_surface def self_energy_of_lead(fermi_energy, h00, h01): h01 = np.array(h01) right_lead_surface, left_lead_surface = surface_green_function_of_lead(fermi_energy, h00, h01) right_self_energy = np.dot(np.dot(h01, right_lead_surface), h01.transpose().conj()) left_self_energy = np.dot(np.dot(h01.transpose().conj(), left_lead_surface), h01) return right_self_energy, left_self_energy def calculate_conductance(fermi_energy, h00, h01, length=100): right_self_energy, left_self_energy = self_energy_of_lead(fermi_energy, h00, h01) for ix in range(length): if ix == 0: green_nn_n = green_function(fermi_energy, h00, broadening=0, self_energy=left_self_energy) green_0n_n = copy.deepcopy(green_nn_n) elif ix != length-1: green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0) green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n) else: green_nn_n = green_function_nn_n(fermi_energy, h00, h01, green_nn_n, broadening=0, self_energy=right_self_energy) green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n) right_self_energy = (right_self_energy - right_self_energy.transpose().conj())*1j left_self_energy = (left_self_energy - left_self_energy.transpose().conj())*1j conductance = np.trace(np.dot(np.dot(np.dot(left_self_energy, green_0n_n), right_self_energy), green_0n_n.transpose().conj())) return conductance def calculate_conductance_with_fermi_energy_array(fermi_energy_array, h00, h01, length=100): dim = np.array(fermi_energy_array).shape[0] conductance_array = np.zeros(dim) i0 = 0 for fermi_energy_0 in fermi_energy_array: conductance_array[i0] = np.real(calculate_conductance(fermi_energy_0, h00, h01, length)) i0 += 1 return conductance_array def calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=2.0, disorder_concentration=1.0, length=100): right_self_energy, left_self_energy = self_energy_of_lead(fermi_energy, h00, h01) dim = np.array(h00).shape[0] for ix in range(length): disorder = np.zeros((dim, dim)) for dim0 in range(dim): if np.random.uniform(0, 1)<=disorder_concentration: disorder[dim0, dim0] = np.random.uniform(-disorder_intensity, disorder_intensity) if ix == 0: green_nn_n = green_function(fermi_energy, h00+disorder, broadening=0, self_energy=left_self_energy) green_0n_n = copy.deepcopy(green_nn_n) elif ix != length-1: green_nn_n = green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0) green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n) else: green_nn_n = green_function_nn_n(fermi_energy, h00+disorder, h01, green_nn_n, broadening=0, self_energy=right_self_energy) green_0n_n = green_function_in_n(green_0n_n, h01, green_nn_n) right_self_energy = (right_self_energy - right_self_energy.transpose().conj())*1j left_self_energy = (left_self_energy - left_self_energy.transpose().conj())*1j conductance = np.trace(np.dot(np.dot(np.dot(left_self_energy, green_0n_n), right_self_energy), green_0n_n.transpose().conj())) return conductance def calculate_conductance_with_disorder_intensity_array(fermi_energy, h00, h01, disorder_intensity_array, disorder_concentration=1.0, length=100, calculation_times=1): dim = np.array(disorder_intensity_array).shape[0] conductance_array = np.zeros(dim) i0 = 0 for disorder_intensity_0 in disorder_intensity_array: for times in range(calculation_times): conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity_0, disorder_concentration=disorder_concentration, length=length)) i0 += 1 conductance_array = conductance_array/calculation_times return conductance_array def calculate_conductance_with_disorder_concentration_array(fermi_energy, h00, h01, disorder_concentration_array,disorder_intensity=2.0, length=100, calculation_times=1): dim = np.array(disorder_concentration_array).shape[0] conductance_array = np.zeros(dim) i0 = 0 for disorder_concentration_0 in disorder_concentration_array: for times in range(calculation_times): conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration_0, length=length)) i0 += 1 conductance_array = conductance_array/calculation_times return conductance_array def calculate_conductance_with_scattering_length_array(fermi_energy, h00, h01, length_array, disorder_intensity=2.0, disorder_concentration=1.0, calculation_times=1): dim = np.array(length_array).shape[0] conductance_array = np.zeros(dim) i0 = 0 for length_0 in length_array: for times in range(calculation_times): conductance_array[i0] = conductance_array[i0]+np.real(calculate_conductance_with_disorder(fermi_energy, h00, h01, disorder_intensity=disorder_intensity, disorder_concentration=disorder_concentration, length=length_0)) i0 += 1 conductance_array = conductance_array/calculation_times return conductance_array